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Statistical tolerance analysis for non-normal or correlated normal
component characteristics

J. P. KHAROUFEHy* and M. J. CHANDRAz

The paper presents a simple approximation technique for statistical tolerance
analysis, namely, the allocation of component tolerances based on a known
assembly tolerance. The technique utilizes a discretized, multivariate kernel den-
sity estimate and a simple transformation to approximate the probability distri-
bution of the overall assembly characteristic. The data-driven approach is suitable
for real-world settings in which components are randomly selected from their
respective manufacturing processes to form mechanical assemblies.
Demonstrated is the numerical approach in two dimensions for two distinct
cases: ®rst, when component characteristics are non-normal, independent
random variables, and second, when they are highly correlated, normal random
variables. The results are promising in initial test problems.

1. Introduction
Many mechanical assemblies consist of two or more components or subassem-

blies. Owing to variation in machine performance, operator performance, or proper-
ties of the work piece, it is impossible to avoid variation in component characteristics
completely. Naturally, variation in the components leads to variation in the overall
assembly; thus, the component characteristics (and the assembly characteristic) may
be considered as continuous random variables. When the assembly characteristic is a
linear function of the component characteristics, normality and independence
assumptions allow for a simple calculation of the component tolerances to yield a
desirable acceptance rate for the assemblies. However, in many situations, neither
the component nor assembly characteristic probability distributions are known.
Furthermore, underlying dependencies may exist between component characteristics
that distort the results of the aforementioned analysis.

This paper illustrates an approximation technique for statistically allocating
component tolerances, based on a prespeci®ed assembly tolerance, when the prob-
ability distributions of component and assembly characteristics are not known or
when the component characteristics are normally distributed and correlated. It is
further assumed that the assembly characteristic is a linear function of the com-
ponent characteristics or a form that may be linearized. The next section reviews
some of the past and current literature in the area of statistical tolerancing analysis;
section 3 presents the approach to the problem, while section 4 gives a review of
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kernel density estimation; section 5 presents numerical examples demonstrating the
technique when the assembly is comprised of two components, and section 6 gives
concluding remarks and directions for future research.

2. Review of past work and problem statement
The focus of the work is on statistical tolerancing analysis. Some other broadly

de®ned tolerancing techniques include manual tolerancing based on the dimensional
tolerancing chain, computer-aided tolerancing techniques (Bjorke 1989), and toler-
ancing-based geometrical modelling. As noted by Zhang and Huq (1992), software
implementations of these techniques have been developed. In the usual way, it is
assumed that the overall assembly characteristic, X, is given as a function of the
component characteristics, Xi, i ˆ 1; 2; . . . ; k of the form

X ˆ Á…X1; X2; . . . ; Xk†; …1†

where X is assumed to have density f, while Xi has density fi for i ˆ 1; 2; . . . ; k. In
most analyses, it is assumed that the component characteristics are independent
random variables with known densities. However, characterization of the density,
f, is di� cult in the absence of these assumptions. For this reason, techniques for
®nding the moments of the distribution have been proposed.

Many authors, such as Burr (1958), Mansoor (1963), Bender (1968) and Evans
(1974), have considered the problem when Á is linear. Evans (1974), Nigam and
Turner (1995) and Barker (1989) discussed the linear propagation of errors or
stack tolerancing in which the ®rst two moments of the distribution of X are deter-
mined by partial di� erentiation of Á with respect to each component characteristic.
Mansoor (1963) considered the tolerance problem in engineering design and
assumed that the overall assembly tolerance is prespeci®ed by customer or engin-
eering design requirements. His objective was to allocate the component tolerances
so that the assembly tolerance objective was met, yielding an acceptable rejection
rate. The technique resulted in a probabilistic allocation of component tolerances,
but was heavily contingent upon the assumption of normality and independence of
component characteristics. Parkinson (1982) extended Mansoor’s work by estimat-
ing the probability that the component characteristics would fail to meet the dimen-
sional requirements of the assembly characteristic. Parkinson (1984) optimized
component tolerances so that, for a given manufacturing cost, the probability of
components failing to meet the assembly speci®cation limits was below some accep-
table level. The technique requires the component characteristics to follow either a
normal, truncated normal or mixed normal distribution.

When the function Á is non-linear, it is necessary to employ the non-linear
propagation of errors or extended Taylor series approximation. Evans (1974)
showed that if the derivatives of Á were tractable, then the ®rst four moments of
the distribution of X may be found analytically without too much di� culty.
However, when Á is unknown analytically, one must resort to numerical integration
to evaluate the moments of the distribution. Evans (1974) and Nigam and Turner
(1995) gave the appropriate quadrature expression for the mean of X; however, the
technique assumes independence of the component characteristics. In using the
quadrature method, one advantage is that the distribution of component character-
istics need not be known, only their lower moments. D’Errico and Zaiano (1988)
described a modi®cation to Taguchi’s method for determining the moments of the
distribution of X. Speci®cally, component distributions were assumed to be indepen-
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dent and normal, but were estimated by a discrete distribution at three points. The
method uses a modi®ed (Gaussian) quadrature approach that outperforms Taguchi’s
method, at least for the linear case, by correctly specifying the ®fth moment of the
distribution. More recently, the concept of distribution function (DF) zones has been
introduced into the statistical tolerancing literature (cf. O’Connor and Srinivasan
1997). In this approach, a population of components is deemed acceptable if its
distribution function is bounded above and below by some speci®c distribution
functions. This part-level technique has been extended by Zhang et al. (1999) to a
statistical tolerance synthesis model that additionally minimizes the manufacturing
cost. The DF zone approach requires that component characteristics are statistically
independent.

The present paper contributes to the literature on statistical tolerancing analysis
by considering two separate cases in the allocation of component tolerances when
the assembly tolerance is ®xed. First, it considers the case in which a small number of
component characteristics are independent and follow non-normal distributions. In
the second case, it considers normally distributed component characteristics that are
highly correlated. We present an approximation technique to allocate the tolerance
of the assembly characteristic among k components so that an overall desired assem-
bly tolerance may be achieved when Á is a linear function of the k component
characteristics. The data-driven technique uses a non-parametric estimate of the
joint density of component characteristics to approximate the distribution function
of X rather than assuming a parametric distribution.

3. Approximation technique
The following assumptions are made.

. The assembly characteristic, X, and component characteristics, Xi,
i ˆ 1; 2; . . . ; k are of the Nominal-the-Better type (N-type).

. Xi and Xj, i 6ˆ j are, in general, correlated random variables for i,
j ˆ 1; 2; . . . ; k.

. Components are randomly assembled.

. Component characteristics follow some unknown probability distribution.

. The process that generates Xi is adjusted so that the mean of Xi, ·i, equals the
nominal size of Xi, i ˆ 1; 2; . . . ; k.

. The proportion of Xi falling within the speci®cation limits is 1 ¡ pi for
i ˆ 1; 2; . . . ; k.

. The proportion of X falling within the speci®cation limits is 1 ¡ p.

. The assembly tolerance T is speci®ed by the customer or by engineering
requirements.

. The speci®cation limits need not be equidistant from the nominal dimension of
the characteristic.

The natural process capability of the process that generates the components and the
assembly is a proportion of the range of all possible values that the component or
assembly characteristics may assume. Let ti denote the natural process capability of
the process that generates component characteristic Xi and let t denote the natural
process capability for the process that generates the assembly characteristic X. Now
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for any component or assembly characteristic distribution, the natural process cap-
ability may be given as a function of the process standard deviation by

ti ˆ ci¼i; i ˆ 1; 2; . . . ; k …2†

and

t ˆ c¼; …3†

where ci and c are constants, ¼i is the standard deviation for the process that gen-
erates component i, and ¼ is the standard deviation for the process that generates the
assembly characteristic. The values of ci and c dictate the proportion of the total
distribution range that is covered by the natural process capability and depend upon
the distribution shape. For instance, if the component characteristics are normally
distributed, then the assembly characteristic is also normally distributed and c ˆ 6
yields a range of values for the assembly characteristic that covers 99.73% of the
entire distribution range (0.135% on each tail). If c ˆ 8, then 99.994% of the distri-
bution is covered. Let Ti denote the tolerance of component i and let T denote the
assembly tolerance. The process capability ratio, denoted by Cp, for either a com-
ponent or assembly characteristic is the ratio of the width of the tolerance interval to
the natural process capability (e.g. Cp ˆ T=t). It is assumed here that the manufac-
turer speci®es a target process capability ratio, C*p, for the component and the
assembly characteristics. Using the substitution g ˆ cC*p and gi ˆ ciC*p,
i ˆ 1; 2; . . . ; k it is seen that

T ˆ U ¡ L ˆ g¼

Ti ˆ Ui ¡ Li ˆ gi¼i i ˆ 1; 2; . . . ; k; …4†

where U and L are the upper and lower speci®cation limits of the assembly, respect-
ively, and Ui and Li are the upper and lower speci®cation limits for component i,
respectively. It can be seen by (4) that the component tolerances are not equal in
general, but rather, each is uniquely determined by g or gi, which directly depends on
the distribution of the component or assembly characteristic. The following subsec-
tion relates the prespeci®ed assembly tolerance to the k component tolerances while
the means for computing the constant g and gi, i ˆ 1; 2; . . . ; k will be presented in
section 3.2.

3.1. Relating assembly and component tolerances
Let · and ¼2 denote the mean and variance of the assembly characteristic X,

respectively. For any set of component characteristics, whether correlated or uncor-
related, it is well known that

· ˆ
Xk

iˆ1

·i: …5†

The variance of the assembly characteristic is given by (Freund and Walpole 1987)

¼2 ˆ
Xk

iˆ1

a2
i ¼

2
i ‡ 2

Xk¡1

iˆ1

Xk

jˆi‡1

aiaj¼i; j; …6†

where ai is a constant, ¼2
i is the variance of the ith component characteristic and ¼i; j

is the covariance of Xi and Xj; i 6ˆ j. In case the component characteristics are
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independent, ai ˆ 1 and ¼i; j ˆ 0 for all i; j ˆ 1; 2; . . . ; k. The ®fth assumption of the
problem asserts that the process generating component i is adjusted so that the mean
·i is equal to the nominal dimension, say di. However, it is likely that during process
setting, the operator may not be able to adjust the process mean to the nominal
setting di. To account for this phenomenon, one may adopt the approach of
Mansoor (1963) who assumed a `worst-case’ tolerance wherein the ith mean can
shift no more than a ®xed distance from the nominal value. This mathematically
imposes the conditions

j·i ¡ dij µ si; i ˆ 1; 2; . . . ; k; …7†

where si denotes the maximum allowable deviation from the nominal dimension of
the ith component. It can easily be shown (Mansoor 1963) that the assembly toler-
ance speci®ed by design engineers to re¯ect these modi®cations would be given by

T 0 ˆ T ¡ 2
Xk

iˆ1

si: …8†

Equation (8), in e� ect, would reduce the amount of tolerance that may be allocated
among the k component characteristics. Now, substituting (6) into (4), we obtain

T ˆ g
Xk

iˆ1

a2
i

T 2
i

g2
i

‡ 2
Xk¡1

iˆ1

Xk

jˆi‡1

aiaj¼i; j

Á !1=2

…9†

Equation (9) provides one equation relating the tolerance of the assembly character-
istic to the component characteristics, Ti, i ˆ 1; 2; . . . ; k. Thus, we require k ¡ 1
additional equations to solve for the component tolerances, and these are obtained
by the assumption that the target process capability ratio, C*p, is equal for each of the
processes generating the k component characteristics. By (2) and (3) and the sub-
stitutions g ˆ cC*p and gi ˆ ciC*p, i ˆ 1; 2; . . . ; k, this assumption implies

T1

g1¼1

ˆ T2

g2¼2

ˆ ¢ ¢ ¢ ˆ Tk

gk¼k

ˆ 1: …10†

Now, (9) combined with any k ¡ 1 equations in (10) constitutes a set of k equations
that may be solved simultaneously to allocate probabilistically the assembly toler-
ance T among the component tolerances, Ti, i ˆ 1; 2; . . . ; k. However, this allocation
must take into account the desired proportion of rejects for the components and the
®nal assembly. The following subsection describes the procedure for ®nding g and gi,
i ˆ 1; 2; . . . ; k, for a desired proportion of rejects and for allocating the assembly
tolerance among the component tolerances.

3.2. Tolerance allocation procedure
Let the cumulative distribution functions (CDFs) of Xi, i ˆ 1; 2; . . . ; k and X be

FXi
, i ˆ 1; 2; . . . ; k and FX , respectively. De®ne p…i†

u as the proportion of undersized
components of type i and de®ne p…i†

o as the proportion of oversized components of
the same type. The total proportion of rejects for the process that generates the ith
component is given by pi ˆ p…i†

u ‡ p…i†
o . Similarly, denote the proportion of oversized

assemblies by po, and the proportion of undersized assemblies by pu such that
p ˆ pu ‡ po, where p denotes the total proportion of rejects for the assembly. The
upper and lower speci®cation limits need not be equidistant from the mean and the
distribution may not be symmetric; hence, the oversized and undersized proportions
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need not be equal. Figure 1 depicts the variable de®nitions for an arbitrary assembly
characteristic distribution.

Equations (9) and (10) indicate that gi, i ˆ 1; 2; . . . ; k and g are needed to allocate
the assembly tolerance T among the k component tolerances. The value of gi,
i ˆ 1; 2; . . . ; k is obtained from the cumulative distribution function of component
characteristic i, namely FXi

, i ˆ 1; 2; . . . ; k, while g is obtained from the assembly
characteristic CDF, FX , as outlined in the following procedure description.

Step 0. Choose acceptable values p…i†
u , p…i†

o , pu, po and C*p.
Step 1. Compute c and ci for the assembly and each component characteristic by

c ˆ tu ¡ tl

¼
and ci ˆ

t…i†
u ¡ t

…i†
l

¼i

; …11†

where

tl ˆ supfx : FX…x† µ pug …12†

t…i†
l ˆ supfxi : FXi

…xi† µ p…i†
u g …13†

tu ˆ inffx : 1 ¡ FX …x† µ pog …14†

t…i†
u ˆ inffxi : 1 ¡ fxi

…Xi† µ p…i†
o g: …15†

Step 2. Calculate g and gi for the assembly and each component characteristic by

g ˆ cC*p and gi ˆ ciC*p: …16†

Step 3. Obtain Ti, i ˆ 1; 2; . . . ; k by simultaneously solving (9) and (10).

The procedure here assumes the cumulative distribution functions of components
and the assembly are known a priori; however, this is seldom the case in reality. One
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alternative to the normality assumption is to utilize data-driven, non-parametric
distribution approximations , and one well-known technique is reviewed in section 4.

4. Distribution approximations
In the absence of normality (and independence) assumptions of the component

characteristics, it is di� cult to ®nd an analytical solution for the cumulative distri-
bution function of the assembly characteristic, X. Thus, numerical approximations
will be employed to carry out this task. In this section, a well-known, non-parametric
density estimation technique and its multivariate extension are reviewed to ®nd the
distribution of X.

4.1. Univariate kernel density estimator
A brief review of the kernel density estimate (KDE) is presented (cf. Silverman

1986). Suppose a continuous random variable Y has probability density function
f …y† and let Yi, i ˆ 1; 2; . . . ; n, denote n independent, identically distributed observa-
tions of Y. The kernel density estimate of f at a point y is given by

f̂f …y† ˆ 1

nh

Xn

iˆ1

K
y ¡ Yi

h

³ ´
; …17†

where K is the kernel function, n is the number of real observations and h is the
smoothing parameter or bandwidth. The density estimate at a ®xed point (y) is the
sum of n kernels of mass, where the magnitude of each kernel is dictated by the
distance between the ®xed point and the observed data point (i.e. observations that
are within the h-radius of the ®xed point contribute more to the density estimate at
that point while those outside the radius contribute little). The kernel function is
usually (but not necessarily) a probability density function itself, being positive
valued on the real line and integrating to unity. Its shape dictates the shape of
each kernel while the smoothing parameter determines its width. A large smoothing
parameter yields a smoother density estimate while a smaller value reveals ®ne details
in the density estimate. One common kernel function for univariate data is the
Gaussian kernel given by

KG…u† ˆ 1������
2º

p exp …¡0:5u2†: …18†

As is the case with most statistical estimators, there exists a trade-o� between the
variance and bias of a KDE. This trade-o� is dictated by adjustment of the smooth-
ing parameter h, and when the Gaussian kernel function is used, the optimal smooth-
ing parameter may be computed directly by (Silverman 1986)

hopt ˆ 0:9 ¢ min f¼; interquartile range=1:34g ¢ n¡1=5; …19†

where ¼ may be approximated with the sample standard deviation, s. Silverman
(1986) stated that this value works well for a wide range of univariate distributions,
including those with a bimodal structure. Furthermore, the author demonstrated
through simulation that for n ˆ 100, skewness or bimodality will be revealed using
the smoothing parameter of (19). However, one drawback of the kernel estimator is
its tendency to show spurious noise in long-tailed distributions. This is due to the fact
that a ®xed smoothing parameter is used over the range of the data. By employing
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adaptive kernel methods which vary the smoothing parameter over the range of the
data, this problem can be alleviated.

We apply the univariate KDE of (17) in the following manner. Let P be a ®nite
set of ®xed points at which to estimate the density. The probability mass associated
with the point x0 2 P is given by

p̂p…x0† ˆ ¯¡1f̂f …x0†; …20†

where ¯ ˆ
P

x2P f̂f …x†. The cumulative distribution function approximator is given by

F̂F…x0† ˆ
X

fx2P:xµx0g
p̂p…x†: …21†

Assuming independence of the component characteristics, it is possible to obtain the
distribution of X by means of the convolution of the component characteristic
density functions, or by the central limit theorem if there are a large number of
components. However, since the component characteristics are not necessarily inde-
pendent, the distribution must be obtained by means of the joint density. Next, the
multivariate kernel estimator will be reviewed for approximating the joint density
function of the component characteristics.

4.2. Multivariate kernel density estimator
The distribution of the assembly characteristic is not easily obtained, particularly

when the assumption of independence is removed. In this section, the multivariate
form of the kernel density estimator is reviewed (Silverman 1986, Scott 1992).

Let X1; X2; . . . ; Xk be k continuous random variables having joint density func-
tion f …x1; x2; . . . ; xk). Further suppose that the random variables are a function of X
such that

X ˆ Á…X1; X2; . . . ; Xk†: …22†

The density function of X may be obtained from the joint density of the components
by the moment-generating function (MGF) technique or the transformation of vari-
ables technique. The transformation of variables technique is employed since the
MGF technique requires independence of the random variables. The multivariate
form of the kernel estimator provides the means by which the joint density of com-
ponent characteristics, f …x1; x2; . . . ; xk) may be approximated and is given by

f̂f …x† ˆ 1

nhk

Xn

jˆ1

K

³
x ¡ x

h

´
: …23†

where x is a point in k-dimensional space. Thus, xj ˆ …x1j; x2j ; . . . ; xkj†, j ˆ 1; 2; . . . ; n
constitutes a set of n observations from the manufacturing process producing com-
ponent Xi, i ˆ 1; 2; . . . ; k. It is seen that the kernel estimate for multivariate data is
analogous to the univariate case in that we consider the `distance’ from our point of
consideration, x and the observations, xj , j ˆ 1; 2; . . . ; n. Furthermore, the kernel
function is positively valued and integrates to unity on Rk.

If there exist extreme di� erences in variance between the component character-
istic observations, (23) may not yield a good estimate for the overall joint density.
Silverman (1986) suggested a method for prescaling the data so that the complication
may be alleviated. More speci®cally, the author suggested a transformation of the
form (Fukunaga 1972)
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f̂f …x† ˆ jSj¡1=2

nhk

Xn

iˆ1

Kfh¡2…x ¡ xi†
TS¡1…x ¡ xi†g; …24†

where S represents the covariance matrix for the observed data, jSj is its determinant
and S¡1 is its inverse. Using a substitution of variable, let

ui ˆ h¡2…x ¡ xi†TS¡1…x ¡ xi†; i ˆ 1; 2; . . . ; n: …25†

Each kernel mass is obtained by evaluating K at the point ui. A common kernel
function in the multivariate case is the multivariate Epanechnikov given by
Silverman (1986):

Ke…x† ˆ
1

2vk

…k ‡ 2†…1 ¡ xTx† xTx < 1

0 elsewhere;

8
><

>:
…26†

where k is the number of variables and vk is the volume of the k-dimensional unit
sphere. For example, in case k ˆ 2, the value of the kernel function is

Ke…ui† ˆ
2

p
…1 ¡ ui† ui < 1

0 otherwise:

i ˆ 1; 2; . . . ; n

8
><

>:
…27†

Silverman (1986) and Scott (1992) have stated that selection of the kernel function is
not a crucial issue in constructing the density estimate, thus, the Epanechnikov
kernel is used throughout this work due to its computational simplicity.

Selection of the smoothing parameter for the multivariate kernel is analogous to
that of the univariate case. The objective again is to optimize the trade-o� between
variance and bias in the estimator. The optimum smoothing parameter is given by

hopt ˆ A…K†n¡……k‡4†¡1† …28†

where A…K† is a constant that depends on the kernel function. For example,
A…K† ˆ 2:40 when using the Epanechnikov kernel for the case k ˆ 2 (cf.
Silverman 1986). The link between the joint density of the component characteristics
and the density of the assembly characteristic, X, is made through the transformation
of variables technique. Implementation of the technique requires the continuous
characteristic distributions to be approximated by discrete distributions; therefore,
the discrete form of the transformation should be applied.

5. Validation and numerical examples
Distributions of the component and assembly characteristics will be estimated on

a ®nite support; thus, the transformation of variables technique for discrete variables
is reviewed for the case k ˆ 2. Let X1 and X2 be two discrete random variables with
joint probability mass function (pmf), ¿. The transformation of variables technique
transforms the joint pmf of X1 and X2 to the joint pmf of X and X1. The procedure
for obtaining the pmf of the random variable X ˆ X1 ‡ X2 is as follows.

Step 1. Transform ¿…x1; x2† to º…x1; x† by a substitution of variables …x2 ˆ x ¡ x1)
so that

º…x1; x† ² ¿…x1; x ¡ x1†: …29†
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Step 2. Sum º…x1; x† over all x1 to obtain h…x†, the pmf for X by

h…x† ˆ PfX ˆ xg ˆ
X

x1

º…x1; x†: …30†

Let Sx ² fx : x ˆ x1 ‡ x2g where x ˆ …x1; x2† 2 R2. The probability that X
assumes the value x in its sample space is given by

h…x† ˆ PfX ˆ xg ˆ
X

x2Sx

¿…x†: …31†

Using this approach, the distribution of the sum of two random variables can easily
be approximated, even if the component variables are not independent. The pmf
approximation is obtained from the multivariate kernel estimate by converting the
joint densities into point masses over a large (but ®nite) set of points as described by
(20) in the univariate case.

5.1. Validation of univariate estimates
To demonstrate the viability of the univariate kernel estimator in approximating

the component characteristic distributions and gi, i ˆ 1, 2, samples of 100 observa-
tions were taken from normal, symmetric triangular and uniform populations (par-
ameters are given in table 1). These populations were generated using the inverse
transform method. The Kolmogorov±Smirnov (K±S) goodness-of-®t test uses the
maximum absolute deviation between the estimated and true cumulative distribution
functions (CDFs) for a ®xed number of points (m) as the test statistic. If the calcu-
lated test statistic exceeds the critical value, then the null hypothesis that the dis-
tributions are equal is rejected. In particular, for m > 40, the K-S critical value is (cf.
Conover, 1980)

³ ˆ 1:36m¡1=2: …32†

In the univariate experiments, the kernel and actual CDFs were compared at 151
points which, at the 0.05 level, yielded a maximum allowable deviation in probability
of ³ ˆ 0:111. For each distribution type, ®ve random samples (of 100 observations
each) were drawn and kernel estimates constructed for each case. Table 1 sum-
marizes the cases and reports the calculated K±S test statistic. It is seen that, in
each case, we fail to reject the hypothesis that the distributions are equal.

Figure 2 depicts the distribution function of the kernel estimate and the actual
CDF of a symmetric triangular random variable with minimum value of 50, mode of
75 and maximum of 100. With a maximum absolute deviation of 0.0411 in prob-
ability, it is seen that the kernel estimate closely matches the true triangular distri-
bution function.
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Sample no. Normal (75, 69.44) Triangular (50, 75, 1000) Uniform (50, 100)

1 0.0300 0.0601 0.0522
2 0.0638 0.0322 0.0479
3 0.0486 0.0634 0.0298
4 0.0181 0.0425 0.0801
5 0.0824 0.0497 0.0404

Table 1. Maximum absolute deviation in probability of actual versus kernel CDFs.



It was further desired to test the ability of the univariate CDFs to predict the
appropriate g (g1; g2) as per the technique presented in section 3. However, in each
case, the true population standard deviation was replaced by the sample standard
deviation, which is based on 100 observations. In this comparison, the approximated
g was compared with the known theoretical g for the normal, triangular and uniform
distributions assuming C*p ˆ 1. It is known that for the normal distribution, g ˆ 6:0
will cover 99.73% of the distribution with 0.135% on each tail. For the triangular
distribution, g ˆ 4:899 will yield 100% coverage of the distribution, while it is 3.464
for the uniform distribution with 100% coverage. Table 2 summarizes the results
from the univariate experiment.

5.2. Non-normal component characteristics
To demonstrate the e� cacy of the kernel estimator for determining the distri-

bution of the assembly characteristic X when the component characteristics are non-
normal and independent, three distributions were assumed for the component char-
acteristics and all combinations tested. A summary of the distribution parameters is
given in table 3.

The cumulative distribution function of the assembly characteristic was obtained
via Monte Carlo simulation (population size 12 000). The K±S one-sample test was
again applied to assess statistical equality of the simulated and kernel distributions.
Cumulative distribution functions were compared at 50 distinct points which, by
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Figure 2. Sample distribution function X ¹ T…50, 75, 100).

Normal (99.73%) Triangular (100%) Uniform (100%)

Sample no. Estimate Actual Estimate Actual Estimate Actual

1 5.777 6.000 5.172 4.899 3.815 3.464
2 5.933 6.000 4.804 4.899 3.779 3.464
3 6.231 6.000 5.047 4.899 4.986 3.464
4 6.071 6.000 4.713 4.899 3.870 3.464
5 5.644 6.000 4.738 4.899 3.749 3.464

Table 2. Estimated versus actual g for component characteristics.



(32), gives a critical value of ³ ˆ 0:192 for the K±S test. Figure 3 shows a typical

example of the performance of the kernel technique in estimating the distribution

function of the assembly characteristic when the ®rst component is symmetric trian-
gular and the second is exponentially distributed.

Table 4 summarizes the results of all goodness-of-®t tests for 10 trials under each

case and it is observed that, in every instance, we fail to reject the null hypothesis that

the estimated distribution is equal to the true distribution at the 0.05 level. Hence, we

may be con®dent that the distribution functions used for the tolerance allocation

technique will yield reliable estimates. The next section considers the case where the
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Case no. X1 distribution X2 distribution

1 triangular (50, 75, 100) uniform (50, 100)
2 triangular (50, 75, 100) exponential (75¡1)
3 uniform (50, 100) exponential (75¡1†

Table 3. Component characteristic distribution parameters.
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Figure 3. Sample distribution function estimate with 100 observations.

Sample no. Triangular+uniform Triangular+exponential Uniform+exponential

1 0.1043 0.1264 0.0818
2 0.0789 0.0796 0.1370
3 0.0692 0.0611 0.1074
4 0.0791 0.1068 0.1038
5 0.1203 0.0826 0.0886
6 0.1264 0.1364 0.0892
7 0.1387 0.1082 0.1099
8 0.0847 0.1017 0.1175
9 0.0775 0.0998 0.1137

10 0.0798 0.0906 0.1349

Table 4. Maximum absolute deviation in probability, simulated versus estimated CDF. The
critical value is 0.192 at the 0.05 level.



two component characteristics are normally distributed and correlated random
variables.

5.3. Correlated, normal component characteristics
In this experiment, we attempt to characterize the CDF of the assembly char-

acteristic, X when the two component characteristics are identically distributed
normal random variables which are correlated. Recall that the sum of two correlated
random variables is again normal with mean equal to the sum of the individual
means and variance given by (6). We again compare our discretized kernel estimates
with the true distribution of X1 ‡ X2 by means of the K±S test. In each case, the
kernel estimate of the joint density function was constructed using a random sample
of 50 observations of (X1; X2). The normal random variables have a mean of 75 and
standard deviation of 10. The resulting CDFs were compared at 50 distinct points
(not the observations) to test the hypothesis that the distributions are equal at the
0.05 level. Table 5 gives a summary of the empirical results.

Figure 4 depicts the estimated distribution function (`Kernel’) of the assembly
characteristic X versus the actual population CDF (`Actual’). It is important to note
that each of these was constructed using only 50 sampled components from the
populations of X1 and X2 This is signi®cant because a relatively small sample size
is used to characterize the distribution, even when the components are correlated.

6. Conclusions and future directions
This paper has presented an approximation technique for statistical tolerancing

analysis that allocates component tolerances for a given desired assembly tolerance.
The main advantage of the simple approach is that it is a data-driven, non-para-
metric approach that allows the process data to dictate the appropriateness of com-
ponent characteristic distributions and the assembly characteristic distribution.
Thus, the typical assumptions of independence and normality can possibly be
relaxed when the number of components being combined is small (i.e. k < 10).

To validate the technique’s ability to characterize the assembly characteristic
distribution, we examined two cases for two components: (1) the two component
characteristics are independent and not normally distributed, and (2) the component
characteristics are normally distributed but highly correlated. In the ®rst case, the
results indicate that kennel density estimates can characterize the component distri-
butions and the overall assembly characteristic distribution with reasonable preci-
sion. The maximum absolute deviations (in probability) are not statistically
signi®cant at the 0.05 level for three di� erent distribution types. In the second
case, it was found that the kernel estimate performs well when estimating the assem-
bly characteristic distribution even when the component characteristics are highly
correlated normal random variables. A logical extension is to consider the case of a
small number of highly correlated, non-normal component characteristics. This
work is currently underway.

Both experiments indicate that by using actual process data, it may be possible to
relax the typical assumptions made in statistical tolerancing analysis, namely the
independence and normality assumptions for the component characteristics. Of
course, as with any statistical estimator, there are pros and cons for using the
kernel density estimates. One disadvantage is the process of selecting the smoothing
parameter, h. Although this process may be automated to some degree, it is instruc-
tive to `®ne tune’ the parameter to achieve a better ®t of the data, as a di� erent
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smoothing parameter yields possibly dramatically di� erent distributions. One
obvious advantage of using the kernel estimator is that we make no distributional

assumptions with regard to the component or assembly characteristics, and do not
lose much in the discretization of the distributions so long as the smoothing par-

ameter is chosen appropriately. Hence, with some good historical process data, it
may be possible to determine quickly the appropriate component tolerances to

achieve the overall desired assembly tolerance. Even with a small number of samples,
it is possible to ®nd reasonable values for the distribution functions.
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Figure 4. Assembly characteristic distribution when components have a correlation coe� -
cient: (a) 0.500, (b) 0.707, (c) 0.950, (d) 0.995.

Test no. Correlation Maximum deviation in probability Critical value

1 0.5000 0.0731 0.1920
2 0.7070 0.0713 0.1920
3 0.9480 0.0790 0.1920
4 0.9950 0.0837 0.1920

Table 5. Test results for X ˆ X1 ‡ X2, where X1 and X2 normal and correlated.



As indicated here, the concept of process capability ratios (capability indices) is
very closely related to the statistical allocation of component tolerances. In particu-
lar, it was seen that the target Cp index was used explicitly to ®nd equations needed
to allocate the known assembly tolerance among k components. This procedure can
be easily extended to incorporate other target capability indices such as Cpk or Cpm

by using the maximum deviation allowable (si) between the process mean and nom-
inal dimension di. These extensions are applicable even for non-normal or correlated
component characteristics since the approach is driven by the actual process data to
compute the needed values, c and ci, as indicated in section 3.2.

In the future, it would be instructive to investigate more sophisticated kernel
estimators that are adaptive. In this paper, the smoothing parameter was ®xed in
both coordinate directions, but it could be varied by choosing a vector of smoothing
parameters in each direction. Such an adaptive method may lead to better estimates
of the joint density, and, hence, of the assembly characteristic distribution. The
kernel does lend itself to extension to higher dimensions, and we are currently
exploring this to include more than two characteristics. Ultimately, the technique
will be incorporated into a cost-minimization scheme and compared against existing
techniques.
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