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Abstract

We present two stochastic failure models for the reliability evaluation of manufacturing

equipment that degrades due to its complex operating environment. The first model examines

the case when the environment is a temporally nonhomogeneous continuous-time Markov chain,

and the second assumes the environment is a temporally homogeneous semi-Markov process on

a finite space. Derived are transform expressions for the lifetime distributions. A few examples

are provided to illustrate the main results.

1Author to whom correspondence should be addressed.
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1 Introduction

Modern manufacturing organizations employ very complex, flexible machines that can be used

to manufacture a variety of components using a wide range of material types. A critical factor

in the economics of modern manufacturing facilities is the useful lifetime of machine tools that

degrade over time under normal usage and fluctuating operating conditions that can be driven by

external influences. It is well known that many factors can influence the rate at which machine tools

degrade. Some of the most important factors include the workpiece material, the tool material,

the cutting speed, and the depth of cut, to name only a few. Besides these obvious contributors

to tool degradation, the ambient environment of the manufacturing equipment can significantly

impact the rate at which tools (or other critical components) degrade. For instance, significant

fluctuations in the ambient temperature or humidity can cause workpiece (or tool) expansion and

contraction, and even premature corrosion. Because machine tools constitute a significant portion

of a manufacturing organization’s capital, and because their degradation or failure can significantly

impact production and inventory levels, it is important to assess the useful lifetime of manufacturing

equipment when it is subjected to complex dynamics.

In this paper we propose two stochastic models that can be used to derive mathematical ex-

pressions for the reliability of components that degrade dynamically due to their complex ambient

environment or time-varying operating conditions. The rate of degradation is modulated by an

external process (the random environment) which is modeled as a continuous-time, discrete-state

stochastic process {Z(t) : t ≥ 0}. At some initial time, say s, the machine tool (or component)

begins its lifetime in perfect working order but degrades over time under the influence of its random

environment until the cumulative degradation reaches a fixed threshold x, at which time it is no

longer useful because it may not be able to maintain manufacturing specifications. Derived herein

are transform expressions for the cumulative distribution function (c.d.f.) of the useful lifetime of

the tool when the evolution of the operating environment assumes two distinct forms. First, we

consider the case when the environment evolves as a nonhomogeneous, continuous-time Markov

chain (NHCTMC) on a finite state space. Second, we consider the case of a time-homogeneous

semi-Markov process (SMP) environment, also on a finite state space. For the first model, the main

transient results are obtained by showing that the joint distribution of the cumulative degrada-

tion level and the environment state conditionally satisfies a nonhomogeneous partial differential

equation. This equation leads to the Laplace-Stieltjes transform (LST) of the lifetime distribution

function under certain mild conditions. For the second model, we employ a classical Markov renewal

argument to derive the (double) Laplace transform of the component’s lifetime distribution.

Many researchers have proposed stochastic models of machine tool reliability, primarily for

the purpose of prescribing optimal tool replacement policies, or to minimize processing times. A

sampling of these contributions can be found in [10, 11, 12, 26, 30]. Others have considered the

control of either manufacturing or production/inventory systems using nonhomogeneous Markov

chains to model the failure rate which is assumed to be dependent on the production rate of the

system (cf. [24, 27, 28, 29]). More generally, stochastic failure models that attempt to capture the

impact of a randomly evolving environment have been examined extensively in the reliability and

applied probability literature. An excellent survey due to Singpurwalla [39] presents a number of
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models with various attributes. Much earlier work, due to Esary, et al. [6] provided several results

for wear and shock processes. Many authors have considered the case when the environment evolves

as a homogeneous, continuous-time Markov chain. For example, Çinlar [4] demonstrated that the

joint process of the unit’s wear level and the state of its ambient environment may be considered

as a Markov-additive process. He considered the case when the random environment is a general

Markov process with a finite state space and the wear is assumed to increase as a Lévy process. Li

and Luo [23] considered a Markov-modulated shock process wherein the shock inter-arrival times

and the random shock damage are both governed by a Markov chain. They obtain reliability bounds

when the inter-arrival times have heavy- or light-tailed distributions; however, their degradation

model does not include a continuous wear component. Kiessler et al. [19] investigated the limiting

average availability of a system whose time-varying wear rates are governed by a continuous-time

Markov chain. Kharoufeh et al. [15] extended the model of [19] by including damage-inducing

shocks that arrive according to a time-homogeneous Poisson process and deriving the Laplace-

Stieltjes transforms of a few transient reliability indices. Ebrahimi [5] considered a system whose

degradation is comprised of a continuous wear component as well as jumps. The properties of

the model were investigated and bounds were established for the reliability function. However,

the random environment in that model corresponds to a shock process that is superimposed on a

gamma wear process.

Models that consider temporally nonhomogeneous Markov or homogeneous semi-Markov envi-

ronments can also be found in the stochastic modeling and operations research literature. Platis et

al. [35, 37, 38] have made extensive use of nonhomogeneous Markov models for assessing the perfor-

mance and reliability (or performability) of complex, time-dependent systems, while Smotherman

and Zemoudeh [40] examined phased-mission reliability models using nonhomogeneous Markov

models to reflect globally-time-dependent phase changes. Platis et al. [36] analyzed hitting times

for a discrete-time nonhomogeneous Markov chain and showed how these can be used for reliability

evaluation.

The analysis we present here serves to extend the results of [13, 14, 19] and others by considering

environments that are either (i) temporally nonhomogeneous in their stochastic evolution, or (ii)

non-Markovian but temporally homogeneous. Here, we solely focus our attention on transient

reliability indices (i.e., when the critical degradation threshold and time are both finite). For

the NHCTMC model, we provide a full characterization of the Laplace-Stieltjes transform of the

lifetime distribution when the infinitesimal generator matrix entries satisfy some mild conditions.

For the SMP model, we provide a double transform characterization of the lifetime distribution

and illustrate the results assuming a few state sojourn time distributions.

The remainder of the paper is organized as follows. Section 2 provides a brief model description

followed by the full analysis of the NHCTMC model in section 3. Section 4 presents the results for

the SMP model, while section 5 provides a few concluding remarks and some directions for future

research.
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2 Model Description

Here, we describe a general framework for modeling equipment degradation in the context

of complex manufacturing environments. In the following discussion, we assume that all random

variables are defined on a common and complete probability space denoted by (Ω,A,P). We assume

that the equipment (hereafter referred to as the unit) is placed into service at some initial time

s (s ≥ 0) with no degradation (i.e., its condition is new initially). Due to normal usage and

the influence of its environment, it accumulates degradation until a deterministic, critical threshold

value x is reached or exceeded, at which time the system is considered to be failed. As a prototypical

example, consider manufacturing operations involving metal cutting and material removal. Most

cutting tools degrade in a manner that is dictated by the cutting speed, the workpiece material,

cutting angle, use of cutting fluids, and a number of other critical factors. However, once the wear

level of the tool reaches a critical level x, it may not be possible for it to maintain manufacturing

specifications. Our primary concern is the development of a stochastic model for characterizing

the random amount of time needed for the unit’s cumulative degradation level to first reach this

critical threshold. We denote this time by a proper non-negative random variable Tx(s). We include

the dependence of this first passage time on the initial time s; however, when the environment is

homogeneous and we assume s = 0, we will suppress the variable s.

The degradation of the unit is induced by (i) the actual ambient environment in which it resides

and operates (e.g., the ambient air temperature or humidity can induce degradation); and/or (ii)

the various operational settings of the equipment. Degradation of the first type might occur due

to temperature fluctuations that cause contraction and expansion of the workpiece and/or the

cutting tool. For the second type, if different materials are processed according to an a priori

schedule (e.g., according to a cyclic Markov chain), but the processing times are stochastic, the

unit will experience different rates of degradation depending on the current workpiece. The key

point here is that the rate of degradation, and the time spent in each degradation rate, are governed

by a continuous-time stochastic process termed the random environment which shall be denoted

throughout by Z ≡ {Z(t) : t ≥ 0}. The state space of this process is a finite set S = {1, 2, . . . , ℓ}

where each state of S corresponds to the current prevailing environment or operating condition.

The primary objective of this paper is to analyze two specific and distinct models for the

governing environment Z. For the first model, we assume that Z is a nonhomogeneous continuous-

time Markov chain (NHCTMC) whose transition functions (and infinitesimal generator matrix)

depend explicitly on time. In the second case, we will examine a relaxation of the Markovian

assumption by allowing Z to evolve as a semi-Markov environment but insist that the environment

be time-homogeneous for this latter case. For both models, whenever Z(t) = j ∈ S, the unit

degrades at a constant rate r(j) > 0. More specifically, the rate of degradation evolves as a

stochastic process and is modulated by the environment. For later use, we define the diagonal matrix

containing these environment-dependent rates by Rd ≡ diag(r(1), r(2), . . . , r(ℓ)). The assumption

of a constant degradation rate in each environment state amounts to assuming that the degradation

process has samples paths that are piecewise linear and monotonically increasing almost surely

(a.s.). This assumption is not restrictive since the degradation sample path can be approximated

by a piecewise linear path as noted in [14]. Furthermore, the approach is well-suited for modeling
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linear degradation paths which are common in many applications.

For both the NHCTMC and SMP models, given that the unit is placed into service at time s

in perfect condition, we define the cumulative degradation of the unit up to time t by a random

variable X(t). For any t ≥ s, this random variable is given by

X(t) = X(s) +

∫ t

s
r(Z(v))dv (1)

where we assume X(s) = 0 a.s. and
∫ t

s
|r(Z(v))|dv <∞ a.s.

so that X(t) is well defined for each t ≥ 0. Because we assume r(j) > 0 for each j ∈ S, the sample

paths of {X(t) : t ≥ 0} are monotonically increasing a.s., and consequently, the events {X(t) ≤ x}

and {Tx(s) > t} are equivalent. The system’s random lifetime is the first passage time

Tx(s) = inf{t > 0 : X(t) ≥ x}, (2)

or the first time the degradation process {X(t) : t ≥ 0} reaches or exceeds x. Let F (x, s, t) ≡

P(Tx(s) ≤ t) = 1 − P(X(t) ≤ x) denote the unconditional c.d.f. of the unit’s lifetime, and let its

conditional counterpart be Fi(x, s, t) = P(Tx(s) ≤ t|Z(s) = i), i ∈ S, where i denotes the state

of the environment at the initial time s. In the case when the environment is time-homogeneous,

we drop the dependence on s and simply write Tx, F (x, t), and Fi(x, t) for the first passage time,

its unconditional c.d.f., and its conditional c.d.f., respectively. The indicator function of an event

A ∈ A will be denoted by 1(A), and it assumes the value 1 if A holds and 0 otherwise. Our

primary aim is to derive transform expressions for the unconditional and/or conditional lifetime

distributions for the NHCTMC and SMP models.

3 Time-Nonhomogeneous Markov Environment

In this section, we consider the case in which the unit’s environment evolves as a finite, non-

homogeneous continuous-time Markov chain (NHCTMC). These processes afford a great deal of

modeling flexibility and have been applied in a variety of contexts including manufacturing and

production systems (cf. [27, 28]) and remaining lifetime prognosis in health care ([34]). Here, we

focus our attention on transient (as opposed to asymptotic) reliability indices in order to account

for the environment’s explicit dependence on time. Our first main result shows that the case of

a time-homogeneous, Markovian environment (cf. [14, 15]) can be extended very naturally to the

time-nonhomogeneous case.

3.1 Transient Lifetime Distribution

For each t ≥ 0, let Z(t) denote the status of the environment at time t, and assume Z ≡ {Z(t) :

t ≥ 0} is a NHCTMC with state space S = {1, 2, . . . , ℓ}, ℓ ∈ Z+. For any s, t such that 0 ≤ s ≤ t,

the transition functions of Z are given by

pij(s, t) = P(Z(t) = j|Z(s) = i), i, j ∈ S,
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and the time-nonhomogeneous transition matrix is denoted by P (s, t) = [pij(s, t)]i,j∈S . Note that

P (s, s) = I, where I denotes the identity matrix. It is well known that the time-dependent in-

finitesimal generator matrix of Z, denoted by Q(s), s ≥ 0, has elements

qij(s) = lim
h→0

pij(s, s+ h)

h
, i, j ∈ S, j 6= i,

and when j = i,

−qii(s) = qi(s) = lim
h→0

1 − pii(s, s+ h)

h

so that qi(s) =
∑

j 6=i qij(s). These entries are interpreted as follows: When j 6= i, qij(s) is the

instantaneous rate at which the environment transitions from state i to state j at time s. When

j = i, qi(s) is the total rate at which the process transitions out of state i at time s. (Note

that qii(s) < 0 for all s ≥ 0.) In case the environment is time-homogeneous, then of course,

P (s, t) = P (t− s) and Q(s) = Q for all s ≥ 0.

For any s and t such that 0 ≤ s ≤ t, define

Vij(x, s, t) = P(X(t) ≤ x,Z(t) = j|Z(s) = i) i, j ∈ S,

the joint probability that, at time t, the degradation of the system has not exceeded level x, and

the environment process is in state j ∈ S, given that at that initial time s the environment was in

state i ∈ S. For ease of notation, we also define the ℓ× ℓ matrix V (x, s, t) = [Vij(x, s, t)]. As noted

in section 2, because the degradation rates, {r(j) : j ∈ S}, are assumed to be strictly positive real

numbers, {X(t) : t ≥ s} is a continuous additive functional of Z whose sample paths are monotone

increasing almost surely. This monotonicity ensures that {X(t) ≤ x} ≡ {Tx(s) > t}; therefore, we

can derive the c.d.f. (or complementary c.d.f.) of Tx(s) by analyzing the cumulative degradation

X(t). To this end, we next characterize the joint distribution functions Vij(x, s, t). This analysis

is similar to the arguments presented in [13, 14, 15], but requires some extra care to account for

the time-nonhomogeneity of Z. The following theorem shows that the matrix V (x, s, t) verifies a

Chapman-Kolmogorov-type (partial) differential equation.

Theorem 1 If the operating environment, {Z(t) : t ≥ 0}, is a nonhomogeneous CTMC with in-

finitesimal generator matrix Q(t), then the matrix V (x, s, t) satisfies the partial differential equation

∂V (x, s, t)

∂t
+
∂V (x, s, t)

∂x
Rd = V (x, s, t)Q(t). (3)

where Rd = diag(r(1), . . . , r(ℓ)).

Proof. The proof of the result is standard for Markov processes and mirrors the proof

of the time-homogeneous case presented in [14]. Fix a small time increment ε > 0 and suppose
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0 ≤ s ≤ t. Utilizing the Markov property of Z, we obtain

Vij(x, s, t+ ε) = P(X(t+ ε) ≤ x,Z(t+ ε) = j|Z(s) = i)

=
ℓ∑

k=1

P(X(t+ ε) ≤ x,Z(t+ ε) = j|Z(t) = k,Z(s) = i) P(Z(t) = k)

=

ℓ∑

k=1

P(Z(t+ ε) = j|Z(t) = k,Z(s) = i) P(X(t+ ε) ≤ x|Z(t) = k,Z(s) = i) P(Z(t) = k)

=

ℓ∑

k=1

P(Z(t+ ε) = j|Z(t) = k) P(X(t + ε) ≤ x,Z(t) = k|Z(s) = i)

=

ℓ∑

k=1

pkj(t, t+ ε) P(X(t+ ε) ≤ x,Z(t) = k|Z(s) = i)

=

ℓ∑

k=1

pkj(t, t+ ε)Vik(x− r(k)ε, s, t). (4)

Substituting the equality,

pkj(t, t+ ε) =





1 + qjj(t)ε+ o(ε), k = j,

qkj(t)ε+ o(ε), k 6= j,

in equation (4) and rearranging terms, we obtain

Vij(x, s, t+ ε) = [1 + qjj(t)ε+ o(ε)]Vij(x− r(j)ε, s, t) +
∑

k∈S\{j}

pkj(t, t+ ε)Vik(x− r(k)ε, s, t)

= Vij(x− r(j)ε, s, t) + ε

ℓ∑

k=1

qkj(t)Vik(x− r(k)ε, s, t) + o(ε).

Therefore,

Vij(x, s, t+ ε) − Vij(x− r(j)ε, s, t) = ε

ℓ∑

k=1

qkj(t)Vik(x− r(k)ε, s, t) + o(ε). (5)

Adding and subtracting Vij(x, s, t) to the left-hand side of equation (5) gives

[Vij(x, s, t+ ε) − Vij(x, s, t)] + [Vij(x, s, t) − Vij(x− r(j)ε, s, t)]

= ε

ℓ∑

k=1

qkj(t)Vik(x− r(k)ε, s, t) + o(ε). (6)

Now, dividing each term of (6) by ε and allowing ε ↓ 0, we obtain

∂Vij(x, s, t)

∂t
+ r(j)

∂Vij(x, s, t)

∂x
=
∑

k

qkj(t)Vik(x, s, t), (7)

which can be written in matrix form as

∂V (x, s, t)

∂t
+
∂V (x, s, t)

∂x
Rd = V (x, s, t)Q(t).
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We pause here to remark that the nonhomogeneous equation (3) extends the Chapman-Kolmogorov-

type equation derived in [13, 14] to scenarios in which the dynamics of the environment’s evolution

depend explicitly on time. While equation (3) is more general, its parametrization can be problem-

atic in practice if the environment cannot be continuously observed. Nevertheless, the model can

be used to capture these complex dynamics, particularly if the manufacturing equipment is heavily

influenced by the effects of aging.

Note that equation (7), when expanded term-by-term, forms a system of partial differential

equations that must be solved simultaneously. For example, if Z has the state space S = {1, 2}

(i.e., there are two distinct environment states), the resulting system has four equations and four un-

known functions (namely V11, V12, V21, and V22) with the obvious boundary condition Vij(0, s, t) = 0

and initial conditions Vii(x, s, s) = 1 and Vij(x, s, s) = 0, j 6= i. This set of partial differential equa-

tions is given by

∂V11

∂t
+ r(1)

∂V11

∂x
= q11(t)V11 + q21(t)V12,

∂V12

∂t
+ r(2)

∂V12

∂x
= q12(t)V11 + q22(t)V12,

∂V21

∂t
+ r(1)

∂V21

∂x
= q11(t)V21 + q21(t)V22,

∂V22

∂t
+ r(2)

∂V22

∂x
= q12(t)V21 + q22(t)V22.

In general, if the environment has ℓ (ℓ <∞) states, then we must solve ℓ2 partial differential equa-

tions with ℓ2 unknown functions. Since the spatial and temporal variables (x and t, respectively)

are weakly coupled, the method of separation of variables cannot be used to obtain V (x, s, t) in

closed-form. Therefore, our aim is to characterize V (x, s, t) via a (Laplace) transform solution.

To that end, let u be a transform variable with Re(u) > 0 and let 0 ≤ s ≤ t. Define the ℓ× ℓ

matrix

V ∗(u, s, t) =

∫ ∞

0
e−uxV (x, s, t)dx, (8)

the Laplace transform (LT) of the matrix V (x, s, t) with respect to the degradation threshold x.

For later use, we also define

Ṽ (u, s, t) =

∫ ∞

0
e−uxV (dx, s, t),

the Laplace-Stieltjes transform (LST) of V (x, s, t) with respect to x and note that

Ṽ (u, s, t) = uV ∗(u, s, t). (9)

Now, taking the LT of both sides of equation (3) with respect to x and using the well-known identity

L

(
∂V (x, s, t)

∂x

)
= uV ∗(u, s, t) − V (0, s, t),

we obtain
∂V ∗(u, s, t)

∂t
+ (uV ∗(u, s, t) − V (0, s, t))Rd = V ∗(u, s, t)Q(t). (10)
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Note that s is a fixed initial time and u can be viewed as a constant. Therefore, by applying the

boundary condition, V (0, s, t) = 0 (the zero matrix), and rearranging the terms of (10), we obtain

a linear first-order differential equation in t,

dV ∗(u, s, t)

dt
= V ∗(u, s, t)A(u, t) (11)

where A(u, t) = Q(t) − uRd, t ≥ 0. Our objective is to solve the following initial value problem

(IVP) in the Laplace transform space:

dV ∗(u, s, t)

dt
= V ∗(u, s, t)A(u, t), (12a)

V ∗(u, s, s) = u−1I (12b)

where (12b) follows from the initial condition

Vij(x, s, s) =





1, j = i

0, j 6= i.

In what follows, exp(A) denotes matrix exponentiation of a square matrix A, and the commutator

of two square matrices A and B is defined to be

[A,B] ≡ AB −BA.

Theorem 2 characterizes the solution of IVP (12) using a result due to Magnus [25].

Theorem 2 For any fixed initial time s, the solution to the initial value problem (12) is the matrix

V ∗(u, s, t) given by

V ∗(u, s, t) = u−1 exp [Ω(u, s, t)]

where

Ω(u, s, t) =
∞∑

k=1

Ωk(u, s, t)

and

Ω1(u, s, t) =

∫ t

s
A(u, t1)dt1

Ω2(u, s, t) =
1

2

∫ t

s

∫ t1

s
[A(u, t1),A(u, t2)] dt2dt1

Ω3(u, s, t) =
1

6

∫ t

s

∫ t1

s

∫ t2

s
([A(u, t1), [A(u, t2),A(u, t3)]] + [A(u, t3), [A(u, t2),A(u, t1)]]) dt3dt2dt1

...

Proof. Note that equation (11) can be easily solved using an integrating factor if A(u, v)

andA(u,w) commute for any pair of t values v,w ∈ R+. In general, these matrices do not commute;

however, by invoking Magnus’ Theorem (see [3, 25]), we can assert that solutions of (11) are matrix

exponentials of the form

C exp [Ω(u, s, t)]
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where C is a constant square matrix (with respect to t), Ω(u, s, t) is the solution of the differential

equation

d

dt
Ω =

∞∑

n=0

Bn

n!
adn

Ω(A(u, t))

= A(u, t) −
1

2
[Ω,A(u, t)] +

1

12
[Ω, [Ω,A(u, t)]] + · · ·

Bn is the nth Bernoulli number, and adΩ is an operator acting on a square matrix defined by the

commutator

adΩ(B) = [Ω,B] = ΩB −BΩ.

(This notation suppresses the symbols (u, s, t) in Ω.) The series expansion for the solution matrix

Ω(u, s, t),

Ω(u, s, t) =

∞∑

k=1

Ωk(u, s, t),

determined by Magnus [25] and commonly referred to as the Magnus expansion, is given by

Ω(u, s, t) =

∫ t

s
A(u, t1)dt1 +

1

2

∫ t

s

[∫ t1

s
A(u, t2)dt2,A(u, t1)

]
dt1

+
1

6

∫ t

s

∫ t1

s

∫ t2

s
([A(u, t1), [A(u, t2),A(u, t3)]] + [A(u, t3), [A(u, t2),A(u, t1)]]) dt3dt2dt1 + · · ·

which is known to commute with d
dtΩ(u, s, t). Consequently, we may write

d

dt
exp [Ω(u, s, t)] = exp [Ω(u, s, t)]A(u, t),

so the solution to the initial value problem (12) is given by

V ∗(u, s, t) = u−1I exp [Ω(u, s, t)] = u−1 exp [Ω(u, s, t)] .

By noting that Ṽ (u, s, t) = uV ∗(u, s, t), Theorem 2 allows us to write LST expressions for the

unconditional and conditional c.d.f.s of Tx(s), respectively. When Z is a NHCTMC, it is well-known

that the distribution of Z(s) is given by the row vector

α(s) = [P(Z(s) = i)]i∈S = α(0)P (0, s) = α(0) exp

(∫ s

0
Q(τ)dτ

)
. (13)

To simplify notation in the results that follow, let us also define

e′i(s) = [1(Z(s) = i)]i∈S ,

a row vector of order ℓ whose elements are all zero except for the ith entry which is unity if Z(s) = i,

and let e = [1, 1, . . . , 1]′ be a column vector of ones of order ℓ. Note that α and e′i both depend

on the initial time s because, although the initial cumulative degradation X(s) = 0 a.s., we must
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know the distribution of the state of the environment at time s to obtain the conditional and

unconditional distributions of Tx(s) (via their respective transforms). The unconditional c.d.f. of

Tx(s) is given by

F (x, s, t) = P(Tx(s) ≤ t) = 1 −
ℓ∑

i=1

ℓ∑

j=1

Vij(x, s, t)P(Z(s) = i)

= 1 −α(s)V (x, s, t)e, (14)

and its Laplace-Stieltjes transform will be denoted by

F̃ (u, s, t) =

∫ ∞

0
e−ux F (dx, s, t).

Likewise, for each i ∈ S, define the conditional c.d.f. of Tx(s), given that Z(s) = i, by

Fi(x, s, t) = P(Tx(s) ≤ t|Z(s) = i) = 1 −
ℓ∑

j=1

Vij(x, s, t)

= 1 − e′i(s)V (x, s, t)e, (15)

and its LST

F̃i(u, s, t) =

∫ ∞

0
e−ux Fi(dx, s, t).

With these definitions, we can now state the following proposition.

Proposition 1 Suppose the unit operates in a time-nonhomogeneous CTMC environment, {Z(t) :

t ≥ 0} on state space S = {1, 2, . . . , ℓ} with time-dependent infinitesimal generator matrix Q(t).

Then the LST of the unconditional lifetime c.d.f., F (x, s, t), is given by

F̃ (u, s, t) = 1 −α(s) exp [Ω(u, s, t)] e, Re(u) > 0, (16)

and the LST of the conditional lifetime c.d.f., Fi(x, s, t), is

F̃i(u, s, t) = 1 − e′i(s) exp [Ω(u, s, t)]e, Re(u) > 0, (17)

where Ω(u, s, t) is given by the Magnus expansion of Theorem 2.

Proof. Equations (16) and (17) are obtained directly by taking, respectively, the LSTs of (14)

and (15) with respect to x and substituting the result Ṽ (u, s, t) = exp [Ω(u, s, t)].

The results of Theorem 2 and Proposition 1 serve to generalize known results for homogeneous

environments to a much broader class of temporally nonhomogeneous environments. Indeed, to

ensure that the solution matrix V ∗(u, s, t) is of the exponential form exp(Ω(u, s, t)) we require only

that the entries of Q(t) are Riemann integrable functions of t that satisfy

∫ t

s
‖(Q(τ) − uRd)‖2 dτ < π

11



(see Moan [31]) where ‖ · ‖p denotes the usual p-norm of a matrix. Magnus [25] showed that the

series
∑∞

k=1 Ωk(u, s, t) will terminate at a finite index M if

[
A(u, t),

∫ t

s
A(u, τ)dτ

]
= 0,

for all values of t. That is, if A(u, t) and its integral commute for all t, then there exists a finite

index M such that

Ω(u, s, t) =

M∑

k=1

Ωk(u, s, t).

For the special case when Q(t) = Q for all t ≥ 0, we can state the following corollary to Proposition

1 which confirms prior results for homogeneous Markovian environments.

Corollary 1 Suppose {Z(t) : t ≥ 0} is temporally homogeneous, i.e., Q(t) = Q for all t ≥ 0. Then

the LST of the unconditional lifetime distribution is given by

F̃ (u, s, t) = 1 −α(s) exp [(Q− uRd)(t− s)]e, (18)

and the conditional version of the lifetime distribution is given by

F̃i(u, s, t) = 1 − e′i(s) exp [(Q− uRd)(t− s)] e. (19)

Proof. If Q(t) = Q for all t ≥ 0, then for u fixed and any v ∈ R+, A(u, v) = A(u) ≡

Q− uRd. Hence,

[A(u, v),A(u,w)] = 0

for any pair of times v,w ∈ R+. The terms of the Magnus expansion of Theorem 2 are given by

Ω1(u, s, t) =

∫ t

s
A(u, t1)dt1 =

∫ t

s
(Q− uRd)dt1 = (Q− uRd)(t− s),

and Ωk(u, s, t) = 0 for k ≥ 2 since all commutators in the subsequent terms result in the zero

matrix. Consequently,

Ω(u, s, t) = Ω1(u, s, t) = (Q− uRd)(t− s).

Equations (18) and (19) follow directly from Proposition 1.

Remark: It is worth noting that if the unit is placed into service in a time-homogeneous environ-

ment at time s = 0, then we can replace α(s) and e′i(s) by α ≡ α(0) and e′i ≡ e
′
i(0), respectively,

and Ω(u, s, t) by Ω(u, t) = (Q − uRd)t. The corresponding result, expressed as a Laplace trans-

form, is derived by Kulkarni, et al. [21]. However, the methods used to obtain this one-dimensional

transform of the lifetime distribution are quite different. Moreover, when s = 0 in equations (18)

and (19), the results are in agreement with equations (12) and (13) of [15] when the effect of shocks

are ignored, i.e, when λ = 0.

When Z is a NHCTMC, it is not immediately clear how to obtain the nth moment of Tx(s)

(or its LST) using equations (16) and (17) because the transforms and their inverse transforms are

difficult to obtain (even through numerical inversion techniques). Suppose we let F̂ (x, s, t) be the

12



approximate lifetime c.d.f. obtained via numerical inversion of (16). Then by applying the method

of integrating the tail, the approximate nth moment of Tx(s) is given by

E [T n
x (s)] ≈

∫ ∞

s
n tn−1[1 − F̂ (x, s, t)]dt.

An alternative approach, demonstrated in [14, 15], is to derive the LST of F̃ (u, s, t) with respect

to t and to evaluate its nth-order derivative at zero. The resulting expression is the LST of the

nth moment which must subsequently be inverted numerically. However, a closed-form expression

for this LST does not appear to be attainable unless A(u, v) and A(u,w) commute for any pair of

times v and w. As shown in this section, the commutative property holds when the environment

is temporally homogeneous; however, it does not hold in general. Further analysis is needed to

examine the moments of the lifetime distribution when Q(t) is not constant.

In the next subsection, we illustrate via a small numerical example how the distribution of

Tx(s) can be approximated using equation (16).

3.2 A Numerical Illustration

In general it is a difficult task to compute or invert the Laplace-Stieltjes transforms of Proposi-

tion 1 due to the complexity of resolving the individual terms of the Magnus expansion of Theorem

2. However, approximate LSTs (and their inverse transforms) can be obtained by considering only

the first term of the Magnus expansion (Ω1(u, s, t)). It is important to note that the first term

cannot give the whole solution of (12). Indeed, the remaining terms in the expansion provide the

correction needed to maintain an exponential form of the solution as noted by Blanes et al. [3].

Nonetheless, we set out to illustrate the form of such an approximation via a specific numerical

example. This will be achieved using numerical Laplace transform inversion.

Suppose the environment Z is a NHCTMC with state space S = {1, 2}, time-dependent gener-

ator matrix

Q(τ) =

[
−3τ 3τ

2τ −2τ

]
,

and degradation rate matrix

Rd =

[
1 0

0 4

]
.

Let us define Ĝ(u, s, t) as the approximate LST of Tx(s) obtained by evaluating F̃ (u, s, t) using

only the first term of the Magnus expansion, i.e.,

Ĝ(u, s, t) = 1 −α(s) exp [Ω1(u, s, t)] e

where

Ω1(u, s, t) =

∫ t

s
A(u, τ)dτ =

∫ t

s
(Q(τ) − uRd)dτ.

It is not difficult to show that for 0 ≤ s ≤ t,

Ω1(u, s, t) =

∫ t

s

[
−3τ − u 3τ

2τ −2τ − 4u

]
dτ =

[
−(3

2t+ 3
2s+ u) 3

2(t+ s)

t+ s −(t+ s+ 4u)

]
(t− s).

13



Therefore, the approximate LST of F (x, s, t), with respect to x, is

Ĝ(u, s, t) = 1 −α(s) exp

([
−(3

2 t+ 3
2s+ u) 3

2(t+ s)

t+ s −(t+ s+ 4u)

]
(t− s)

)
e.

We arbitrarily chose a fixed initial time s = 1.0. To compute the vector α(1.0), we assume that

Z(0) = 1 with probability 0.25 and Z(0) = 2 with probability 0.75 so that α(0) = [0.25, 0.75].

Applying (13) we obtain

α(1.0) = α(0) exp

[∫ 1

0
Q(τ)dτ

]
≈ [0.3877, 0.6123].

We computed the inverse Laplace transform with respect to u given by

Ĝ(x, s, t) = L−1
u

(
u−1Ĝ(u, s, t)

)

using the numerical inversion algorithm due to Abate and Whitt [1] for a range of t values (t ≥ s =

1.0) when x = 2.0 units of degradation. The matrix computations and numerical inversion algorithm

were coded in the MATLAB computing environment and executed on a personal computer.

For interpretive purposes, we plot the approximate survivor function P(Tx(1.0) > t) ≈ 1 −

Ĝ(x, 1.0, t) which represents the probability that the unit’s lifetime exceeds t, given that it was

placed into service at time 1.0 with no accumulated degradation. Figure 1 depicts the behavior of

the survivor function which is bounded above by 1, bounded below by 0 and monotone decreasing

in t, as expected.
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Figure 1: Approximate survivor function of Tx(1.0).

In the next section, we consider an extension to the case of a semi-Markov environment whose

evolution is time-homogeneous.

4 Homogeneous Semi-Markov Environment

In this section, we consider the case when Z = {Z(t) : t ≥ 0} is a temporally homogeneous

semi-Markov process (SMP) with a Markov renewal process embedded at transition times (jump

epochs). Let us define τn as the nth jump epoch and let ξn ≡ Z(τ+
n ) be the state of the environment

just after the nth transition. The bivariate sequence of random variables, {(ξn, τn) : n ≥ 0} is a

Markov renewal process with semi-Markov kernel matrix, G(t) = [Gij(t)] given by

Gij(t) = P(ξn+1 = j, τn+1 − τn ≤ t|τn, ξn = i, . . . , τ0, ξ0)

= P(ξn+1 = j, τn+1 − τn ≤ t|ξn = i), i, j ∈ S, t ≥ 0, (20)

where τ0 = 0 and ξn ∈ S w.p. 1 for each n ≥ 0. Because we assume the SMP is time-homogeneous,

equation (20) is equivalently

Gij(t) = P(ξn+1 = j, τn+1 − τn ≤ t|ξn = i) = P(ξ1 = j, τ1 ≤ t|ξ0 = i)

for each n ≥ 0. We assume that Gij(t) is absolutely continuous and, therefore, possesses a proba-

bility density function (p.d.f.). The embedded Markov chain, {ξn : n ≥ 0}, has one-step transition

probabilities

pij ≡ P(ξn+1 = j|ξn = i), i, j ∈ S,

and we let P = [pij ] denote its transition probability matrix. The matrix P can be obtained by

P = lim
t→∞

G(t),
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i.e., pij = Gij(∞) ≤ 1.

The environment’s holding time (or sojourn time) in state i ∈ S can also be obtained directly

from the semi-Markov kernel. Specifically, if the c.d.f. of the holding time in state i is Hi, then

Hi(t) ≡ P(τ1 ≤ t|ξ0 = i) =
∑

j∈S

Gij(t), i ∈ S,

and its mean is given by

µi =

∫ ∞

0
xHi(dx), i ∈ S.

For a SMP, Gij(t) = pijHi(t). Assuming P is irreducible and recurrent, it has an invariant prob-

ability vector π = [πi]. For our purposes, we assume the holding time in each state is absolutely

continuous so that the p.d.f. associated with Hi is denoted by hi, and we assume that µi < ∞ for

each i ∈ S.

As before, we let X(t) denote the cumulative degradation up to time t, and let N(t) denote the

total number of transitions of Z up to time t. Define the set of integers, N = {n ≥ 0 : τn+1 < t}.

Then we can express X(t) by

X(t) =
∑

n∈N

r(ξn)(τn+1 − τn) + r(Z(t)) γ(t) (21)

where γ(t) = t − τN(t) is the age process. Thus, we can view {X(t) : t ≥ 0} as a semi-Markov

reward process with positive, linear reward function r(·). While many authors have analyzed

the asymptotic behavior of X(t) (cf. [7, 8, 9, 17, 18]), the transient analysis of its distribution is

notoriously difficult. However, by again exploiting the dual relationship between X(t) and Tx(s), we

provide a matrix Laplace transform expression for the unconditional transient lifetime of the unit.

Because the SMP environment is temporally homogeneous, we assume (without loss of generality)

that the unit enters service at time zero and drop the dependence of Tx on s. Likewise, we write

F (x, t) and Fi(x, t) for the conditional and unconditional distribution functions of Tx.

4.1 Laplace-Stieltjes Transform of Tx

Our approach to deriving the transient lifetime distribution, F (x, t), is in the spirit of techniques

employed by Kulkarni et al. in [22]. Specifically, we will use a Markov renewal argument to derive

the Laplace-Stieltjes transform (LST) of Tx.

For any t ≥ 0, whenever Z(t) = j ∈ S, the rate of degradation of the system is a positive

number r(Z(t)) = r(j). Define a column vector of these ℓ degradation rates by

r = (r(1), r(2), . . . , r(ℓ))′ .

For each i, j ∈ S and t ≥ 0 let ψij(t) = G′
ij(t), and define the square matrix ψ(t) ≡ [ψij(t)]. Let

the conditional lifetime distribution be

Fi(x, t) ≡ P(Tx ≤ t|Z(0) = i) = 1 − P(X(t) ≤ x|Z(0) = i),

and let its LST, with respect to t, be denoted by

F̃i(x, s) ≡ E
(
e−sTx |Z(0) = i

)
=

∫ ∞

0
e−stFi(x,dt)
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so that

F̃ (x, s) =
ℓ∑

i=1

F̃i(x, s)P(Z(0) = i)

is the LST of the unconditional distribution function F (x, t) ≡ P(Tx ≤ t) with respect to t. (Here,

s is a complex transform variable with Re(s) > 0.) Next, we define the Laplace transform (LT) of

F̃ (x, s) with respect to x by

F̃ ∗(u, s) ≡

∫ ∞

0
e−uxF̃ (x, s)dx, Re(u) > 0.

To simplify notation in the results that follow, let us also define the LT of ψij(t) by

ψ∗
ij(ω) =

∫ ∞

0
e−ωtψij(t)dt, Re(ω) > 0,

and for each i ∈ S, let

H∗
i (ω) =

∫ ∞

0
e−ωtHi(t)dt

denote the LT of the sojourn time distribution Hi. Theorem 3 provides a closed-form result for the

(double) Laplace transform F̃ ∗(u, s). Unfortunately, a one-dimensional transform result appears to

be available only if Z is a time-homogeneous CTMC.

Theorem 3 If the environment process Z is a time-homogeneous semi-Markov process with finite

state space S = {1, 2, . . . , ℓ} and initial distribution α, then

F̃ ∗(u, s) = α[I −ψ∗(u, s)]−1[A∗(u, s) − H∗(u, s)]r (22)

where the matrix ψ∗(u, s) = [ψ∗
ij(u, s)] has elements

ψ∗
ij(u, s) = pij h

∗
i (s+ r(i)u), i, j ∈ S,

A∗(u, s) = diag[1/(s + r(1)u), 1/(s + r(2)u), . . . , 1/(s + r(ℓ)u)], and H∗(u, s) = diag[H∗
1 (s +

r(1)u),H∗
2 (s+ r(2)u), . . . ,H∗

ℓ (s + r(ℓ)u)].

Proof. The result will be proved using a Markov renewal argument by conditioning on

the first transition time τ1 and the initial state of the environment Z(0). To this end, note that

E(e−sTx |τ1 = h,Z(0) = i) =




e−sx/r(i), if h ≥ x/r(i),

e−sh
∑ℓ

j=1 pijF̃j(x− r(i)h, s), if h < x/r(i).

First, we uncondition with respect to the first sojourn time to obtain

F̃i(x, s) =

∫ ∞

0
E(e−sTx |τ1 = h,Z(0) = i)dHi(h)

=

ℓ∑

j=1

pij

∫ x
r(i)

0
e−shF̃j(x− r(i)h, s)dHi(h) + e−sx/r(i) [1 −Hi (x/r(i))] . (23)
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Now, taking the Laplace transform of both sides of equation (23) with respect to x and using the

change of variable, y = r(i)h and dy = r(i)dh, we obtain

F̃ ∗
i (u, s) =

∫ ∞

0
e−uxF̃i(x, s)dx

=

ℓ∑

j=1

pij

r(i)

∫ ∞

0
e−ux

∫ x

0
F̃j(x− y, s)e−sy/r(i)hi

(
y

r(i)

)
dydx+

r(i)

s+ r(i)u

−

∫ ∞

0
e−uxe−sx/r(i)Hi (x/r(i)) dx. (24)

Using standard Laplace transform tables (cf. Oberhettinger and Badii [33]), it is known that

H∗
i (r(i)u− s) =

∫ ∞

0
e−ux e

sx/r(i)Hi (x/r(i))

r(i)
dx. (25)

Therefore, the right-most integral of equation (24) can be simplified to obtain

F̃ ∗
i (u, s) =

∑

j

pi,j

r(i)

∫ ∞

0
e−ux

∫ x

0
F̃j(x− y, s)e−sy/r(i)hi

(
y

r(i)

)
dydx

+
r(i)

s+ r(i)u
− r(i)H∗

i (s + r(i)u). (26)

To resolve the double integral of (26), we note that for some function g(y, s),

M(x, s) ≡

∫ x

0
F̃j (x− y, s) g(y, s)dy

is the convolution of the functions F̃j(·, s) and g(y, s). It is well known that the Laplace transform

of M(x, s), denoted by M∗(u, s), is given by

M∗(u, s) =

∫ ∞

0
e−uxM(x, s)dx = F̃ ∗

j (u, s) g∗(u, s),

where F̃ ∗
j (u, s) is the LT of F̃ ∗

j (x, s) with respect to x, and g∗(u, s) is the LT of g(y, s). From (26), we

see that g(y, s) = exp[−sy/r(i)]hi(y/r(i)), and its LT with respect to y is g∗(u, s) = r(i)h∗i (s+r(i)u).

Hence, equation (26) can be reduced to

F̃ ∗
i (u, s) =

ℓ∑

j=1

pij

r(i)
F̃ ∗

j (u, s)r(i)h∗i (s+ r(i)u) +
r(i)

s+ r(i)u
− r(i)H∗

i (s+ r(i)u)

=

ℓ∑

j=1

pijF̃
∗
j (u, s)h∗i (s+ r(i)u) +

r(i)

s+ r(i)u
− r(i)H∗

i (s+ r(i)u). (27)

Now, rearranging the terms of (27), we have

F̃ ∗
i (u, s)[1 − piih

∗
i (s+ r(i)u)] −

∑

j 6=i

pijF̃
∗
j (u, s)h∗i (s+ r(i)u) = r(i)

[
1

s+ r(i)u
−H∗

i (s+ r(i)u)

]
.(28)
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Letting A∗(u, s) = diag[1/(s+ r(1)u), 1/(s+ r(2)u), . . . , 1/(s+ r(ℓ)u)] and H∗(u, s) = diag[H∗
1 (s+

r(1)u),H∗
2 (s+ r(2)u), . . . ,H∗

ℓ (s+ r(ℓ)u)], and defining the ℓ-dimensional column vector, F̃∗(u, s) =(
F̃ ∗

1 (u, s), F̃ ∗
2 (u, s), . . . , F̃ ∗

ℓ (u, s)
)′

, equation (28) can be expressed in the matrix form

[I − P ⊙ h∗(u, s)]F̃∗(u, s) = [A∗(u, s) − H∗(u, s)]r. (29)

where I is the identity matrix,

h∗(u, s) =




h∗1(s+ r(1)u) h∗1(s+ r(1)u) · · · h∗1(s+ r(1)u)

h∗2(s+ r(2)u) h∗2(s+ r(2)u) · · · h∗2(s+ r(2)u)
...

...
. . .

...

h∗ℓ (s+ r(ℓ)u) h∗ℓ (s+ r(ℓ)u) · · · h∗ℓ (s+ r(ℓ)u)



,

and P ⊙ h∗(u, s) is the Hadamard product of P and h∗(u, s) given by

P ⊙ h∗(u, s) =




p11h
∗
1(s + r(1)u) p12h

∗
1(s+ r(1)u) · · · p1ℓh

∗
1(s+ r(1)u)

p21h
∗
2(s + r(2)u) p22h

∗
2(s+ r(2)u) · · · p2ℓh

∗
2(s+ r(2)u)

...
...

. . .
...

pℓ1h
∗
ℓ (s+ r(ℓ)u) pℓ2h

∗
ℓ(s + r(ℓ)u) · · · pℓℓh

∗
ℓ (s+ r(ℓ)u)



.

Because Re(u) > 0 and Re(s) > 0, and h∗i (s + r(i)u) = H̃i(s + r(i)u) < 1 for each i ∈ S,

I − P ⊙ h∗(u, s) is invertible. To obtain the double transform, F̃ ∗(u, s), we uncondition with

respect to the initial distribution of the environment

F̃ ∗(u, s) = α[I − P ⊙ h∗(u, s)]−1[A∗(u, s) −H∗(u, s)]r. (30)

Now, since ψij(t) = G′
ij(t) = pijH

′
i(t) = pijhi(t) for each i, j ∈ S and t ≥ 0 in an SMP, the (i, j)th

element of P ⊙ h∗(u, s) is given by

ψ∗
ij(s+ r(i)u) = pij h

∗
i (s + r(i)u).

Therefore, we obtain the final result

F̃ ∗(u, s) = α[I −ψ∗(u, s)]−1[A∗(u, s) − H∗(u, s)]r (31)

where ψ∗(u, s) = [ψ∗
ij(s+ r(i)u)].

4.2 Illustrative Examples

In this subsection, we illustrate the form of the double Laplace transform for the case when hold-

ing times are exponentially distributed, hyper-exponentially distributed, and Erlang distributed.

These illustrations serve to emphasize the difficulty in computing the transient lifetime distribution

(or cumulative degradation up to time t).
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Example 1: Exponential Sojourn Times

In case all of the sojourn times are exponentially distributed random variables with respective

rates qi, i ∈ S, Z is a time-homogeneous CTMC on S with infinitesimal generator matrix Q = [qij].

The sojourn time in state i has c.d.f.

Hi(t) = 1 − exp(−qit),

and its Laplace transform evaluated at s+ r(i)u is

H∗
i (s+ r(i)u) =

1

s+ r(i)u
−

1

s+ r(i)u+ qi
. (32)

Moreover, its p.d.f. is given by

hi(t) = qi exp(−qit)

which shows that

h∗i (s+ r(i)u) =
qi

(s+ r(i)u+ qi)
. (33)

It is worth mentioning that the transition probability matrix of the embedded chain, {ξn : n ≥ 0},

is given by

pij =




qij/qi, if j 6= i, qi 6= 0,

0, if j = i

where qi =
∑

j 6=i qij . Substituting P and equations (32) and (33) into equation (31), we obtain

I −ψ∗(u, s) =




1 −q12

s+r(1)u+q1
· · · −q1ℓ

s+r(1)u+q1

−q21

s+r(2)u+q2
1

. . . −q2ℓ

s+r(2)u+q2

...
. . .

. . .
...

−qℓ1
s+r(ℓ)u+qℓ

−qℓ2
s+r(ℓ)u+qℓ

· · · 1




(34)

and

A∗(u, s) − H∗(u, s) =




1
s+r(1)u+q1

0 · · · 0

0 1
s+r(2)u+q2

. . . 0
...

. . .
. . .

...

0 0 · · · 1
s+r(ℓ)u+qℓ



. (35)

Using (34) and (35), the elements of the vector F̃∗(u, s) are given by

F̃ ∗
i (u, s) =

r(i)

s+ r(i)u+ qi
+

∑

j∈S\{i}

qi,j
s+ r(i)u+ qi

F̃ ∗
j (u, s). (36)

It is not difficult to show that this double-transform result is equivalent to the result given for the

case of a continuous-time Markov chain in [21].
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Example 2: Hyper-exponential Sojourn Times

A hyper-exponential random variable is a mixture of exponential random variables (see for

example [41]). Suppose that the sojourn time in state i ∈ S is hyper-exponential with ni phases

such that the jth phase has rate parameter λij , j = 1, 2, . . . , ni. Moreover, let αij ∈ (0, 1) and∑
j αij = 1 for each i ∈ S. For t ≥ 0, the c.d.f. of this sojourn time is given by (cf. [20])

Hi(t) = 1 −
ni∑

j=1

αij exp(−λijt),

which implies that its Laplace transform evaluated at s+ r(i)u is given by

H∗
i (s + r(i)u) =

∫ ∞

0
exp(−(s+ r(i)u)t)


1 −

ni∑

j=1

αij exp(−λijt)


 dt

=
1

s+ r(i)u
−

ni∑

j=1

∫ ∞

0
exp(−(s+ r(i)u)t)αij exp(−λijt)dt

=
1

s+ r(i)u
−

ni∑

j=1

αij

s+ r(i)u+ λij
. (37)

The p.d.f. of the sojourn time, for t ≥ 0, is given by

hi(t) =

ni∑

j=1

αijλij exp(−λijt),

and its Laplace transform evaluated at s+ r(i)u is

h∗i (s+ r(i)u) =

∫ ∞

0
exp(−(s + r(i)u)t)

ni∑

j=1

αijλij exp(−λijt)dt

=

ni∑

j=1

αijλij

s+ r(i)u+ λij
. (38)

After substituting (37) and (38) into (31) and simplifying, the unconditional double Laplace trans-

form, F̃ ∗(u, s), is obtained by

α




(
n1∑

j=1

α1jλ1j

s+r(1)u+λ1j

)−1

− p11 −p12 · · · −p1ℓ

−p2,1

(
n2∑

j=1

α2jλ2j

s+r(2)u+λ2j

)−1

− p22
. . . −p2ℓ

...
. . .

. . .
...

−pℓ1 −pℓ2 · · ·

(
nℓ∑

j=1

αℓjλℓj

s+r(ℓ)u+λℓj

)−1

− pℓℓ




−1

r.

This result provides sufficient generality to allow for each state sojourn time to assume a distinct

hyper-exponential distribution. Because the hyper-exponential belongs to the larger class of phase-

type (PH) distributions, it can approximate a wide range of sojourn time distributions. Next, we

consider the case of sums of i.i.d. exponential phases (i.e., Erlang distributed sojourn times).
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Example 3: Erlang Sojourn Times

Suppose the sojourn time in state i ∈ S can be represented by ni phases (ni ≥ 1), each of which

has the same distribution, namely exponential with mean 1/λi. In such a case, the c.d.f. of the

sojourn time is given by

Hi(t) = 1 −
ni−1∑

j=0

exp(−λit)
(λit)

j

j!
, t ≥ 0.

For an integer n ≥ 1 and real number a, we can apply the well-known Laplace transform identity

L

(
tn−1eat

(n − 1)!

)
=

1

(s− a)n
,

to establish that the Laplace transform of Hi(t) evaluated at s+ r(i)u is

H∗
i (s+ r(i)u) =

1

s+ r(i)u
−

1

s+ r(i)u+ λi
−

λi

(s+ r(i)u+ λi)2
− . . .

=
1

s+ r(i)u

(
λi

s+ r(i)u+ λi

)ni

. (39)

The p.d.f. of this Erlang(ni, λi) random variable is

hi(t) = λi exp(−λit)
(λit)

ni−1

(ni − 1)!
, t ≥ 0

so that its Laplace transform evaluated at s+ r(i)u is

h∗i (s+ r(i)u) =

(
λi

s+ r(i)u+ λi

)ni

. (40)

Substituting (39) and (40) into equation (31), F̃ ∗(u, s) reduces to

α




s+ r(1)u+
(1−p11)λ

n1
1

a1,n1

(−p12)λ
n1
1

a1,n1
· · ·

(−p1ℓ)λ
n1
1

a1,n1

(−p21)λ
n2
2

a2,n2
s+ r(2)u+

(1−p22)λ
n2
2

a2,n2

. . . (−p2ℓ)λ
n2
2

a2,n2
...

. . .
. . .

...
(−pℓ1)λ

nℓ
ℓ

aℓ,nℓ

(−pℓ2)λ
nℓ
ℓ

aℓ,nℓ

· · · s+ r(ℓ)u+
(1−pℓℓ)λ

nℓ
ℓ

aℓ,nℓ




−1

r

where the values ai,ni
, i ∈ S, are obtained recursively by

ai,ni
= ai,ni−1(s+ r(i)u+ λi) + λni−1

i

with ai,1 ≡ 1. Obviously, if ni = 1, for all i ∈ S, then the semi-Markov environment reduces to a

continuous-time Markov chain with qi = λi, i ∈ S.

The illustrative examples in this section demonstrate the complexity involved in characterizing

the reliability (or unit lifetime) of systems that are subject to complex environments. However, it

is worth mentioning that other approaches can be used to approximate the SMP environment using

a surrogate, time-homogeneous CTMC via phase-type sojourn time distributions. This approach
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has been outlined and implemented by Kharoufeh et al. [16]. Alternatively, to circumvent the

computational difficulties described herein, it may be possible to develop asymptotic results which

lead to tractable solutions that are easy to implement. Khorshidian [18] has recently derived a

Functional Central Limit Theorem (FCLT) using an approximating martingale process. In the

next section, we provide some concluding remarks and discuss future work in this area.

5 Conclusions

In this paper we have presented transient reliability indices for manufacturing equipment that

operates in complex environments that induce stochastic degradation and ultimately lead to failure

of the equipment. We specifically considered time-nonhomogeneous Markov environments and time-

homogeneous semi-Markov environments. The mathematical frameworks presented here provide a

great deal of modeling flexibility, particularly in scenarios in which the operating times in various

states do not transition in a stationary way, or those times are distinctly non-exponential. We posit

that these results can be very useful in scenarios where a direct mapping between the environmental

conditions and the degradation can be effectively modeled. This is typically done by employing

specific physics-of-failure models for the type of equipment under consideration.

Though the models are mathematically sound, they can be difficult to implement computation-

ally. In particular, for the two-dimensional Laplace transform results, numerical inversion appears

to be the best option. Some good algorithms for doing two-dimensional numerical Laplace trans-

form inversion are described in [2, 32]. In the future, it will be instructive to consider asymptotic

results, particularly for the SMP environment model, to obtain tractable reliability indices. Asymp-

totic results may provide an adequate representation of the reliability indices, particularly when

the degradation threshold is very large. This may, for example, correspond to the case of highly-

reliable equipment that experiences very little degradation over time. The asymptotic results may

provide a starting point for applications requiring real-time updating of remaining lifetime distri-

butions (as in a condition-based maintenance environment). Specifically, real-time observations of

the evolution of the environment, or the degradation level, can be used to update the parameters

of the modulating process and the state-dependent degradation rates. Tracking the occurrence of

environment transitions over a (sufficiently long) time interval will provide reasonable statistical

estimates, so long as the number of environment states is not too large.

Finally, a nontrivial task is the estimation of the degradation rates r(i) that describe the evolu-

tion of degradation as a function of the environment. Obviously, for this purpose, real degradation

data is required, as is the guidance and experience of subject matter experts. Our approach pro-

vides a very macroscopic view of degradation whereas wear and degradation dynamics can be very

detailed and complex. It will be instructive to consult with engineers and scientists to determine

appropriate models for specific material types and certain applications.
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