
A Switching Diffusion Model for Lifetime Estimation

in Randomly-Varying Environments

John A. Flory1 and Jeffrey P. Kharoufeh2

Department of Industrial Engineering

University of Pittsburgh

1048 Benedum Hall

3700 O’Hara Street

Pittsburgh, PA 15261 USA

and

Nagi Z. Gebraeel3

H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332 USA

Final version appears in

IIE Transactions, 46 (11), pp. 1227–1241, 2014.

Abstract

We present a switching diffusion model for estimating the useful lifetime of a component that

operates in a randomly-varying environment. The component’s degradation process is unobserv-

able; therefore, a signal of degradation is observed to estimate the environment parameters using

a Markov chain Monte Carlo (MCMC) statistical procedure. These parameter estimates serve

as key inputs to an analytical stochastic model that approximates the first passage time of the

degradation process to a critical threshold. Several numerical examples involving simulated and

real degradation data are presented to illustrate the quality of these approximations.
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1 Introduction

Assessing the lifetime of a component that operates in a randomly-varying environment is a

challenging problem, particularly when the specific attributes of the environment are not known a

priori, or cannot be easily discerned. The general problem we present here is primarily motivated

by wind turbine applications wherein critical components (e.g., bearing, gears, shafts, etc.) are

subjected to randomly-varying loads due to uncertain and time-varying wind speeds. The primary

purpose of this paper is to develop a general, stochastic modeling framework within which the

evolution of a related degradation signal can be estimated in order to characterize the environment

and assess the expected lifetime of the component. To this end, we present a hybrid stochastic

modeling framework to approximate the degradation process from an observed degradation signal

that is characterized as a switching diffusion process. Using the signal observations, the environment

parameters are estimated using a Markov chain Monte Carlo (MCMC) statistical procedure. These

parameters are the key inputs of an analytical stochastic model that approximates the first passage

time of the associated degradation process to a critical threshold value. The techniques developed

herein are unique in that they impose fairly mild assumptions, are based solely on the observation

of a real signal, and are applicable in a variety of contexts.

Conventional failure models typically assume that components operate in environments that

are either time-invariant or do not significantly influence degradation as noted in [11]. Those mod-

els that include a time-varying environment generally fall into one of two broad categories: (1)

proportional hazard models (PHM); or (2) stochastic degradation models. Originally introduced

by Cox [13], the flexible PHM has been widely used to relate the hazard function of a component’s

lifetime to environmental conditions as in [4, 26, 32, 36]. Myers [40] presented a model in which

the hazard function is a quadratic, time-varying function of the environment. Likewise, Gamerman

[17] studied dynamic operating conditions in which the hazard function is piecewise exponential.

Other extensions and applications of proportional hazard models that assume a deterministic en-

vironment include [33, 39, 46, 50, 52]. These models assume the evolution of the covariate (namely

the environment condition) is known – an assumption that can be rather restrictive. Banjevic et al.

[4] assumed the environment covariate is driven by a Markov process and used an approximation

scheme to estimate the failure time distribution, which is expressed in a complex integral form.

Computational issues associated with their approach were addressed by Banjevic and Jardine [3],

who developed a general numerical method to approximate the failure time distribution. Similar

approximation techniques were applied in [22] wherein the authors used a hidden Markov model

to characterize the unobservable degradation status. Zhao et al. [53] discussed condition-based

inspection policies for systems subject to random shocks whose amplitudes are driven by a Marko-

vian environment. For an extensive review of other related models, the reader is referred to the

comprehensive survey paper by Si et al. [44].

The second broad category of approaches encompasses a class of stochastic degradation models

that attempt to characterize the evolution of degradation (or a signal of degradation) using classical
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stochastic models, e.g., Brownian motion processes or general diffusions, Lévy processes, Markov

reward models, and random coefficient models. Some representative samples include [14, 19, 20, 27].

These types of models are appealing because they often lead to tractable distribution functions for

the component lifetime. Doksum and Hóyland [14] used Brownian motion with a stress-dependent

drift parameter in accelerated life testing to derive the failure time distribution using a certain

transformation; a similar approach was employed by Whitmore and Schenkelberg [51]. Gebraeel

and Pan [20] extended the model in [14] to include shocks occurring at environment transition

epochs. Such models consider environments that evolve deterministically and have been widely

used in accelerated life testing ([37, 48]) and biomedical engineering ([33]) applications. Most rel-

evant to our work are those models that consider randomly-varying environments, a sampling of

which are surveyed by Singpurwalla [45]. Generally speaking, the influence of the environment on

degradation takes one of two forms: (1) random shocks that increase or decrease the degradation

instantaneously; and (2) random variations in the rate of degradation due to the environment’s

evolution. Esary et al. [15] first considered a system subject to random shocks that arrive accord-

ing to a Poisson process; their model was later extended in [2, 16]. Lemoine and Wenocur [35]

examined the lifetime distribution of a system under dynamic stress that was modeled as a time-

nonhomogeneous Poisson process whose rate parameter is driven by a shot-noise process. Igaki et

al. [25] analyzed the lifetime of a system under environmental conditions that evolve as a Markov

renewal shock process.

Approaches in which the degradation rate is driven by the environment’s evolution include

Çinlar [9, 10] who analyzed an additive process in which the environment is Markovian, and the

degradation evolves as an increasing Lévy process. Özeckici and Soyer [41] studied a Markov-

modulated Bernoulli process for which the success probability – the probability that a periodically-

inspected component survives a given inspection period – is determined by a Markov process. Using

Bayesian inference techniques, they estimated the model parameters, depending on the observability

of the process. Kharoufeh et al. [27, 28] examined a problem in which a component degrades

linearly at a rate that depends on the state of a continuous-time Markov chain (CTMC) and

derived explicit double Laplace transform expressions for the distribution function and moments of

the component lifetime. That work was extended in [29] to include homogeneous Poisson shocks,

each of which induces a random amount of damage to the component. In [30], a model with

Markov-modulated degradation rates and Poisson shock intensities was studied. Both transient

and asymptotic reliability indices were obtained therein. Kharoufeh et al. [31] extended the model

of [27] to the case when the environment is a semi-Markov process.

As in [27], we assume the component operates in a randomly-varying environment so that the

true rate of degradation depends on the state of the environment, which is assumed to evolve as

a CTMC (an assumption that can easily be relaxed). The primary objective of this paper is to

develop a novel stochastic and statistical modeling framework wherein the environment process that

drives degradation can be inferred from an observed signal of degradation that evolves over time.
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Specifically, our aim is to estimate the environment process parameters from the signal’s evolution

in order to compute the distribution function and moments of the signal’s first passage time to a

critical threshold. To this end, we first describe how the degradation model of [27] can be related

to a switching diffusion model whose drift parameter is modulated by a CTMC. The advantage

of the switching diffusion framework is that it can be used to characterize the evolution of many

types of degradation processes, and a Markov chain Monte Carlo procedure can be exploited to

estimate the parameters of the modulating environment from real signal observations, facilitating

approximations of the first passage time distribution and moments. To validate the techniques,

we compare these approximated first passage times with those generated by simulation models,

as well as those observed in real degradation data sets. In both cases, the procedure is shown

to characterize the degradation processes remarkably well, even when the model assumptions are

violated.

The remainder of the paper is organized as follows. Section 2 briefly reviews a stochastic model

that forms the basis of our procedure and describes its relationship to the switching diffusion model

of the degradation signal. Section 3 describes in detail a Markov chain Monte Carlo procedure for

converting real signal observations into environment parameter estimates and lifetime assessments.

In Section 4, we validate these procedures using both simulated and real degradation data. Finally,

we conclude the paper in Section 5 by discussing the strengths and weaknesses of our approach, as

well as directions for future work.

2 Model Description

Consider a component that is placed into service at time t = 0 in new condition. Gradually, the

component degrades due to normal usage and the influence of its operating environment. Once the

component’s cumulative degradation level exceeds a (deterministic) critical threshold x (x > 0),

it is declared to be failed. Let Z(t) be the state of the operating environment at time t. The

process Z = {Z(t) : t ≥ 0} is the stochastic environment process, and its state space is a finite

set S = {1, . . . , ℓ}, where ℓ is the number of distinct environment states. This model, originally

proposed and analyzed in [27, 28], assumes that Z is an irreducible, time-homogeneous CTMC on

S with infinitesimal generator matrix Q = [qij ], i, j ∈ S. It is important to note that the CTMC

assumption can be relaxed to analyze non-Markovian environments [31]; however, we present the

Markovian case here to elucidate the main concepts. Let {Zn : n ≥ 0} be the discrete-time Markov

chain (DTMC) embedded at transition epochs of Z, i.e., Zn is the state of Z just after the nth

transition, n ≥ 1, and let P = [pij ], i, j ∈ S, be its transition probability matrix. We assume the

existence of a real-valued function r : S → (0,∞) such that whenever Z(t) = i ∈ S, the component

degrades linearly at a unique, constant rate ri (ri > 0).

The states of Z can represent either (i) the actual ambient environment in which the component

resides and operates (e.g., ambient air temperature, humidity, exposure to sunlight, etc.) and/or
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(ii) the various operational settings of the equipment (e.g., operating speed or load). Potential

interactions between environmental conditions and operational settings are not precluded from

influencing degradation; therefore, the finite set of governing environment states S is composed of

all unique combinations of the environmental conditions and operational settings. For example,

if the component is subject to two different temperature regimes, denoted t− and t+, and two

different operating speeds, denoted v− and v+, the state space of the governing environment is the

Cartesian product of {t−, t+} and {v−, v+}; that is, S = {(t−, v−), (t−, v+), (t+, v−), (t+, v+)}, and
ℓ = |S| = 4. While in many applications, it may be possible to observe environment or operating

conditions, it is often difficult to establish a realistic mapping between these conditions and their

associated degradation rates. Therefore, ℓ must be inferred from real degradation (or degradation

signal) observations. Because the degradation rates are distinguishable, the states of S may be

completely ordered such that i < j if ri < rj , i, j ∈ S. Let the row vector r = (r1, r2, . . . , rℓ)

contain these ℓ ordered rates and set Rd = diag(r).

Next, we briefly review a model for the cumulative degradation process originally described in

[27]. Denote by X(t) the cumulative degradation of the component up to time t given by

X(t) = X(0) +

∫ t

0
rZ(u)du,

where X(0) = 0 with probability 1 (w.p. 1). To ensure the process is well-defined, it is assumed

that ∫ t

0

∣∣rZ(u)

∣∣du < ∞ w.p. 1.

The component’s random lifetime is the first passage time

T (x) = inf{t > 0 : X(t) ≥ x},

which is finite w.p. 1 (see Kharoufeh et al. [29]). The strict positivity of the degradation rates ri,

i ∈ S, ensures that the sample paths of {X(t) : t ≥ 0} are piecewise linear and monotone increasing

w.p. 1. Moreover, for x > 0 and t ≥ 0, the events {X(t) < x} and {T (x) > t} are equivalent, so

the first passage time T (x) can be analyzed via X(t). Let F (x, t) ≡ P(T (x) ≤ t) = 1−P(X(t) ≤ x)

denote the cumulative distribution function (c.d.f.) of the component’s lifetime. As proved in

[29, 30], the Laplace-Stieltjes transform (LST) of F (x, t), with respect to the spatial variable x, is

F̃ (u, t) ≡
∫ ∞

0
e−uxF (dx, t) = 1−α exp [(Q− uRd)t] e, u > 0, (1)

where α = [P(Z(0) = i)]i∈S is the environment’s initial distribution, exp[A] denotes matrix expo-

nentiation of a square matrix A, and e is an ℓ×1 vector of ones. Furthermore, if mn(x) ≡ E(T n(x))

denotes the nth moment of the lifetime distribution, then m̃n(u), the LST of mn(x) with respect

to the spatial variable x, is given by

m̃n(u) ≡
∫ ∞

0
e−uxdmn(x) = n!α(uRd −Q)−ne, n ≥ 1. (2)
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Now, if ℓ, α, r, and Q are known, or if they can be estimated from observed data (cf. [28]), the

component’s full (or residual) lifetime distribution and moments can be obtained by inverting (1)

and (2), respectively, for any failure threshold x > 0 using the numerical inversion algorithms of

Abate and Whitt [1]. That is,

F (x, t) = L−1{u−1F̃ (u, t)}, (3)

mn(x) = L−1{u−1m̃n(u)}, n ≥ 1, (4)

where L−1 is the inverse Laplace transform operator.

Besides the transient results of (1) and (2), the asymptotic behavior of {T (x) : x > 0} has

been studied in [29, 30]. In the asymptotic regime (as x → ∞), the expected lifetime can be

approximated using Theorem 1, which is adapted from Proposition 1 and Theorem 3 of [30].

Theorem 1 As x → ∞,

T (x)

x
→ 1

πsr′
w.p. 1 and

E[T (x)]

x
→ 1

πsr′
, (5)

where πs is the stationary distribution of Q.

Realistically, it might be difficult (or impossible) to directly observe the cumulative degradation

of a component. A quintessential example is the case of a critical wind turbine component (e.g.,

a bearing, rotating shaft, or a gear) that is housed possibly hundreds of feet above the ground in

the wind turbine’s nacelle. For such components, sensors can provide proxy signals of degradation

(e.g., vibration or acoustic signals). These signals are typically noisy due to sensor measurement

error or corruption of the transmitted signal (cf. [18, 19, 20, 38]). Accounting for the uncertainty

of such measurements is vitally important when assessing the true health of the component. The

partial observability of X(t) suggests the need for an alternative modeling framework.

Let Y (t) denote a degradation signal observation at time t, and let {Y (t) : t ≥ 0} be the

signal process for short. For reasons that will become apparent later, we assume {Y (t) : t ≥ 0}
evolves as a switching diffusion process (SDP). A SDP generalizes a standard diffusion process by

allowing the drift parameter and/or diffusion coefficient to be modulated by an external stochastic

process {Z(t) : t ≥ 0} that evolves on a finite state space. The SDP satisfies the general stochastic

differential equation

dY (t) = µ(Y (t), Z(t)) + ξ(Y (t), Z(t)) dB(t), (6)

where µ(Y (t), Z(t)) is the drift function, ξ(Y (t), Z(t)) is the (non-negative) diffusion function,

{B(t) : t ≥ 0} is a standard Brownian motion process, and {Z(t) : t ≥ 0} is typically a finite

CTMC. The relevance of the SDP to the degradation process {X(t) : t ≥ 0} is now explained. If

the functions µ and ξ are restricted so that

µ(Y (t), Z(t)) = rZ(t)dt,
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and ξ(Y (t), Z(t)) = σ for each t ≥ 0, then Y (t) satisfies the stochastic differential equation

dY (t) = rZ(t)dt+ σdB(t), (7)

where σ (σ ≥ 0) is a time-invariant diffusion coefficient. For each t ≥ 0, the unique solution to the

stochastic differential equation, with initial condition Y (0) = 0 w.p. 1, is

Y (t) =

∫ t

0
rZ(u)du+ σB(t)

≡ X(t) + σB(t). (8)

That is, {Y (t) : t ≥ 0} can be viewed as the superposition of {X(t) : t ≥ 0} with a noise process

whose time-dependent variance is σ2 t. We see immediately that

E[Y (t)] = E [X(t) + σB(t)] = E[X(t)], t ≥ 0.

Here is the crux of our approach: BecauseX(t) cannot be directly observed to estimate ℓ, Q, and

r, we instead construct estimators ℓ̂, Q̂, and r̂ via the evolution of the degradation signal {Y (t) : t ≥
0}. By observing Y (t), we can exploit techniques for inferring the parameters of switching diffusion

models (see [34]) to estimate the unknown environment process Z and, subsequently, to estimate

X(t) via Y (t). Of particular interest to our work here are Markov chain Monte Carlo inference

procedures that are tailored specifically for switching diffusion processes (cf. [7, 23, 24, 34]). The

next section describes how we estimate the environment parameters Q, r and ℓ = |S|, as well as

the first passage times of {X(t) : t ≥ 0}, via the signal process {Y (t) : t ≥ 0}.

3 Estimation Procedure

In this section, we describe the means by which to adapt a Markov chain Monte Carlo (MCMC)

procedure of Leichty and Roberts [34] to obtain estimates of Q, r, and σ, denoted by Q̂, r̂, and σ̂,

respectively, from discrete observations of {Y (t) : t ≥ 0}. Additionally, we describe a Bayesian infor-

mation criterion (BIC) statistic to estimate ℓ and a forward-filtering-backward-smoothing (FFBS)

algorithm to estimate the mean path of the signal Y .

3.1 MCMC Procedure to Estimate Q, r and σ

Let T = {t0, t1, t2, . . . , tN} denote a set of N + 1 discrete observation times, where t0 ≡ 0 and

tN ≡ T < T ′
x ≡ inf{t > 0 : Y (t) ≥ x}, and define Y = {Y (0), Y (t1), . . . , Y (T )} as the set of

signal observations at times in T , where Y (0) = 0 w.p. 1. We construct a piecewise-linear function

Yc(t) to approximate Y (t) on [0, T ] such that (i) Yc(tj) = Y (tj), j = 0, 1, . . . , N , and (ii) dYc(t)/dt

is defined for all t except for tj ∈ T and is constant within intervals (tj−1, tj ], j = 1, 2, . . . , N .

Our aim is to estimate the expected lifetime of the component using estimates of the environment

parameters (Q, r, ℓ) obtained from the data Y and used in equations (1) and (2).
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Initially, let us assume that Z has ℓ states for some ℓ ∈ N. Let Ẑ(t) be an estimate of Z(t) at time

t ∈ [0, T ], and ẑ ≡ {Ẑ(t) : t ∈ [0, T ]} be the estimated sample path of Z. The procedure consists

of sequentially sampling from, and updating, the conditional densities of r|Q, ẑ,Y, Q|ẑ, r,Y, and
ẑ|r,Q,Y denoted by fr(r|Q, ẑ,Y), fQ(Q|ẑ, r,Y), and fẑ(ẑ|r,Q,Y), respectively. A single iteration

of the algorithm includes the following steps:

1. Randomly sample r̂v+1 ∼ fr(r|Q̂v, ẑv ,Y),

2. Randomly sample Q̂v+1 ∼ fQ(Q|ẑv , r̂v+1,Y),

3. Randomly sample ẑv+1 ∼ fẑ(ẑ|r̂v+1, Q̂v+1,Y),

where r̂v, Q̂v, and ẑv denote the estimates of r, Q and Z, respectively, at the vth iteration,

v = 0, 1, 2, . . .. The diffusion coefficient σ2 is estimated a priori using a simple estimator of the

quadratic variation of a diffusion process,

σ̂2 =
1

N

N∑

j=1

[Y (tj)− Y (tj−1)]
2

tj − tj−1
.

Although the estimator σ̂2 is biased (since it includes the variance induced by the switching process),

it is used only as an initial input of the MCMC procedure and remains constant throughout the

procedure. Prior densities and hyperparameters for r̂0, Q̂0, and ẑ0 must be specified. Assume the

prior density of r̂0 is a constrained, multivariate normal density and obtain r̂0 =
(
r̂
(0)
1 r̂

(0)
2 · · · r̂(0)ℓ

)

by randomly sampling r̂0 from a density proportional to

φ (0,∆) I
(
r̂
(0)
1 < r̂

(0)
2 < · · · < r̂

(0)
ℓ

)
,

where φ (0,∆) is the multivariate normal probability density function (p.d.f.) with mean 0 (an ℓ×1

vector of zeros), and covariance matrix ∆ ≡ diag(δ1, δ2, . . . , δℓ). Typically, one can set δi = 3σ̂2

for all i ∈ S so that the prior distribution of r̂0 is relatively diffuse. For the prior distribution of

Q̂0, it is assumed that the off-diagonal elements are independent, exponentially distributed random

variables whose rates are determined by a hyperparameter β. Specifically, to initialize Q̂0 = [q̂
(0)
ij ],

for each i, j ∈ S such that j 6= i, sample q̂
(0)
ij ∼ Exp(β) and compute q

(0)
ii by normalizing the ith

row of Q̂0, i.e.,

q̂
(0)
ii =

∑

j:j 6=i

q̂
(0)
ij ,

where β−1 = T/3. The estimated sample path ẑ is initialized by generating ẑ0 via simulation

using Q̂0, where P(Ẑ(0) = i) = 1/|S| for all i ∈ S. Extensive empirical testing indicates that

the procedure converges faster when ẑ0 is initialized so that it allows for relatively few transitions.

Assigning β−1 = T/3 ensures that the average holding time in each state is relatively long so that

the total number of transitions in ẑ0 is small.
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Next, we describe the conditional densities fr(r|Q, ẑ,Y), fQ(Q|ẑ, r,Y), and fẑ(ẑ|r,Q,Y). De-

fine for each i ∈ S the constants

ai =
1

σ̂2

∫ T

0
I(Z(u) = i)dY (u),

bi =
1

σ̂2

∫ T

0
I(Z(u) = i)du+ δ−2

i .

Intuitively, ai is a proxy for the cumulative change of Y (t) while the environment is in state i, and

bi is a proxy for the environment’s total occupation time in state i during [0, T ]. Define the ℓ× 1

vector µ = (a1/b1 a2/b2 · · · aℓ/bℓ) and the ℓ× ℓ diagonal matrix Σ = diag(b−1
1 , b−1

2 , . . . , b−1
ℓ ). The

element ai/bi estimates the state-i degradation rate ri for i ∈ S. The conditional density function

fr(r|Q, ẑ,Y) is a constrained multivariate normal density, i.e.

fr(r|Q, ẑ,Y) ∼ N(µ,Σ) s.t. r1 < r2 < · · · < rℓ. (9)

For the conditional density of Q, it is assumed that the off-diagonal elements are independent,

Gamma-distributed random variables. For each i, j ∈ S (with j 6= i), denote by ϑij the number of

environment transitions from state i to j in ẑ during [0, T ], let αij ≡ ϑij + 1, and

γ−1
i ≡

∫ T

0
I(Z(u) = i)du+ β, i ∈ S.

Let

fQ(Q|ẑ, r,Y) ∼
∏

j:j 6=i

g
(
αij , γ

−1
i

)
(10)

subject to the constraint

qii = −
∑

j 6=i

qij w.p. 1, i ∈ S,

where g(a, b) is the Gamma density function with shape parameter a and scale parameter b. The

parameter αij can be viewed as a proxy for the total number of transitions from state i to j in

[0, T ], and γ−1
i is a surrogate for the total cumulative time spent in environment state i. For j 6= i,

the mean of qij is αijγ
−1
i , which is approximately equal to the maximum likelihood estimate (MLE)

of qij given by (αij − 1)/(γi − β) (see [6]). Lastly, fẑ(ẑ|r,Q,Y) is a nonstandard density function

of the form

fẑ(ẑ|r,Q,Y) ∝
∏

j:j 6=i

ϑij exp

[
1

σ̂2

∫ T

0

ℓ∑

i=1

I(Z(u) = i)dY (u)

]

× exp

[∫ T

0

ℓ∑

i=1

[
I(Z(u) = i)

(
−qii +

r2i
2σ̂2

)]
du

]
. (11)

In a given iteration, proposed values r̂′ and Q̂
′
for r̂ and Q̂ are generated from (9) and (10),

respectively. The candidate r̂′ is always accepted with probability 1, but Q̂
′
is accepted with
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probability

α(Q̂, Q̂
′
) = 1 ∧

π
Q̂

′(Ẑ(0))

π
Q̂
(Ẑ(0))

,

where π
Q̂

′(i) and π
Q̂
(i), i ∈ S, are the ith elements of the stationary distributions of CTMCs with

respective generator matrices Q̂
′
and Q̂. Obtaining r̂ and Q̂ from (9) and (10) is relatively straight-

forward; however, obtaining ẑ from (11) is more involved and requires modification using one of

three procedures. The procedures are dubbed the independence sampler, the refinement sampler,

and the birth-death sampler, where pis, prs, and pbd denote the samplers’ respective selection proba-

bilities such that pis+prs+pbd = 1. The process of updating ẑ is a Metropolis-Hastings (MH) step.

That is, a sampler is randomly selected to propose a realization of the estimated CTMC sample

path, denoted by ẑ′, and the path ẑ′ is accepted with probability αis(ẑ, ẑ
′), αrs(ẑ, ẑ

′), or αbd(ẑ, ẑ
′) for

the independence, refinement, and birth-death samplers, respectively. If ẑ′ is accepted, ẑv+1 = ẑ′;

otherwise, ẑv+1 = ẑ. For detailed descriptions of these three samplers, the reader is referred to

Leichty and Roberts [34].

To obtain the final estimates of r and Q, we appeal to the MCMC convergence result (cf.

Gelfand and Smith [21]) (r̂v, Q̂v, ẑv)
d−→ π(r,Q,Z) as v → ∞, where

d−→ denotes weak conver-

gence, and π(r,Q,Z) is the stationary distribution of the Markov chain {(r̂v, Q̂v, ẑv) : v ≥ 0}.
Therefore, to obtain r̂ and Q̂, the sampled vectors r̂v and the off-diagonal elements of Q̂v are

averaged after a burn-in period. Although implementation of the MCMC procedure requires that

the number of environment states ℓ be known a priori, it is possible to estimate ℓ using the MCMC

procedure in concert with the classical Bayesian information criterion (BIC) statistic [43]. Let ℓ̂

denote the BIC estimate of the order ℓ, and define r̂(ℓ), Q̂
(ℓ)

and ẑ(ℓ) as the estimates of r, Q, and

Z, respectively, obtained by assuming Z is of order ℓ. The BIC is a penalized maximum likelihood

estimator statistic [8], and the estimated order is computed as follows:

ℓ̂ = argmin
ℓ∈N

{
−2 lnL(Y|r̂(ℓ), Q̂(ℓ)

, ẑ(ℓ)) + ℓ2 ln(N + 1)
}
. (12)

The quantity ℓ2 in the second term of (12) corresponds to the total number of parameters estimated

by the MCMC procedure (ℓ elements of r and ℓ2 − ℓ off-diagonal elements of Q), and N + 1 is the

total number of signal observations.

Finally, a procedure for estimating the mean signal path is presented. The mean signal path

refers to the stochastic process {Ŷ (t) : t ∈ [0, T ]}, which is the estimate of the signal process

{Y (t) : t ∈ [0, T ]} obtained by using r̂, Q̂, and ẑ. That is, using a forward-filtering, backward

smoothing algorithm, we estimate the likelihood that the environment occupies one of its estimated ℓ̂

states in the time intervals between estimated environment transition times. The mean signal path

is then constructed by weighting the degradation rates by their respective likelihoods to obtain

the mean degradation rate in each time interval and, subsequently, computing the cumulative

degradation accrued from these rates. This estimate can be used to assess the quality of parameter

estimates by comparing Ŷ (t) with the true signal path.
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Let M be the estimated total number of transitions in ẑ during [0, T ], and let the ordered sets

{i0, i1, . . . , iM} and {s1, s2, . . . , sM} denote, respectively, the state sequence and transition times of

ẑ, where i0, i1, . . . , iM ∈ S and s1, s2, . . . sM ∈ [0, T ]. Denote by ∆Ŷm ≡ E[Y (sm) − Y (sm−1)] the

expected increment of Y on [sm−1, sm], where

∆Ŷm =
ℓ̂∑

i=1

ri(sm − sm−1)P(Zm−1 = i|Y, r̂, Q̂), m = 1, 2, . . . ,M.

Using ∆Ŷm, m = 1, 2, . . . ,M , we can compute

Ŷ (t) = (t− sκ)∆Ŷκ+1 +
κ∑

i=1

∆Ŷm, t ∈ [0, T ],

where κ ≡ max{m ≥ 1 : sm ≤ t}. Computing ∆Ŷm requires that P(Zm = i|Y, r̂, Q̂) be determined

for all i = 1, 2, . . . , ℓ̂ andm = 0, 1, . . . ,M . These conditional probabilities are estimated by applying

a forward-filtering-backward-smoothing (FFBS) algorithm to ẑ using Q̂ and r̂. Let Y(m) ≡ {Y (tj) :

tj ≤ sm} be the set of data observed up to time sm, m = 1, 2, . . . ,M , and define a piecewise-linear

function Y (m)(t) on [0, sm] such that Y (m)(t) = Y (t) for t ∈ [0, sm] and is zero otherwise. Lastly,

for m = 1, 2, . . . ,M , let

f(Y (sm)|Zm = i,Y(m−1), r̂, Q̂) = exp

[
r̂i
σ̂2

∫ sm

sm−1

dY (m)(u)− r̂2i
2σ̂2

∫ sm

sm−1

du

]

= exp

{
r̂i
σ̂2

[
Y (m)(sm)− Y (m)(sm−1)

]
− r̂2i

2σ̂2
(sm − sm−1)

}

be the conditional density of the observation Y (sm) at time sm, given observations Y(m−1), Z(m) =

i, and estimated parameters r̂ and Q̂. Next, the filtering and smoothing procedures are described

in greater detail.

The objective of the filtering procedure, originally developed in [5], is to compute P(Zm =

i|Y(m), r̂, Q̂), for i = 1, 2, . . . , ℓ̂ and m = 1, 2, . . . ,M . This probability is computed recursively for

m = 1, 2, . . . ,M as follows:

1. For i = 1, 2, . . . , ℓ̂, compute P(Zm = i|Y(m−1), r̂, Q̂), the one-step ahead prediction probabili-

ties for Zm, where

P(Zm = i|Y(m−1), r̂, Q̂) =

ℓ̂∑

j=1

p̂jiP(Zm−1 = j|Y(m−1), r̂, Q̂), (13)

p̂ji =




−q̂ji/q̂jj, j 6= i,

0, j = i,

and P(Z0 = i|Y(0), r̂, Q̂) = 1/ℓ̂.
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2. Compute the filtered probabilities P(Zm = i|Y(m), r̂, Q̂) for i = 1, 2, . . . , ℓ̂, using (13), where

P(Zm = i|Y(m), r̂, Q̂) =
f(Y (sm)|Zm = i,Y(m−1), r̂, Q̂)P(Zm = i|Y(m−1), r̂, Q̂)

ℓ̂∑

j=1

f(Y (sm)|Zm = j,Y(m−1), r̂, Q̂)P(Zm = j|Y(m−1), r̂, Q̂)

. (14)

The filtered probabilities P(Zm = i|Y(m), r̂, Q̂) from (14) are then used in the smoothing procedure,

to compute P(Zm = i|Y, r̂, Q̂), i ∈ S, iteratively backward in time for m = M − 1,M − 2, . . . , 1 as

follows:

P(Zm = i|Y, r̂, Q̂) =
ℓ̂∑

j=1

p̂ij P(Zm = i|Y(m), r̂, Q̂)P(Zm+1 = j|Y, r̂, Q̂)

ℓ̂∑

k=1

p̂kjP(Zm = k|Y(m), r̂, Q̂)

, (15)

where P(ZM = i|Y, r̂, Q̂) is obtained from (14) with m = M (see [12]). The initial distribution,

P(Z0 = i|Y, r̂, Q̂) can be obtained by continuing computation of (15) to m = 0, and setting

α̂ = P(Z0 = i|Y, r̂, Q̂).

In the next section, numerical examples illustrating our modeling framework and the perfor-

mance of the MCMC procedure are presented for both simulated and real degradation processes.

These examples highlight the diversity of environment-driven degradation processes that can be

estimated using this approach.

4 Numerical Results

In this section, the degradation model and inference procedure for estimating component life-

times are illustrated using simulated and real degradation data. In each case, the estimated envi-

ronment parameters are obtained by sampling signals up to various percentages of their threshold

first passage time, and those estimates are used to compute the expected lifetime. These lifetime

estimates are then compared to the actual component failure times (first passage times to the

critical threshold, x).

4.1 Examples Using Simulated Data

For Examples 1 and 2 that follow, we generated 100 signal sample paths of {Y (t) : t ≥ 0} in

accordance with the type of environment process assumed in each case. The signals were allowed

to evolve up to a fixed threshold x units, at which time the component is declared to be failed.

Let Tn(x) denote the crossing time of the nth simulated path, n = 1, 2, . . . , 100. Each path was

observed up to p-percent of its crossing time, where p ∈ {25, 50, 75, 90}. Let tpn ≡ p × Tn(x)/100

denote the time corresponding to p percent of the nth component’s lifetime. For each (n, p), we

set T (n)
p = {tj : tj ≤ tpn} and Y(n)

p = {Y (tj) : tj ∈ T (n)
p } to obtain (r̂, Q̂, ẑ) using the MCMC

11



procedure. The expected lifetime, denoted by τpn, is then computed using (2) and (4). The quality

of the estimates is assessed by computing the percent absolute error, ǫ
(n)
p , given by

ǫ(n)p =
|τpn − Tn(x)|

Tn(x)
× 100. (16)

Because we simulate 100 sample paths, box plots are used to display the variability in results. A

similar procedure is applied to the real degradation data, except that have at our disposal only a

limited number of paths with which comparisons can be made. We first consider the case in which

the environment is actually a CTMC and the degradation accumulates as per equation (8).

Example 1: A CTMC Environment. Consider a component evolving in a three-state, CTMC

environment with generator matrix Q and degradation rate vector r given in the left-hand column

of Table 1. For this example, the critical degradation threshold is assumed to be x = 1000 units

and σ = 0.316. Figure 1 depicts one of the 100 simulated degradation paths, along with the

Table 1: Quality of environment and degradation rate estimates.

True Parameter Estimate of True Parameter

Q =




−1.0 0.5 0.5

0.75 −1.5 0.75

1.0 1.0 −2.0


 Q̂ =




−0.8190 0.4784 0.3406

0.7550 −1.5112 0.7561

0.7037 0.8709 −1.5745




r =
[
1 5 10

]
r̂ =

[
1.1046 4.8863 9.6783

]

ℓ = 3 ℓ̂ = 3

estimated mean path generated using the FFBS algorithm described in section 3. The true path

was observed at N = 23, 466 discrete times, and estimates of the environment parameters, Q̂ and

r̂, obtained via the MCMC procedure of section 3, are given in Table 1. The BIC-estimated order

of the environment process is ℓ̂ = 3 (i.e., S = {1, 2, 3}). The close correspondence of the observed

and mean signal paths suggests that the estimates (r̂, Q̂, ẑ) characterize the signal process and

crossing time very well. This conclusion is corroborated by Figure 2, which shows box plots of the

percent absolute error of estimated lifetimes for each p. The plots indicate that both the median

and variance of absolute error tend to decrease as p increases. Although the absolute error can

be large (as evidenced by an outlier above 25%), the fact that the median absolute error is well

below 10% indicates the procedure provides reasonable estimates of expected lifetime when the

environment process is a CTMC.
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Figure 1: Observed and mean signal paths (CTMC environment).
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Figure 2: Box plot of percent absolute error (CTMC environment).
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Example 2: A Semi-Markov Environment. Consider now a finite semi-Markov environment

whose inter-transition times are not memoryless. Signal paths were generated for two distinct cases:

(a) ℓ = 10 states, and (b) ℓ = 20 states. The transition probabilities, as well as the holding times

and degradation rates for each environment state, were randomly generated according to Table 2,

where [ν1, ν2, ν3] ∼ U(0, 1)3 such that ν1 < ν2 < ν3, ν4 = 0.1+3.0U(0, 1) and ν5 = 0.1+3.0U(0, 1),

where U(0, 1) is a continuous uniform random variable with support [0, 1].

Table 2: Summary of holding-time distributions and degradation rates.

State index Holding Time Distribution Degradation Rate

1,4,7,9,12,15,19,20 Uniform(0, 1) Uniform(0, 2)

2,10,13,16 Triangle(ν1, ν2, ν3) Uniform(0, 2)

3,6,14,17 Gamma(0.5, 0.5) 20

5,8,11,19 Beta(ν4, ν5) Uniform(0, 2)

A key feature of these environments is that signal paths tend to have sudden increases in growth

due to the relatively high degradation rate and potentially long holding times associated with the

Gamma-distributed states. Each signal path is simulated with a diffusion coefficient of σ = 0.707

and observed at equidistant times tj − tj−1 = 0.01, j = 1, 2, . . . , N . Failure is assumed when the

signal reaches a threshold x = 3000 and σ = 0.707. Figures 3 and 5 show simulated signal paths

observed at N = 88, 050 and N = 99, 863 discrete times for ℓ = 10 and ℓ = 20, respectively. The

estimated number of states obtained by observing a single signal path from each environment are

ℓ̂10 = 3 and ℓ̂20 = 2 for the 10- and 20-state cases, respectively. Although, for this example, it is

counterintuitive that the estimated number of states decreases as the true number of environment

states increases, this behavior can be attributed to the fact that most of the states have associated

degradation rates that are uniformly distributed on the interval [0, 2]. Consequently, it may be

difficult for the procedure to distinguish between these states; therefore, ℓ̂ is relatively small, despite

the large number of true environment states. Estimates of the environment parameters obtained

from each signal path are as follows:

Q̂10 =




−0.0795 0.0511 0.0284

0.1585 −0.2661 0.1076

0.2322 0.1906 −0.4229


 r̂10 =

[
2.1408 4.8024 9.4680

]
,

Q̂20 =

[
−0.0841 0.0841

0.4275 −0.4275

]
r̂20 =

[
1.9587 8.4067

]
.

Comparing the mean signal paths with the observed paths in Figures 3 and 5 indicates that the

parameters obtained using relatively small BIC-estimated orders adequately characterize the signal

processes, despite the fact that the true environment processes are non-Markovian with 10 and 20
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states, respectively.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

Time

D
eg

ra
da

tio
n 

si
gn

al

 

 

Observed signal
Mean signal

25% 50% 75% 90%

Figure 3: Observed and mean signal paths (ℓ = 10 semi-Markov environment).
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Figure 4: Box plot of percent absolute error (ℓ = 10 semi-Markov environment).

One hundred simulated signal paths were generated for each environment and observed up to

p percent of their respective failure times, p ∈ {25, 50, 75, 90}. Figures 4 and 6 show box plots

of percent absolute error for each p in the 10- and 20-state cases, respectively. Interestingly, the

median errors in the semi-Markov cases are consistent with those in the CTMC case (see Figure

2). Moreover, the dispersion of errors in the semi-Markov cases is consistent with the irregularity

induced by the Gamma-distributed state holding times. As in the CTMC case, the median absolute

error and variance decrease rapidly as the proportion of lifetime observed (p) increases. The median

absolute error is below 5% in both cases when only 50% of the lifetime has been observed.
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Figure 5: Observed and mean signal paths (ℓ = 20 semi-Markov environment).
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Figure 6: Box plot of percent absolute error (ℓ = 20 semi-Markov environment).
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4.2 Examples Using Real Degradation Data

In this subsection, we validate the estimation procedure using real degradation data. There are

three separate cases: (1) fatigue crack length data; (2) thrust bearing vibration data; and (3) wind

turbine gear degradation.

Example 3: Fatigue Crack Length. First, we illustrate the procedure using experimental data

originally published by Virkler et al. [49]. The data contain measurements of the growth of a fatigue

crack over time (as measured by the number of load cycles) for 68 specimens of 2024-T3 aluminum

alloy. Representative sample paths are depicted in Figure 7, and specimen failure is assumed to

occur when the crack length exceeds 45 mm. The curvature in the sample paths suggests an

exponential relationship between the crack length and the number of load cycles, clearly violating

the assumption that the degradation “signal” evolves according to (7). The MCMC procedure of
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Figure 7: Sample paths of fatigue crack length propagation.

section 3 was applied to the log-transformed sample paths of crack lengths as the transformed paths

exhibit milder curvature than the untransformed paths. We pause here to make an important point.

Extensive empirical testing has shown that the MCMC procedure can perform poorly for signals

that do not evolve as a switching diffusion model when σ ≤
√
10. For this reason, the transformed

crack lengths, and the transformed threshold, were multiplied by a factor of 100 before applying

the MCMC procedure. All transformed paths were translated to begin at the origin.

To evaluate performance, path observations are restricted to p ∈ {75, 90, 100} as the curvature

is not strongly apparent until p > 50. Furthermore, it is possible that one or more elements in r̂

are not strictly positive due to the relatively long regime of nearly flat crack growth. If r̂ ≯ 0 then

equations (2) and (4) cannot be used with the estimates Q̂ and r̂ to approximate the expected

lifetimes. Alternatively, expected lifetimes were computed using the asymptotic result (5).
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Figure 8 shows one of the transformed sample paths and its corresponding mean path. The

BIC-estimated number of environment states for this degradation process was estimated using only

this single path, and the estimate is ℓ̂ = 2. Although the evolution of the true degradation sample

path deviates significantly from that of a switching diffusion model, it can still be well characterized

using the estimated model parameters. A box plot of the percent absolute error is shown in Figure

9 for all 68 sample paths observed up to each respective p. For p = 75, p = 90 and p = 100,
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Figure 8: Observed and mean signal paths (crack-length data).
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Figure 9: Box plot of percent absolute error (crack-length data).

the median absolute errors are 24.4%, 12.1%, and 4.2%, respectively, while the error variance ex-

hibits a decreasing trend as p increases. The plots indicate that the MCMC procedure can provide

reasonable estimates of lifetime in a fatigue crack length application, provided a sufficiently large
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percentage of the lifetime is observed.

Example 4: Bearing Vibration Signal. In this example, the procedure is shown to effectively

predict a bearing lifetime using vibration data. The vibration data were collected by Gebraeel

and Pan [20] for 25 bearings tested until failure under constant loading and rotational conditions.

Figure 10 shows the vibration signal for a single bearing. The vibration signals were collected at
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Figure 10: A vibration signal path.

2-minute intervals and represent the average amplitude over time of the defective bearing frequency

and its first six harmonics. The threshold for bearing failure is based on the root mean square (rms)

of the vibration amplitude, defined here as 0.025Vrms. This vibration level corresponds to 2.2 Gs

of acceleration and is consistent with the danger-level specification of 2.0–2.2 Gs in ISO 2372, the

industrial standards for machinery vibration. Of the 25 bearings tested, one signal did not reach

the threshold and was not considered.

Characteristic of the vibration signals is an initial period at which the amplitude is relatively

constant with only small oscillations due to random noise. After some time, the signals experience a

sudden upward jump after which they exhibit larger oscillations and an increasing trend until failure.

The vibration signals clearly do not satisfy the assumption of model (7) that σ is independent of

time. The bearing lifetimes are only predicted from the instant at which the vibration signal

exhibits its first large jump until it reaches the critical threshold x. The vibration signals were

transformed in a manner similar to that of the Virker data of Example 3. To dampen the signal

oscillations, inference was performed on log-transformed amplitudes which were multiplied by a

factor of 103 to increase σ̂ to an appropriate magnitude for adequate performance of the MCMC

procedure. All paths were translated to begin at the origin. For each path, at least one element of

r̂ is negative; therefore, the expected lifetimes were estimated using the asymptotic result of (5).

The BIC-estimated number of environment states obtained by observing a single bearing vibration
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signal is ℓ̂ = 3.

Figure 11 shows a plot of one of the vibration paths (untransformed) and the corresponding

mean signal path. The close correspondence of the paths indicates that parameter estimates are

obtained that characterize the vibration process well. Box plots of percent absolute error for all 24

paths observed at p ∈ {50, 75, 90} are shown in Figure 12.
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Figure 11: Observed and mean signal paths (vibration data).
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Figure 12: Box plot of percent absolute error (vibration data).

It is noted that the median absolute error decreases monotonically in p while the variance is

fairly constant over the range of p values. There are two important points to make here: (1) the

estimated mean signal tracks the observed signal remarkably well; and (2) although no information

is provided about the environment, we are able to characterize the evolution of the degradation
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signal using the switching diffusion model.

Example 5: Wind Turbine Gear Degradation. This case considers lifetime prediction for a

gear that operates in a wind turbine’s drivetrain. The signal for gear wear will correspond to the

effective number of load cycles and is computed from explicit field observations of shaft torque and

rotor speed. The measurements are from a proprietary data set collected for a single wind turbine

over a 19-month period that consists of 10-minute summary statistics. That is, for each 10-minute

interval, descriptive statistics (including the mean, minimum, maximum, standard deviation, etc.)

were obtained for each turbine parameter. After discarding intervals for which data are missing (due

to downtime or other causes), summary statistics of turbine torque and rotor speed are available

for 12,067 time periods. The failure threshold is defined as the effective number of load cycles at

which a gear tooth will fail.

Let ζi and ωi denote the mean torque (ft-lbs) and rotor speed (rpm) of the wind turbine over

the ith time period, i = 1, 2, . . . , N = 12, 067. To relate these parameters to the effective number of

load cycles imposed on the gear tooth, recall that the relationship between torque and gear stress,

denoted by ξ, can be approximated as

ξ = hζ,

where h > 0 is a constant [47]. Let ξw denote the stress amplitude corresponding to w cycles on a

stress-life (S-N) curve of the gear material, and (w′, ξw′) denote another known point on the S-N

curve. The function n(ξ), defined as the number of cycles to failure under stress amplitude ξ, is

approximated by a power law as follows [42]:

n(ξ) = w(ξ/ξw)
1/b

where the parameter b is given by

b = − ln(ξw/ξw′)

ln(w′/w)
.

For stress amplitude ξ, let ñ(ξ) ≡ w/n(ξ) be the effective number of load cycles imposed on a

gear tooth during one cycle of amplitude ξ. Assuming a gear tooth experiences c load cycles per

revolution, the total effective number of load cycles during the ith 10-minute period, denoted ηi, is

approximately

ηi = 10 c ωi ñ(ξi).

The signal value at ti is computed in a straightforward way as

Y (ti) =

i∑

j=1

ηj , i = 0, 1, 2, . . . , N, (17)

where Y (0) ≡ 0.

In this example, h = c = 1, w = 107, and ξw = 63.0 (a value close to the overall mean torque

observed in the data). Three S-N curves were considered based on different values of (w′, ξw′): Case
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(a) (100, 0.3×107), Case (b) (100, 0.5×106), and Case (c) (100, 0.1×106). Note that in progressing

from Case (a) to Case (c), the total effective number of load cycles imposed on the material increases

for each fixed ξ > ξw. Signal paths were computed using a bootstrap technique whereby the torque

and rotor speed values are generated by randomly sampling 4-hour, contiguous blocks of torque

and rotor speed data. The failure threshold was assumed to be x = 107. The estimated number

of environment states are ℓ̂ = 2, ℓ̂ = 2, and ℓ̂ = 3 for Cases (a), (b) and (c), respectively. Figures

13, 15, and 17 show the observed signals used to compute the BIC statistic for Cases (a), (b),

and (c), respectively, along with the mean signal paths obtained from the estimated parameters

corresponding to each path. That the mean and observed signal paths correspond closely for all

three cases indicates that the degradation process for the gear tooth is well characterized by the

estimated parameters.
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Figure 13: Observed and mean signal paths: Gear tooth degradation Case (a).

Figures 14, 16, and 18 show box plots of the percent absolute error for Cases (a), (b), and (c),

respectively, with 100 randomly generated signal paths observed up to p percent of their respective

failure times, p ∈ {25, 50, 75, 90}. For fixed p, the median and variance of the absolute error

increases from Case (a) to Case (c) – an intuitive result as Cases (b) and (c) can have relatively

large degradation rates leading to more irregular sample paths. For Case (a), the most realistic

case in a practical application, the median absolute error is less than 5% for all p, and for Cases (b)

and (c), the median absolute error is below 10% and 20%, respectively, for all p. That the inference

procedure also performs well in the more extreme Cases (b) and (c) suggests that the procedure

is well-suited to estimate the lifetimes of gears that operate in relatively extreme degradation

environments.
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Figure 14: Box plot of percent absolute error: Gear tooth degradation Case (a).
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Figure 15: Observed and mean signal paths: Gear tooth degradation Case (b).
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Figure 16: Box plot of percent absolute error: Gear tooth degradation Case (b).
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Figure 17: Observed and mean signal paths: Gear tooth degradation Case (c).
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Figure 18: Box plot of percent absolute error: Gear tooth degradation Case (c).
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5 Conclusions

In this paper, we have presented a hybrid analytical-statistical technique to approximate the

stochastic, environment-driven, degradation process of a component using an observed signal of

degradation. The signal was assumed to evolve as a switching diffusion process, and the environ-

ment parameters were estimated using a Markov chain Monte Carlo statistical procedure. The

performance of the technique was assessed by comparing the expected component lifetime and

mean degradation signal obtained via the estimated environment parameters with the actual com-

ponent lifetime and the observed degradation signal, respectively. Numerical results indicate that

the framework is robust against signals that depart significantly from the stochastic behavior of a

switching diffusion process. For degradation processes driven by non-Markovian environments, or

those having non-constant degradation rates or time-nonhomogeneous variance, the framework was

still able to characterize the degradation process well, provided that the signal observation period

is sufficiently long.

Although the modeling frameworks described in sections 2 and 3 provide a viable approach

to approximate the stochastic behavior of an arbitrary degradation process, they are limited by

assumptions required for the switching diffusion model. In particular, when the variance of the

degradation signal fluctuates significantly over non-overlapping time intervals, substantial prepro-

cessing of the signal may be required to estimate the environment parameters. To more effectively

handle such cases, the switching diffusion model should incorporate a time-nonhomogeneous dif-

fusion coefficient, for which an appropriate inference procedure would be required. Similarly, the

estimation procedure may not perform as well in applications where degradation signals evolve as

nearly-deterministic, nonlinear functions of time and violate the assumption that the environment

process is time-homogeneous (e.g., fatigue crack propagation). Although signal preprocessing can

be helpful, a more realistic model should include degradation rates that are functions of time and/or

the cumulative degradation level. Lastly, the MCMC statistical procedure does not easily facilitate

real-time updating of the environment parameters as the signal is observed. In fact, there are no

known filtering- or simulation-based procedures that are able to infer the parameters of a switching

diffusion process in a real-time, iterative manner. Developing such an inference procedure would

significantly reduce the computational burden and allow near-continuous updating of the model

parameters as sensor data are collected.
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[8] O. Cappé, E. Moulines, and R. Rydén. Inference in Hidden Markov Models. Springer, New

York, NY, 2005.
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[14] K.A. Doksum and A. Hóyland. Models for variable-stress accelerated life testing experiments

based on Wiener processes and the inverse Gaussian distribution. Technometrics, 34(1):74–82,

1992.

27



[15] J.D. Esary, A.W. Marshall, and F. Prochan. Shock models and wear processes. Annals of

Probability, 1(4):627–649, 1973.

[16] R.M. Feldman. Optimal replacement with semi-Markov shock models. Journal of Applied

Probability, 13(1):108–117, 1976.

[17] D. Gamerman. Dynamic Bayesian models for survival data. Applied Statistics, 40(1):63–79,

1991.

[18] N. Gebraeel. Sensory-updated residual life distributions for components with exponential

degradation patterns. IEEE Transactions on Automation Science and Engineering, 3(4):382–

393, 2006.

[19] N. Gebraeel, M.A. Lawley, R. Li, and J.K. Ryan. Residual-life distributions from component

degradation signals: A Bayesian approach. IIE Transactions, 37(6):543–557, 2005.

[20] N. Gebraeel and J. Pan. Prognostic degradation models for computing and updating residual

life distributions in a time-varying environment. IEEE Transactions on Reliability, 57(4):539–

550, 2008.

[21] A.E. Gelfand and A.F.M. Smith. Sampling-based approaches to calculating marginal densities.

Journal of the American Statistical Association, 85(410):398–409, 1990.

[22] A. Ghasemi, S. Yacout, and M.S. Ouali. Evaluating the reliability function and the mean resid-

ual life for equipment with unobservable states. IEEE Transactions on Reliability, 59(1):45–54,

2010.
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