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Abstract

This article describes the batch Markovian arrival process (BMAP), a point process that

is characterized by Markov-modulated batch arrivals of random size. The BMAP is a gener-

alization of many well-known processes including the Markovian arrival process (MAP), the

Poisson process, and the Markov-modulated Poisson process. It provides a common framework

for modeling arrival processes in a variety of applications. We formally define the continuous-

and discrete-time BMAP, review a few basic results for each, and show how these processes gen-

eralize many common point processes. Additionally, we provide suggestions for further reading

on the subject.
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Introduction

The batch Markovian arrival process (BMAP) is a stochstic point process that generalizes

the standard Poisson process (and other point processes) by allowing for “batches” of arrivals,

dependent inter-arrival times, nonexponential inter-arrival time distributions, and correlated batch

sizes. The Markovian arrival process (MAP) is a special case of the BMAP in which the batch

size is restricted to unity. For a detailed description of the MAP, please see the article Markovian

Arrival Processes (MAP).

The origins of the BMAP can be traced to the development of the versatile Markovian point

process (VMPP) by Marcel Neuts [1] whose primary objective was to extend the standard Poisson

process to account for more complex customer arrival processes in queueing models. The VMPP

is characterized by three distinct classes of batch arrivals, each of which are determined by the

transition type of an external Markov process with m transient states and one absorbing state,
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m + 1. One type of arrival is from a Markov-modulated Poisson process, and this type occurs

during the sojourn of the exogenous process in any of the m transient states. Another type occurs

when the Markov process in state i transitions to state j, j 6= i, which is an ordinary transition

between two transient states. The third type of arrival occurs when the process in transient state

i transitions to the absorbing state, m + 1, and then restarts in state j. This type of transition

is called an (i, j)-renewal transition, and by virtue of restarting the Markov process, admits the

possibility of a “self-transition” from a transient state i to itself. From this description, it is clear

that the VMPP is founded upon the notion of a phase-type (PH) distribution, or the distribution of

the time to absorption of an absorbing Markov process. Neuts [2] played a major role in advancing

the use of the PH-distribution in queueing theory, culminating ultimately in the development of

the VMPP.

Lucantoni, et al. [3] sought to extend the original definition of the VMPP while simultaneously

easing its notational burden by defining the Markovian arrival process (MAP). The MAP also

uses the concept of arrival dependence upon an external Markov process but does not distinguish

between classes of arrivals. The MAP was generalized to the BMAP in [4] by permitting batch

arrivals. Originally it was thought that the VMPP was a special case of the BMAP, and it was only

later that Lucantoni and others [5, 6] asserted the equivalence of the VMPP and BMAP. The term

“BMAP” has persisted due to its widespread acceptance in the stochastic modeling community.

The analysis of queueing systems is assisted by the fact that they may often be modeled, either

directly or via embedding, as structured Markov chains. Structured Markov chains are typically

classified as two main types: the GI/M/1-type and the M/G/1-type. A well-known third type,

the quasi-birth-and-death (QBD) process, can be viewed as the juxtaposition of the other two.

Structured Markov chains help facilitate the use of matrix-analytic methods in the steady-state

analysis of queueing systems with MAP and BMAP input. The use of matrix-analytic methods

in the analysis of queueing systems is detailed in Neuts’ two classic texts [7, 8], which describe

the theory and method underlying the derivation of the stationary distributions of the structured

Markov chains. The first queueing model to be considered is the single-server model with infinite

capacity. Ramaswami [9] incorporated the BMAP (or VMPP), which he called the N -process in

honor of Neuts, as an arrival process to a single-server queue with generally-distributed service

times. From this work, a generalization of the Polleczek-Khinchin formula to the N/G/1 queue

was derived. Basic results for the steady-state analysis of the MAP/G/1 queue are provided in [3].

The BMAP/G/1 is subsequently considered in [4] while the first known transient analysis of the

BMAP/G/1 queue is presented in [5]. Various aspects of the BMAP/G/1 continue to be studied,

as are queueing variants such as the D-BMAP/G/1 and the BMAP retrial queue. See “Further

Reading” for references that pertain to these subjects.

In the sections that follow, we formally define the continuous-time BMAP and provide some

basic results including the generating function of its counting process and its fundamental rate.

We likewise define the discrete-time BMAP (D-BMAP) and describe a variety of arrival processes
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that are special cases of the BMAP and D-BMAP. Finally, we will provide suggestions for further

reading on the subject for the interested reader to gain a deeper understanding of these versatile

arrival processes.

The Continuous-Time BMAP

Let J ≡ {J(t) : t ≥ 0} be an irreducible, continuous-time Markov chain (CTMC) with state

space E = {1, 2, . . . ,m}, where m is a finite, positive integer. The infinitesimal generator matrix

of this CTMC is denoted by Q. Suppose J has just entered state i ∈ E. The process spends

an exponentially distributed amount of time in state i with rate λi = −qii where qii is the ith

diagonal element of Q. The transition that follows this sojourn can be one of two types. For the

first type, an “arrival” of batch size k (k ≥ 1) occurs, and the process transitions to state j ∈ E

with probability pij(k), where j may be equal to i. For the second type, the batch size is 0 and the

process transitions to state j 6= i with probability pij(0). For each i ∈ E, the probabilities pij(k)

satisfy
∞∑

k=1

m∑

j=1

pij(k) +
∑

j∈E\{i}
pij(0) = 1. (1)

Next, for k ≥ 0, define the matrices Dk = [dij(k)]i,j∈E , where

dij(0) =




−λi, j = i,

λi pij(0), j 6= i,
(2)

and

dij(k) = λi pij(k), i, j ∈ E, k ≥ 1. (3)

The matrix D0 contains the transition rates of J for which no arrivals occur, and the matrices

{Dk : k ≥ 1} contain the transition rates for which a batch size k occurs. Assuming D0 is a

stable matrix (i.e., it is nonsingular), then the interarrival times will be finite almost surely, which

is equivalent to stating that the BMAP will not terminate. From condition (1) and eqs. (2) and

(3), it is not hard to see that

Q =
∞∑

k=0

Dk.

Now, let N(t) denote the total number of arrivals up to time t. The joint process, (N, J) ≡
{(N(t), J(t)) : t ≥ 0}, is called a Batch Markovian Arrival Process (BMAP). Obviously, it is a

Markov process with state space {(n, j) : n ≥ 0, j ∈ E} and infinitesimal generator matrix

Q∗ =




D0 D1 D2 D3 . . .

0 D0 D1 D2 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

...
. . .



.
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In the context of a BMAP, {J(t) : t ≥ 0} is normally called the phase process and {N(t) : t ≥ 0} is

the counting process. The matrices, {Dk : k ≥ 0}, are said to form a representation of the BMAP,

i.e., the BMAP is completely specified by these matrices.

Let us now consider the joint probability distribution of (N(t), J(t)) via its (probability) gen-

erating function. Adopting the notation of Lucantoni [5], denote the transition functions of (N, J)

by

Pij(n, t) = P(N(t) = n, J(t) = j |N(0) = 0, J(0) = i),

and define the matrix P (n, t) = [Pij(n, t)]i,j∈E . Then, for each n ≥ 0 and t ≥ 0, P (n, t) satisfies

the Chapman-Kolmogorov equations

d

dt
P (n, t) =

n∑

r=0

P (r, t)Dn−r, (4)

P (0, 0) = I,

where I is the identity matrix of order m. Define the matrix generating function of P (n, t) by

P ∗(z, t) =
∞∑

n=0

P (n, t) zn, |z| ≤ 1, t ≥ 0. (5)

Differentiating both sides of (5) with respect to t, substituting (4) and summing shows that

d

dt
P ∗(z, t) = P ∗(z, t)D(z), t ≥ 0, (6)

P ∗(z, 0) = I,

where

D(z) ≡
∞∑

k=0

Dk z
k, |z| ≤ 1. (7)

The (ordinary) matrix differential equation (6) has the obvious solution

P ∗(z, t) = P ∗(z, 0) exp(D(z) t) = exp(D(z) t), |z| ≤ 1, t ≥ 0,

where exp(A) is the matrix exponential of a square matrix A defined by

exp(A) =
∞∑

i=0

Ai

i!
.

We pause here to note the similarity between the generating function of the BMAP and that of a

standard Poisson process which is given by the scalar function

P ∗(z, t) = exp((−λ+ λz)t).

For the BMAP, the exponential term −λ+ λz is replaced by the matrix D(z) to account for batch

sizes larger than unity.
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Using the generating function of P (n, t), one can obtain the (conditional) expectation of the

number of arrivals in the interval (0, t]. Define this conditional expectation by Ei(N(t)1(J(t) = j))

where 1(B) denotes the indicator variable of event B and Ei denotes expectation with respect to

Pi, the probability law of (N, J) given J(0) = i and N(0) = 0. Then Ei(N(t)1(J(t) = j)) is the

(i, j)th entry of the m×m matrix

d

dz
P ∗(z, t)

∣∣∣∣
z=1

= D(1) exp(D(1) t) = Q exp(Q t).

The conditional kth factorial moment can be obtained by taking the kth-order derivative P ∗(z, t)
and evaluating at z = 1 in the usual way.

The limiting behavior of the continuous-time BMAP is discussed next. Let π = [π1, . . . , πm] be

the invariant probability vector of the CTMC, {J(t) : t ≥ 0}, with generator matrix Q; that is, π

is the unique positive solution to the system of equations

πQ = 0 and πe = 1

where 0 is the zero (row) vector and e is a (column) vector of ones. Then the fundamental rate, or

the stationary rate of arrivals in a BMAP, is given by

λ = π

( ∞∑

k=1

kDk

)
e. (8)

On the other hand, the arrival rate of batches is given by

λg = −πD0e,

which is never zero since D0 is assumed to be nonsingular. If all the batch sizes are equal to unity,

then the process is a Markovian arrival process (MAP), and λ = λg.

In the next section, we describe several arrival processes that are special cases of the BMAP. A

working knowledge of phase-type (PH) distributions is assumed for this discussion. For a thorough

treatment of continuous- and discrete-time PH-distributions, the reader should consult [1, 6, 7, 10].

A cogent summary of PH-distributions is also provided in the article Phase-Type (PH) Distributions.

Common Continuous-Time BMAPs

1. Poisson Process: If the state space E consists of only a single state (i.e., m = 1), the time

between “transitions” is exponentially distributed with rate λ, and an arrival of batch size

1 occurs at each transition, then the counting process, {N(t) : t ≥ 0}, is a Poisson process

with rate λ. In this case, the matrices {Dk : k ≥ 0} are replaced by scalars {Dk : k ≥ 0}.
Specifically, D0 = −λ, D1 = λ, and Dk = 0 for all k ≥ 2. Then, {N(t) : t ≥ 0} is a BMAP
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with generator matrix

Q∗ =




−λ λ 0 0 0 0 . . .

0 −λ λ 0 0 0 . . .

0 0 −λ λ 0 0 . . .

0 0 0 −λ λ 0 . . .
...

...
...

...
...

...
. . .



.

2. Batch Poisson Process: If we allow a batch size greater than unity in the standard Pois-

son process with rate λ, the resulting batch Poisson process is a BMAP. Let pk denote the

probability that an arrival is of batch size k, k ≥ 1, and note that
∑

k≥1 pk = 1. For this

process, m = 1, D0 = −λ, and Dk = λ pk for each k ≥ 1. Then the batch Poisson Process is

a BMAP with generator matrix

Q∗ =




−λ p1λ p2λ p3λ p4λ p5λ . . .

0 −λ p1λ p2λ p3λ p4λ . . .

0 0 −λ p1λ p2λ p3λ . . .

0 0 0 −λ p1λ p2λ . . .
...

...
...

...
...

...
. . .



.

Moreover, as noted by Lucantoni [5], if g(z) is the generating function of {pk : k ≥ 1}, then
D(z) = −λ+ λg(z), |z| ≤ 1.

3. Batch Markov-Modulated Poisson Process (MMPP). Consider a Poisson process

whose rate is modulated by an exogenous, irreducible Markov process, {J(t) : t ≥ 0}, with
state space {1, 2, . . . ,m} and generator matrix Q. Whenever J(t) = i, arrivals are accord-

ing to a Poisson process with rate λi (λi > 0). Define the vector λ = (λ1, λ2, . . . , λm) and

let ∆(λ) = diag(λ). Arrivals occur in batches of size k with probability pk, k ≥ 1. If

N(t) denotes the number of arrivals up to time t, then {(N(t), J(t)) : t ≥ 0} is a BMAP

with D0 = Q − ∆(λ), Dk = pk∆(λ) for k ≥ 1. (An excellent summary of the standard

Markov-Modulated Poisson Process is provided by Fischer, et al. [11].)

4. Batch PH-Renewal Process. Suppose that arrivals are according to a renewal process,

{τn : n ≥ 0}, where τn denotes the nth arrival epoch. The PH-renewal process is a renewal

process for which the inter-renewal times Sn ≡ τn+1 − τn, n ≥ 0, form an i.i.d. sequence of

PH-distributed random variables with representation (α,T ), where T is of order m. Again,

let pk denote the probability that the batch size is k, k ≥ 1. The batch PH-renewal process

is then a BMAP with D0 = T and Dk = pkT
0α, k ≥ 1 where T 0 = −Te.

5. Superposition of Independent BMAPs. The superposition of N independent BMAPs

is again a BMAP. Let {Dk(i) : k ≥ 0}, i = 1, 2, . . . , N , denote a collection of N independent
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BMAPs such that the phase process of the ith BMAP is of order m(i). Let

M =

N∏

i=1

m(i),

and define for each k ≥ 0 the M ×M matrix Dk by

Dk = Dk(1)⊕ · · · ⊕Dk(N),

where the operator ⊕ is the Kronecker matrix sum (see [8, 11]). Then {Dk : k ≥ 0} is the

representation of the superposition of the N independent BMAPs.

The Discrete-Time BMAP (D-BMAP)

Consider an irreducible discrete-time Markov chain (DTMC) J ≡ {Jr : r ≥ 0} on the state space

E = {1, 2, . . . ,m} which allows self-transitions. Suppose that the nth transition of J triggers the

arrival of a batch of customers of size Yn (Yn ≥ 0), with Y0 = 0. Define the conditional probabilities

qij(k) = P(Xn+1 = j, Yn = k |Xn = i), i, j ∈ E, n ≥ 0,

which are the joint probabilities of a transition of the discrete-time chain J from i to j and an arrival

of batch size k ≥ 0. Next, define the (sub-stochastic) matrices Dk = [qij(k)]i,j∈E and assume that

I −D0 is nonsingular to ensure that the arrival of one or more customers occurs with probability

one. The transition probability matrix of J , denoted by P , is given by

P =
∞∑

k=0

Dk ,

whose entries are necessarily finite. The matrices {Dk : k ≥ 0} completely specify a discrete-time

batch Markovian arrival process (D-BMAP).

As for the continuous-time BMAP, it is possible to construct a bivariate Markov chain repre-

sentation of the D-BMAP. For r ≥ 0, let Nr be the total number of arrivals up to, and including,

the rth transition of J . The process {Nr : r ≥ 0} is the counting process of the D-BMAP, which,

together with the phase process J , allows us to define the bivariate process

{(Nr, Jr) : r ≥ 0},

which is a two-dimensional DTMC with transition probability matrix P ∗ given by

P ∗ =




D0 D1 D2 D3 . . .

0 D0 D1 D2 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

...
. . .



.
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Next, we elucidate an important property connected to the counting process as documented in

Blondia [41]. Define the r-step transition matrix P (n, r) whose (i, j)th entry is defined as

[P (n, r)]ij = P(Nr = n, Jr = j |J0 = i), r ≥ 1, n ≥ 0.

The matrix generating function of P (n, r), denoted by P ∗(z, r), is given by

P ∗(z, r) =
∞∑

n=0

P (n, r)zn, |z| ≤ 1.

It can be shown that, for r ≥ 1,

P ∗(z, r) = [P ∗(z, 1)]r = [D(z)]r, |z| ≤ 1, (9)

where D(z) =
∑∞

k=0Dkz
k. If D(z) is known explicitly, then the kth-factorial moments of the

number of arrivals in r (r ≥ 1) transitions can be obtained by computing the kth-order derivative

of P ∗(z, r) and evaluating at z = 1.

Next, we consider the fundamental rate of the D-BMAP. Let π = [π1, . . . , πm] be the invariant

probability vector of the phase process J ; that is, π is the unique positive solution to the system

of equations

πP = P and πe = 1.

Then the fundamental, or stationary arrival, rate of the D-BMAP is given by

λ = π

( ∞∑

k=1

kDk

)
e.

Here, the stationary batch arrival rate may be computed as

λg = π(I −D0)e,

which is always nonzero due to the assumption that I−D0 is nonsingular. As before, we have that

λ = λg if the maximum possible batch size is one, as in a discrete-time MAP.

In the next section, we discuss a few common D-BMAPs and point the reader to more extensive

references on the subject.

Common Discrete-Time BMAPs

1. Batch Geometric Process: Arrivals here are considered to be a sequence of independent

trials for which the “success” probability p0 (0 < p0 < 1) corresponds to a batch size of zero.

This process is a D-BMAP with m = 1, D0 = p0, and Dk = pk(1 − p0), where {pk : k ≥ 1}
are the batch-size probabilities conditioned upon the arrival of a batch of size k ≥ 1. For

the single-arrival process, we note that p1 = 1 and pk = 0 for k ≥ 2, thus giving D0 = p0,

D1 = 1− p0, and Dk = 0 for k ≥ 2.
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2. Batch Markov-Modulated Bernoulli Process: The Markov-Modulated Bernoulli Pro-

cess (MMBP) is the discrete-time analogue of the MMPP. For both the single-arrival and

batch versions of the MMBP, arrivals are triggered by the transitions of an m-state DTMC

with transition probability matrix P . If the process ends up in state j ∈ {1, . . . ,m}, then the

probability of an arrival is given by ηj ∈ (0, 1], while the probability of a null arrival is given

by 1− ηj . For notational convenience, define the vector

η = (η1, . . . , ηm) .

As with the batch geometric process, the conditional probabilities of batch size are given by

the sequence {pk : k ≥ 1}, with the usual adjustments made for the single-arrival version.

The batch MMBP may be expressed as a D-BMAP with elements D0 = ∆(e − η)P and

Dk = pk∆(η)P for k ≥ 1.

3. Batch PH-Renewal Process: As before, we consider a renewal process whose renewal

epochs are the set of points {τn : n ≥ 0} with inter-renewal times Sn+1 ≡ τn+1 − τn, n ≥ 0.

Here, the i.i.d. sequence of random variables, {Sn : n ≥ 1}, has a discrete phase-type (PH)

distribution with representation (α,T ) with T of order m. The process is then a D-BMAP

with D0 = T and Dk = pkT
0α, k ≥ 1, where T 0 = −Te and α is the vector of initial

probabilities for the discrete PH-distribution.

Further Reading

The original formulation of the continuous-time BMAP was the versatile Markovian point

process (VMPP) introduced by Neuts [1] in 1979. The current form of the MAP was developed

in [3] as an arrival process to a single-server queueing system, and the extension to the BMAP is

detailed in [5]. The D-BMAP first appeared in the works of Blondia [41, 40] and has since pervaded

the queueing and computer and communications networking literature, just as its continuous-time

predecessor. An excellent summary of the BMAP and D-BMAP, along with examples and selected

applications, can be found in Chakravarthy [6].

The analysis of queueing systems with BMAP (or related) input processes has received consid-

erable attention in the stochastic modeling community. Specific examples of single-server queueing

models with MAP input can be found in [12, 13, 14, 15, 16]. Machihara [17] examined single-server

queues with batch arrivals and state-dependent service times, while Hofmann [18] considered state-

dependent batch arrival rates. Krieger, et al. [19] studied a Markov-modulated BMAP/G/1 queue.

Queues with BMAP input and server vacations have received much attention, beginning with [3].

Lucantoni [5] provided a nice summary of a number of important results for the BMAP/G/1 system.

A sampling of the ensuing literature available on the subject can be found in [20, 21, 22, 23, 24]. Chy-

dzinsky [25] provided a transient analysis of the MMPP/G/1/k loss system, and in [26], analyzed

the first passage time to buffer overflow in the BMAP/G/1/k queue. The processor-sharing queue-

ing discipline in systems with MAP or BMAP input has been studied extensively in [27, 28, 29].
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Another fruitful area of research has considered queueing systems with BMAP input and re-

trials. Retrial queueing systems are extensively used to model systems in which customers retry

service after encountering a busy (or failed) server. For example, they are extremely useful for

modeling the retransmission of data packets in computer and communications networks, or the

call-back behavior of customers in a customer contact center. Some early examples of the BMAP

in retrial queues include [30, 31, 32, 33]. Chakravarthy, et al. [34, 35] introduced single- and

multi-server retrial models with group service and exponential retrials. Breuer, et al. [36] studied

a BMAP/PH/n multi-server retrial system, while Li et al. [37] introduced the complication of an

unreliable server in the BMAP retrial model.

The BMAP has been applied extensively in a number of areas from inventory management

[38] to maintenance models [39]. However, the preponderance of applications lies in computer

and communications networking, with the bulk of these assuming D-BMAP input processes. The

D-BMAP is often used to model specific characteristics of source signals, such as burstiness, in

telecommunications systems. Blondia [40] introduced the D-BMAP model, and in [41], analyzed

the steady-state system size distribution of a D-BMAP/G/1/N queue. Van Houdt and Blondia

[42] used a D-BMAP to model packet arrivals in a centralized wireless local area network. In [43],

they examined contention resolution in a network among many users generating signals modeled as

a D-BMAP. Zhao et al. [44] extended the work of [45] on the D-BMAP/PH/1/N queue to the case

of prioritized service. Queues with PH-distributed service times have proven useful in modeling

video streaming over networks, and the addition of a prioritization scheme enhances the usefulness

of these models in networks with heterogeneous data streams.
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