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Abstract

We examine an M/M/1 retrial queue with an unreliable server whose arrival, service, failure,
repair, and retrial rates are all modulated by an exogenous random environment. Provided are
conditions for stability, the (approximate) orbit size distribution, and mean queueing perfor-
mance measures which are obtained via matrix-analytic methods. Additionally, we consider the
problem of choosing arrival and service rates for each environment state with the objective of
minimizing the steady state mean time spent in orbit by an arbitrary customer, subject to cost
and revenue constraints. Two numerical examples illustrate the main results.
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1 Introduction

This paper examines an M/M/1 retrial queue with an unreliable server whose arrival, service,
failure, repair, and retrial rates are all modulated by an external environment. For this system,
arriving customers who find the server busy or failed, or customers whose service is interrupted
by a server failure, join a retrial queue (or orbit) from which they persistently attempt to gain (or
regain) access to the server at random intervals. Retrial customers can gain access to the server
only when it is found operational and idle, and they repeat service until their service requirement
has been satisfied. The server experiences both active and idle failures; the former correspond to
failures that occur when the server is processing a customer, and the latter occur when the server
is idle. Once a failure occurs, the server immediately commences a repair cycle whose duration is
stochastic. The server cannot fail when it is under repair. While the arrival, service, failure, repair,
and retrial times are assumed to be mutually independent, they are all modulated by a common
random environment. Like many queueing models of this type, we assume the environment is an
ergodic continuous-time Markov chain (CTMC) on a finite state space. We analyze this system
using classical matrix-analytic methods (MAM) developed originally by Neuts [35], focusing on the
stability analysis and (numerical) computation of the steady state distribution of the orbit size
from which we obtain steady state performance measures. Additionally, we consider the problem
of choosing the modulated arrival and service rates that minimize the mean time spent in orbit by
an arbitrary customer who arrives in steady state.

Of particular relevance to the present paper are single server retrial models with unreliable
servers (i.e., those with servers that experience failures at random intervals). Three seminal papers
related to this topic include [3, 6, 26]. For retrial systems with an unreliable server and no queue
for primary arrivals, customers who arrive to find a busy or failed server are (generally) routed to
the orbit in order that they may retry their service later (cf. [4, 5, 6, 32, 42]). Other models include
both a primary queue and a retrial queue so that arrivals who are initially blocked from service
wait in the primary queue (cf. [7, 17, 18, 31, 37, 39]). All of the aforementioned models assume
that the queueing system operates in a static environment that does not influence the system in
any way.

The literature related to retrial queues operating in random environments is now beginning to
emerge. Klimenok [24] studied a BMAP/SM/1 system whose operating mechanism is governed
by a random environment. In that article, the limiting distribution at embedded and arbitrary
instants, as well as the main steady state performance measures, were examined. Roszik and
Sztrik [36] used the Modelling, Specification and Evaluation Language (MOSEL) to analyze a
finite-source retrial queue in a random environment when all random variables are assumed to be
exponentially distributed. Other important models include the BMAP/PH/1 and BMAP/PH/N
systems analyzed by Kim et al. [22, 23] which encompass a very broad class of queueing systems
with randomly varying rates, including the M/M/1 queue analyzed in [33, 34, 35]. To analyze these
complex systems, the authors show that the system state process can be viewed as an asymptotically
quasi-Toeplitz Markov chain. Using results from [25], they determine the stability condition and
devise an algorithm for computing the steady state distribution. Other recent contributions include
an examination of the finite-source MAP/PH/N retrial system with negative arrivals operating in
a random environment due to Wu et al. [43]. All of the systems described here exhibit complex
arrival and service processes; however, these models do not explicitly consider the interplay between
a fully-modulated system and the impact of an unreliable server.

The model we consider here, namely the unreliable M/M/1 retrial queue in a random envi-
ronment, could be analyzed as a special case of BMAP/PH/1 retrial queue of [22] but for the
failure mechanism of the server. We compromise some model complexity in the arrival and service
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processes with the intent of (1) explicitly accounting for an unreliable server, and (2) considering
optimization of the arrival and server rates for designing stable, efficient systems that meet quality-
of-service guarantees. Like most complex retrial queueing models, ours exhibits the level-dependent
quasi-birth-and-death (LDQBD) structure (see [14, 20, 21, 28]). We examine the stability condi-
tion of the system using classical techniques, namely Lyapunov functions. Furthermore, we employ
matrix-analytic methods, via the algorithms of Bright and Taylor [14, 15], to obtain the (approx-
imate) steady state distribution and important performance measures. Finally, we consider the
problem of choosing environment-dependent arrival and service rates that minimize the mean wait-
ing time in orbit, subject to a limited budget and a minimum threshold for the revenue generated
by the system.

The remainder of the paper is organized as follows. Section 2 provides a formal description of
the retrial queueing model and the modulating environment and shows that the queueing system
exhibits the LDQBD structure. Section 3 briefly discusses the form of the limiting distribution and
examines a sufficient stability condition. Section 4 reviews an algorithm to compute the steady
state distribution and mean performance measures, and provides a numerical illustration. Finally,
in Section 5, we consider the problem of choosing arrival and service rates that minimize the steady
state mean time spent in orbit.

2 Model Description

Consider a single-server M/M/1 retrial queue operating in a random environment whose server
is subject to both active and idle failures. That is, the server experiences failure whether it is idle
or busy, but cannot fail if it is under repair. If a primary arrival finds the server operational (i.e.,
not failed) and idle, it seizes the server and immediately begins its service cycle. Barring a server
failure during this service cycle, the customer completes service and departs the system. However,
should the server fail during the service cycle, the customer is immediately removed from the server
and sent to an infinite-capacity retrial queue (or orbit) to retry service later. On the other hand,
an arriving customer who finds the server busy or failed is routed directly to the orbit since there is
no queue for primary arrivals; however, these customers are not lost. Retrial customers persistently
attempt to regain access to the server at random intervals, and each behaves independently of the
primary arrivals and all other retrial customers. However, a retrial customer can only gain (or
regain) access to the server if it is found up and idle at the time of a retrial attempt. The service
discipline is preemptive-repeat (i.e., an interrupted customer’s service cycle is repeated following
a successful retrial attempt). All customers are assumed to persist until they gain access to the
server and complete their service.

Our model is distinguished from other unreliable retrial queueing models in that its arrival,
service, failure, repair, and retrial rates all vary randomly over time in the spirit of theM/M/1 queue
in a random environment studied by Neuts [34]. Specifically, the arrival, service, failure, repair, and
retrial rates are all modulated by an external process {Z(t) : t ≥ 0} – an irreducible, continuous-time
Markov chain (CTMC) with finite state space S = {1, . . . ,m}, infinitesimal generator Q = [qij],
i, j ∈ S, and invariant probability vector π = (π1, π2, . . . , πm) that uniquely solves πQ = 0 and
π e = 1 where 0 is the zero vector of dimension m and e is a column vector of ones. When the
environment is in state j ∈ S, primary customers arrive according to a Poisson process with rate
λj , and the service time is exponentially distributed with mean 1/µj . When the server is not failed
and is either idle or busy, server failures occur according to a Poisson process with rate ξj . Repair
of the server is initiated immediately following a failure, and the duration of the repair time (or
down period) is exponentially distributed with mean 1/αj .
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For any m-dimensional (row) vector x = (x1, x2, . . . , xm), denote its transpose by x′, and
let the diagonal matrix of the elements of x be ∆(x) = diag(x1, x2, . . . , xm). Next, define the
m-dimensional vectors λ = (λ1, λ2, . . . , λm), µ = (µ1, µ2, . . . , µm), ξ = (ξ1, ξ2, . . . , ξm), and α =
(α1, α2, . . . , αm). Each retrial customer attempts to gain access to the server independently of all
other customers (primary or retrial), at exponentially-distributed time intervals with mean 1/θj
when Z(t) = j. Therefore, if Z(t) = j and there are i customers in the orbit, the total retrial rate
is r(i, j) ≡ i θj . Denote the vector of retrial rates by θ = (θ1, θ2, . . . , θm). The row vectors λ, µ,
ξ, α, and θ are all strictly positive. In the usual way, we assume that the arrival, service, failure,
repair, and retrial processes are mutually independent; however, each is modulated by the random
environment, {Z(t) : t ≥ 0}.

For each t ≥ 0, let R(t) be the orbit size, Z(t) be the state of the random environment, and X(t)
be the status of the server so thatX(t) = 0 if the server is failed, X(t) = 1 if the server is up and idle,
and X(t) = 2 if the server is up and busy at time t. The state of the queueing system is described
by the continuous-time stochastic process, (R,Z,X) ≡ {(R(t), Z(t), X(t)) : t ≥ 0}, with state
space E = {(i, j, k) : i ≥ 0, j ∈ S, k ∈ {0, 1, 2}}. Note that E contains one denumerable dimension
(the orbit size) and two finite dimensions (the environment state and server’s status). Because all
inter-arrival, service, inter-failure, repair, and inter-retrial times are exponentially distributed, it is
easy to see that (R,Z,X) is a continuous-time Markov chain (CTMC) on E. Proposition 1 asserts
that this CTMC has a well-structured, block diagonal infinitesimal generator matrix.

Proposition 1 The process (R,Z,X) with state space E is a level-dependent quasi-birth-and-death
(LDQBD) process with block diagonal infinitesimal generator matrix

Q∗ =




Γ0 Λ 0 0 0 · · ·
Θ1 Γ1 Λ 0 0 · · ·
0 Θ2 Γ2 Λ 0 · · ·
0 0 Θ3 Γ3 Λ · · ·
0 0 0 Θ4 Γ4 · · ·
...

...
...

...
...

. . .




(1)

whose 3m× 3m block diagonal elements are given by

Γi =




Ci ∆(ξ) ∆(λ)
∆(α) D1 0
∆(µ) 0 D2


 , Θi =



0 0 i∆(θ)
0 0 0
0 0 0


 , Λ =



0 0 0
0 ∆(λ) 0
0 ∆(ξ) ∆(λ)


 ,

where Ci = Q−∆(λ + ξ)− i∆(θ), i ≥ 0, D1 = Q−∆(λ + α), and D2 = Q−∆(λ + µ + ξ).

The LDQBD process (cf. [14, 21, 28]) is a natural extension of the QBD process wherein some or
all of the matrices comprising the ith level are explicitly dependent on the level i. For our purposes
here, the limiting distribution of the LDQBD process is needed to compute the steady state queueing
performance measures and to formulate and solve optimization problems to determine optimal (or
near optimal) operating rates for each of the m distinct environment states. Assuming its existence,
define the limiting distribution of (R,Z,X) as the row vector p = (p0,p1,p2, . . .) where for i ≥ 0,
pi is a 3m-dimensional row vector of limiting probabilities restricted to level i. If the process
is ergodic, p is the unique positive solution to pQ∗ = 0 and pe = 1. A closed-form, necessary
and sufficient condition for the positive recurrence of general LDQBD processes is not available;
however, it is known that if p exists, then it has the matrix-geometric property.
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Let us assume for momentarily that (R(t), Z(t), X(t)) → (R̃, Z̃, X̃) in distribution as t → ∞.
In such a case, p = [p(i, j, k)](i,j,k)∈E , where p(i, j, k) = P(R̃ = i, Z̃ = j, X̃ = k), (i, j, k) ∈ E. The
marginal distribution of the steady state orbit size is given by

P(R̃ = i) =
m∑

j=1

2∑

k=0

p(i, j, k) = pi e, i ≥ 0,

and likewise, the steady state status of the server has probability mass function (p.m.f.)

P(X̃ = k) =
∞∑

i=0

m∑

j=1

p(i, j, k), k ∈ {0, 1, 2}.

In Section 3, we provide the stability condition of the queueing system using Lyapunov functions
to establish a sufficient condition for the ergodicity of (R,Z,X).

3 Stability Analysis

In this section we discuss necessary and sufficient conditions for positive recurrence of the
process (R,Z,X). The following theorem can be stated using results in Bright and Taylor [14].

Theorem 1 The LDQBD process (R,Z,X) with infinitesimal generator matrix Q∗ is positive re-
current if and only if there exists a strictly positive solution to the system of equations

p0 (Γ0 +R0Θ1) = 0, (2)

subject to the normalization condition

p0

( ∞∑

i=0

i−1∏

n=0

Rn

)
e = 1. (3)

In such a case, the 3m-order row vector pi is given by

pi = p0

i−1∏

n=0

Rn, i ≥ 0. (4)

In equations (3) and (4), when i = 0, the empty product results in the identity matrix I. It is well
known (cf. [14, 28]) that the sequence {Ri : i ≥ 0} is the minimal non-negative solution of the set
of equations

Λ +Ri Γi+1 +Ri (Ri+1Θi+2) = 0, i ≥ 0 (5)

which must be determined numerically.
In general, it is difficult to assert positive recurrence using the conditions of Theorem 1. For our

retrial queueing system, Theorem 2 establishes a sufficient condition for stability using Lyapunov
functions and a classical result due to Tweedie [41], which is stated here as Lemma 1.

Lemma 1 A continuous-time Markov chain with generator matrix Q∗ = [q∗xx′ ], x, x′ ∈ E is regular
and ergodic if there exists a function v : E → R+ which is bounded below, a finite set H ⊂ E, and
some ε > 0 such that

d(x) ≡
∑

x′∈E\{x}
q∗xx′ [v(x′)− v(x)] < ∞, for all x ∈ E, (6)

and
d(x) ≤ −ε, for all x ∈ E \H. (7)
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Equipped with Lemma 1, we are now prepared to state a sufficient condition for the ergodicity
of the continuous-time process (R,Z,X). Theorem 2 represents a somewhat strong condition.

Theorem 2 The process (R,Z,X) is ergodic if

λ′ < [∆(α+ ξ)]−1∆(α)µ′, (8)

where the inequality holds componentwise.

Proof. Since all the inter-event times are assumed to be exponential, and the environment is
a CTMC, we consider the following Lyapunov function. For i ≥ 0, j ∈ S, and some real numbers
a, b > 0, define

v(i, j, k) =





b+ a i, if k = 0,

1 + a i, if k = 1,

a i, if k = 2.

Substituting the function v in (6), and using the transition rates in Q∗ of (1), we obtain

d(i, j, 0) = aλj − αj b,

d(i, j, 1) = λj + ξj b+ iθj(1− a),

d(i, j, 2) = aλj − µj + ξj(b− 1 + a).

It is not difficult to see that d(i, j, k) < ∞ for all (i, j, k), so we need only to determine if the drift
functions satisfy (7). Clearly, for all j ∈ S, there exists a positive integer N such that d(i, j, 1) < 0
for each i ≥ N if a > 1. Therefore, inequality (7) is verified if there exist positive constants a and
b satisfying the set of linear inequalities,

1− a < 0, (9)

aλj − αjb < 0, (10)

aλj − µj + ξj(b− 1 + a) < 0. (11)

By inequality (10), we must have b > aλj/αj . Using this fact in inequality (11), we can eliminate
b to obtain

a <
αjξj + αjµj

λjξj + αjξj + λjαj
.

But by (9), we must have a > 1; therefore, the set of linear inequalities (9)–(11) has a solution if
and only if there is a positive number a such that a > 1 and

a <
αj(ξj + µj)

λj(αj + ξj) + αjξj
,

or equivalently, if

λj <

(
αj

αj + ξj

)
µj , j = 1, 2, . . . ,m. (12)

Rewriting this expression in vector/matrix form, we obtain λ′ < ∆(α + ξ)−1∆(α)µ′, where the
inequality holds componentwise.

The right-hand side of (12) can be viewed as the effective service rate when the environment
is in state j as the quantity αj/(αj + ξj) is the effective proportion of time the server is not failed
in environment state j. Likewise, λj is the effective arrival rate of customers in state j. Under
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the strong condition that the effective arrival rate is less than the effective service rate for all
environment states, stability is to be expected; however, condition (12) need not hold for every
j ∈ S. To see this, note that the average effective arrival rate is given by λ = πλ′, as the arrival
process mirrors that of the standard M/M/1 queue in a random environment (see Neuts [34]).
Similarly, using a Markov reward argument, it can be shown that the average effective service rate
is given by µ = π∆(α + ξ)−1∆(α)µ′. Standard results for stability conditions of single-server
retrial queues (see [8, 19]) show that λ < µ is necessary for stability of the system. Hence, the
system can be stable only if

πλ′ < π∆(α+ ξ)−1∆(α)µ′. (13)

But it is possible that λj ≥ αj µj/(αj + ξj) for some j ∈ S while (13) still holds. Therefore, we see
that while (12) implies (13), it is not necessary for stability of the system. For convenience, and
for use in Sections 4 and 5, let us define the overall traffic intensity by

ρ =
πλ′

π∆(α+ ξ)−1∆(α)µ′ . (14)

Remarks: Note that if ξ = 0, the server never fails, and the stability condition reduces to
πλ′ < πµ′. This is precisely the stability condition for the standard M/M/1 queue in a random
environment analyzed by Neuts [34]. Moreover, if λj = λ, µj = µ, ξj = ξ, and αj = α for all
j ∈ S, the (necessary and sufficient) stability condition is λ < αµ/(α + ξ). The same result has
been derived for other single-server, exponential retrial models with an unreliable server (cf. Falin
[17]), or it can be derived from general service time models by assuming exponential service times
(cf. Sherman et al. [38, 39], Kulkarni and Choi [26], and others).

4 Evaluating Performance Measures

The most widely used algorithms for approximating the limiting distribution of a LDQBD
process with an infinite number of levels or phases are due to Bright and Taylor [14, 15]. Because
these algorithms play a central role in solving the optimization problem of Section 5, we next
summarize their essential elements. These techniques extend the well-known logarithmic reduction
algorithm of Latouche and Ramaswami [27] QBD processes to the level-dependent case.

The generator matrix of (1) possesses two nice properties that facilitate relatively easy imple-
mentation of the algorithms. First, the number of phase states in each level is fixed at 3m, and
second, the matrix Λ is independent of the level i. Essentially, the main algorithm of [14] truncates
the infinite series of (3) at some level K and then re-normalizes to compute an approximate sub-
vector of the form pi(K) = p0(K)

∏i−1
n=0Rn, i ≥ 1, where p0(K) satisfies (2) and the normalization

condition, p0(K)
∑K

i=0

[∏i−1
n=0Rn

]
e = 1. The subvectors, {pi(K) : i ≥ 0}, represent an invariant

measure for the limiting distribution of all states at or below level K; therefore, pi ≤ pi(K) compo-
nentwise for any K ≥ 0, and pi(K) → pi componentwise as K → ∞. For a given truncation point
K, Bright and Taylor [14] examine the discrete-time Markov chain embedded at the jump epochs
of the process to obtain the family of matrices {Ri : i ≥ 0} using a recursive scheme. Lemma 2 is
a direct consequence of (1) and Lemma 1 of [14].

Lemma 2 If (R,Z,X) is positive recurrent, the matrix Ri is given by

Ri =
∞∑

`=0

U `
i

`−1∏

n=0

D`−1−n
i+2`−n , i ≥ 0 (15)
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where for i ≥ 1, U `
i and D`

i are 3m× 3m matrices recursively defined by

U0
i = Λ(−Γi+1)

−1 ,

D0
i = Θi (−Γi−1)

−1 ,

U `+1
i = U `

i U
`
i+2`

[
I − U `

i+2`+1D
`
i+3·2` −D`

i+2`+1U
`
i+2`

]−1
,

D`+1
i = D`

iD
`
i−2`

[
I − U `

i−2`+1D
`
i−2` −D`

i−2`+1U
`
i−3·2`

]−1
.

The infinite series of equation (15) can be truncated using a simple scheme (see Algorithms 2 and
3 of [14]). By rearranging the terms in (5), the family of matrices, {Ri : i ≥ 0}, are recursively
computed by

Ri = Λ (−Γi+1 −Ri+1Θi+2)
−1 (16)

(assuming the inverse exists) so that (15) need not be computed repeatedly. For all of the numerical
results that follow, Algorithms 1–3 of [14] are used to select the integer K and compute pi(K).

Assuming ρ < 1, the approximate steady state performance measures of the queueing system
(R,Z,X) may be obtained using the approximation of the steady state distribution given by the
vector p = [p(i, j, k)], where p(i, j, k) = P(R̃ = i, Z̃ = j, X̃ = k), (i, j, k) ∈ E. More specifically, the
steady state orbit size distribution is

P(R̃ = i) =

m∑

j=1

2∑

k=0

p(i, j, k) = pi e, i ≥ 0. (17)

Likewise, the steady state distribution of the server’s status is

γk ≡ P(X̃ = k) =
∞∑

i=0

m∑

j=1

p(i, j, k), k = 0, 1, 2. (18)

(Of course, the distribution of Z̃ is the invariant vector π, which is independent of (R̃, X̃).)
From (17) and (18), we can obtain the steady state delay and congestion parameters in the

usual way using Little’s Law. Specifically, using the (approximate) distribution p, the steady state
mean orbit size is

E(R̃) =
∞∑

i=1

i (pie). (19)

Let Ñ denote the steady state number of customers in the system (in the retrial queue and in
service). The mean of Ñ is easily computed by noting that Ñ = R̃ if X̃ = 0 or X̃ = 1, and
Ñ = R̃+ 1 if X̃ = 2. Therefore, by conditioning on X̃, we see that

E(Ñ) = E(R̃) (γ0 + γ1) + E(R̃+ 1)γ2 = E(R̃) + γ2. (20)

We note that the mean number in system is not E(R̃) + ρ because there are periods during which

the orbit is not empty, but the server is idle. Next, let W̃ be the sojourn time (time in service
and in orbit) of an arbitrary customer who arrives in steady state. It is well known that, for an
ordinary (non-modulated), single-server retrial queue with Poisson arrivals and exponential inter-
retrial times, the mean sojourn time is the mean number in system divided by the arrival rate.
Analogously, we can apply Little’s Law to obtain

E(W̃ ) = (πλ′)−1E(Ñ), (21)
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where (πλ′)−1 is the average effective arrival rate of customers to the system. In a similar manner,
the steady state mean time spent in the orbit is given by

E(W̃r) = (πλ′)−1E(R̃). (22)

Finally, to compare various environment states, we define the traffic intensity in state j by

ρj = λj

[(
αj

αj + ξj

)
µj

]−1

. (23)

Next, we provide a numerical example to illustrate the steady state orbit size distribution,
among other steady state performance measures.

Example: Suppose the environment has state space S = {1, 2, 3, 4, 5, 6, 7} and infinitesimal genera-
tor matrix

Q =




−7.6 2.0 3.0 1.0 1.0 0.1 0.5
0.5 −8.0 2.5 1.0 2.0 0.8 1.2
0.3 1.5 −5.8 1.0 1.0 1.0 1.0
2.0 3.0 5.0 −11.2 0.1 1.0 0.1
0.8 2.5 2.0 1.1 −7.9 0.7 0.8
1.5 1.0 1.6 1.2 0.5 −6.3 0.5
2.0 2.5 2.0 1.0 1.8 0.9 −10.2




.

Table 1 reveals that the system is critically loaded when the environment is in state 3 (ρ3 =
0.96), and it is overloaded in environment state 2 (ρ2 > 1). The environment spends a relatively
short amount of time in the overloaded condition (less than 20%) and about 30% of the time in
a critically loaded condition. However, the overall traffic intensity is only ρ = 0.6895. On first
glance, this result seems counterintuitive until we notice the relatively small arrival and failure
rates of state 2. In environment state 3, the service rate is comparatively high, so even though the
system is critically loaded in this state, the system will experience recovery periods when occupying
the less detrimental states.

Table 1: Summary of parameter values and traffic intensities.

Environment (j) λj µj ξj αj θj πj ρj ρ

1 3.0 7.0 0.5 2.0 1.0 0.1021 0.5357 0.6895
2 1.0 3.0 1.1 0.5 11.0 0.1917 1.0667
3 3.0 12.5 1.5 0.5 2.0 0.3086 0.9600
4 2.0 12.5 4.0 2.0 2.0 0.0848 0.4800
5 2.0 4.5 1.0 6.0 5.0 0.1256 0.5185
6 0.5 2.0 0.7 3.0 1.0 0.1130 0.3083
7 0.5 4.0 1.5 0.5 0.5 0.0740 0.5000

The values of the approximated performance measures are summarized in Table 2. It is note-
worthy that the limiting probability that the server is busy (P(X̃ = 2)) is less than the traffic
intensity ρ. This is attributed to the fact that there are periods in which the retrial queue is not
empty, but the server remains idle waiting for either a primary customer arrival or the next retrial
attempt.
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Table 2: Performance measures for the numerical example.

E(R̃) E(Ñ) E(W̃r) E(W̃ ) P(X̃ = 0) P(X̃ = 1) P(X̃ = 2)

5.9904 6.2963 3.0902 3.2480 0.4685 0.2256 0.3059

For the sake of completeness, Figure 1 graphs the (approximate) probability distribution of R̃,
namely P(R̃ = i) = pi e for i = 0, 1, , . . . , 75. Note the geometric rate of decay exhibited by the
steady state distribution, which is expected because p is a matrix geometric distribution.
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Figure 1: Approximate steady state orbit size distribution.

In Section 5 we use the approximated steady state orbit size distribution and queueing perfor-
mance measures to determine optimal arrival and service rates to minimize the mean time spent
in orbit.

5 Optimizing Arrival and Service Rates

In this section, we consider the problem of choosing the arrival and service rates, as a function
of the environment state, to minimize the mean time spent in orbit by an arbitrary customer in
steady state. This problem can be viewed as a (static) design problem in which the system designer
chooses λj ∈ [

λ, λ
]
and µj ∈ [

µ, µ
]
for each j ∈ S where 0 ≤ λ < λ < ∞ and 0 ≤ µ < µ < ∞.

The rate setting is done only once so that whenever Z(t) = j, a controller limits the arrival rate to
the optimal λj value and tunes the service rate to the optimal µj value, j = 1, 2, . . . ,m. For every
unit of arrival rate, the system gains a reward (revenue) rj , and for every unit of service rate, the
system incurs a cost cj . Let r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cm) be the revenue and cost
vectors, respectively. The total revenue generation rate (over all environment states) must meet or
exceed a minimum threshold value R (0 < R < ∞), while the total cost rate is subject to an upper
limit B (0 < B < ∞). It is reasonable to assume that only admission and service rates can be
chosen at our discretion as the failure and repair rates are dictated by the inherent limitations of
the equipment, etc. Similarly, the retrial rates may be dictated by customer behavior or attitudes
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and are assumed to be outside of the controller’s purview.
The objective is to minimize the mean time spent in orbit by an arbitrary customer in steady

state given by

ϑ(λ,µ) = (πλ′)−1
∞∑

i=1

iP(R̃ = i) = (πλ′)−1
∞∑

i=1

i (pi e). (24)

Here, we include the implicit dependence on µ through the vectors pi, i ≥ 0, which are approximated
by the algorithms summarized in Section 4. To compute ϑ(λ,µ), we truncate the infinite series in
(24) at the nth term (n ∈ N) if |Sn+1 − Sn| < ε where

Sn ≡
n∑

i=1

i (pi e),

and ε > 0 is a convergence threshold. With these preliminaries and notation, the nonlinear pro-
gramming formulation is as follows:

min ϑ(λ,µ)

s.t. ρ < 1, (25a)

r λ′ ≥ R, (25b)

cµ′ ≤ B, (25c)

λj ∈
[
λ, λ

]
, j = 1, . . . ,m, (25d)

µj ∈
[
µ, µ

]
, j = 1, . . . ,m. (25e)

Constraint (25a) enforces the necessary stability condition discussed in Section 3 while (25b) and
(25c) are the revenue and cost constraints. Constraints (25d) and (25e) are box constraints that
ensure realistic rate settings. For a candidate solution (λ,µ), the left-hand side of (25a) is computed
directly via (14).

Though easily stated, the optimization problem (25) is not easily solved for at least the fol-
lowing reasons. First, the objective function is expensive as it requires an approximation of
p = (p0,p1,p2, . . .) for each candidate solution (λ,µ). Second, the feasible region is not closed
(due to the strict inequality constraint (25a)), and in general, derivative information about the ob-
jective function is not available. These complications motivate our use of derivative-free, adaptive
search algorithms with proven convergence properties. We next discuss a class of these algorithms.

5.1 Solving the Rate-Setting Problem

Because the steady state vector p = (p0,p1,p2, . . .) is only available numerically (via the matrix-
analytic methods described in Section 4), the objective function (24) is computationally expensive.
Therefore, to solve problem (25), we employ generalized pattern search (GPS), and specifically,
derivative-free, mesh-adaptive search (MADS) techniques. These techniques do not require a closed-
form objective function, as long as the objective function can be evaluated numerically at points
inside the feasible region. Detailed descriptions of these algorithms are summarized in [2, 12, 13].

GPS is a derivative-free optimization technique for unconstrained problems originally intro-
duced by Torczon [40] who proved convergence of a subsequence of iterates to a first-order station-
ary point. It has known convergence properties for a variety of problem classes, even when the
objective function is nonsmooth (see Audet and Dennis [11]). GPS methods iteratively search a set
of points around the current iterate for one that improves the objective function value. Consider
the general nonlinear minimization problem,

min
x∈Ω

ϑ(x), (26)
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where Ω = {x ∈ Rn : ` ≤ Ax ≤ u}, ϑ : Rn → R and A ∈ Qm×n is a rational matrix. Moreover, `
and u are the lower and upper bounds of the constraints where `,u ∈ {Rm ∩ {±∞}} and ` ≤ u.
GPS algorithms generate a sequence of iterates {xk} in Rn with nonincreasing objective function
values. Each iteration is divided into an optional search step and a local poll step. Both the
search and poll steps evaluate points on a mesh in order to find a mesh point that improves the
objective function value. The mesh is constructed as a lattice of points in Rn, based on a finite set
of directions D that form a positive spanning set and a mesh size parameter, ∆k (∆k > 0), that
controls the fineness of the mesh. In this case, a positive spanning set refers to a set of vectors
such that any vector in the space can be represented by a nonnegative linear combination of the
vectors in the set. By definition, nonnegative linear combinations of the elements of the set D span
Rn. The directions that form D can be arbitrarily chosen provided that, for each direction dj ∈ D,
j = 1, 2, . . . , |D|, dj = Gz̄j , where G ∈ Rn×n is a nonsingular matrix and z̄j ∈ Zn is an integer
vector. At iteration k, the mesh is centered around the current iterate xk ∈ Rn and its fineness is
parameterized through the mesh size parameter ∆k. The mesh can then be represented as

Mk =
{
xk +∆kD z : z ∈ Z|D|

+

}
(27)

where Z+ is the set of nonnegative integers. Note that in (27), the columns of the matrix D form
the set D.

In the search step, GPS can evaluate any finite set of mesh points, and a number of strategies
exist for generating trial points, including random search, genetic algorithms, Latin hypercube
search, or orthogonal arrays. If the search step fails to provide an improved mesh point, the poll
step is invoked. The poll step is more rigidly defined and evaluates the neighboring mesh points of
the current iterate. The use of positive spanning directions in the construction of these neighboring
points provides the theoretical basis for the convergence of GPS. The poll set at iteration k can be
expressed as {xk +∆kd : d ∈ Dk}, where Dk ⊆ D is also a matrix whose columns positively span
Rn. The poll set is therefore composed of mesh points neighboring the current iterate xk in the
directions of the columns of Dk, a multiple ∆k away from the current iterate.

If the search and poll step both fail, the incumbent solution is said to be a mesh local optimizer
and the mesh is then refined by setting the mesh size parameter

∆k+1 = ψwk∆k, (28)

where ψ > 1 is rational and wk ∈ {w−, w− + 1, . . . ,−1} for some w−. An incumbent point xk is
replaced by xk+1 only if ϑ(xk+1) < ϑ(xk), and in such case, xk+1 is termed an improved mesh point.
If an improved mesh point is found in either step, then the mesh is either retained or coarsened
by increasing the mesh size parameter according to equation (28) for some wk ∈ {0, 1, . . . , w+}. It
follows that for any k ≥ 0 there exists an integer rk ∈ Z such that ∆k = ψrk∆0.

The convergence analysis of pattern search is well-established in [10, 40] and requires a few
assumptions. First, all iterates produced by GPS must lie in a compact set [16]. This very common
assumption holds as long as {x ∈ Ω : ϑ(x) ≤ ϑ(x0)} is compact. Second, if the matrix G = I
(as is usually the case), then the constraint matrix A must be rational. The final necessary
assumption is that ϑ(x0) < ∞ for x0 ∈ Rn. Torczon [40] proved that, under these assumptions, the
mesh size parameter satisfies lim infk→∞∆k = 0, which leads to the main directional convergence
result (see [11]). However, Audet [9] proved convergence to a Clarke first-order stationary point
in the one-dimensional case for unconstrained problems. Of particular relevance to our work here,
GPS was extended in [29, 30] to problems with bound and linear constraints, respectively. To
handle these constraints while maintaining convergence properties, infeasible points are discarded
without being evaluated, and search directions are chosen so as to conform to the geometry of

12



the nearby constraint boundaries. The NOMADm optimization software by Abramson [1], written
in the Matlabr computing environment, was used to implement the pattern search procedure
described here. NOMADm is specifically designed to numerically solve nonlinear and mixed variable
optimization problems via an implementation of the class of mesh-adaptive direct search (MADS)
algorithms. GPS is a subclass of MADS [12], in which poll directions are restricted to a uniformly
bounded finite set.

5.2 Optimization Illustration

In this subsection, we formulate and solve an instance of problem (25) using generalized pattern
search (namely MADS). The vectors ξ, α, θ, r, and c are specified and fixed (i.e., they are simply
treated as parameters in the model). The decision variables are the arrival and service rates con-
tained in λ and µ, respectively. Initial feasible vectors λ0 and µ0 were specified for each of three
independent replications to ensure that the algorithm produced consistent solutions. The aim is
to choose the arrival and service rates that minimize the mean time customers spend in orbit in
steady state.

Example: Suppose the retrial system’s environment has state space S = {1, 2, 3, 4, 5} and infinites-
imal generator matrix

Q =




−23 6 7 9 1
6 −19 1 4 8
6 2 −18 9 1
4 1 3 −11 3
8 1 3 1 −13



.

The invariant probability vector of Q is π = (0.1946, 0.1071, 0.1697, 0.3530, 0.1754) while the
revenue threshold value is R = 6, and the upper limit on the budget is B = 20. The box constraints
(25d) and (25e) for this example are λj ∈ [1, 5] and µj ∈ [0, 4], j ∈ S. The other input parameters
are as follows: ξ = (0.5, 1.1, 1.5, 4.0, 1.0), α = (2.0, 0.5, 8.5, 4.5, 6.0), θ = (1.0, 4.0, 2.0, 8.0, 5.0),
r = (1.0, 1.0, 0.5, 2.0, 0.75), and c = (2.0, 1.5, 0.5, 2.0, 0.5).

Table 3 summarizes the best obtained solutions using three distinct initial feasible solutions.
The objective function values of runs 1 and 3 are very similar, as are their solutions with the
exception of the first two elements of µ∗. Run 2 produced a solution that differs significantly from
the others and yields a clearly inferior objective function value. The average number of iterations
needed for convergence of the MADS algorithm was just over 400 (i.e., on average, 400 approximated
steady state distributions were computed).

Table 3: MADS best obtained solutions for the example problem.

Run no. Initial solution Best solution obtained ϑ(λ∗,µ∗)
1 λ0 = (1.0, 1.0, 1.0, 1.0, 1.0) λ∗ = (1.008, 1.287, 1.001, 1.211, 1.046) 30.791

µ0 = (2.0, 2.0, 2.0, 2.0, 2.0) µ∗ = (1.917, 3.983, 3.965, 3.105, 3.999)

2 λ0 = (1.0, 1.0, 1.0, 1.0, 1.0) λ∗ = (1.102, 1.263, 1.000, 1.171, 1.057) 33.293
µ0 = (1.5, 1.5, 1.5, 1.5, 1.5) µ∗ = (2.389, 3.416, 3.741, 3.476, 2.552)

3 λ0 = (1.0, 1.0, 1.0, 1.0, 1.0) λ∗ = (1.083, 1.409, 1.001, 1.123, 1.017) 29.580
µ0 = (2.5, 2.5, 2.5, 2.5, 2.5) µ∗ = (3.403, 1.962, 3.950, 3.139, 3.995)
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It is worth noting that the time and computational effort to solve the 5-state example greatly
exceeded the time and effort needed to solve a similar 3-state model which required just under 100
iterations. It is surmised that the increased computational effort stems from the exponential in-
crease in the effort needed to compute p0,p1,p2, . . . at each objective function evaluation. Despite
the computational effort, the solutions were obtained in less than 10 minutes. These optimization
models can be used to help a system controller determine the appropriate set of arrival and service
rates to choose, depending on the prevailing conditions.
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