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Abstract: We analyze the moments of the random time required for a vehicle to traverse a
transportation network link of arbitrary length when its speed is governed by a random environment.
The problem is motivated by stochastic transportation network applications in which the estimation
of travel time moments is of great importance. We analyze this random time in a transient and
asymptotic sense by employing results from the field of fluid queues. The results are demonstrated on
two example problems. © 2003 Wiley Periodicals, Inc.* Naval Research Logistics 51: 242–257, 2004.
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1. INTRODUCTION

We consider the movement of a vehicle along a transportation network link (such as a freeway
segment) whose length is x units. The vehicle’s speed varies over the course of its sojourn due
to the influence of an underlying environment process. Owing to the effects of this random
environment, the time required to traverse this link is a random variable denoted by T( x). In this
paper, our aim is to analyze the moments of the random travel time T( x), in the transient and
the asymptotic sense, with the ultimate objective of obtaining computationally expedient
measures that are extremely useful in a number of transportation contexts. To that end, we
demonstrate that the problem can be viewed and analyzed as a fluid queueing model from which
such expedient measures may be derived. The approach allows us to consider the travel time
moments for an individual link of a transportation network subject to a randomly evolving
environment. This random environment is characterized as a continuous-time stochastic process
on a finite sample space.
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The dynamics of the model can be described as follows. If at time t � 0 the underlying
finite-state process denoted by {Z(t) : t � 0} is in state i � S � {1, 2, . . . , K}, then the speed
of the vehicle is a strictly positive quantity Vi. The stochastic process {Z(t) : t � 0} is the
random environment process. If D(t) denotes the cumulative distance travelled by the vehicle
up to time t � 0, and {Z(t) : t � 0} is a Markov process, then it can be shown that {(D(t),
Z(t)) : t � 0} is also a Markov process. Moreover, the random variable D(t) is an additive
functional of Z(t). The process {(D(t), Z(t)) : t � 0} is used to analyze the moments of the
random time T( x), which corresponds to a first passage time for the process {D(t) : t � 0}.

Our results are primarily motivated by problems in transportation and logistics where it is
important for decision-makers to know the travel time moments of individual vehicles in a
stochastic transportation network. The main contribution of the work is the novel application of
fluid queueing techniques for the analysis of an individual vehicle whose time-variant speed is
modulated by a random environment. This is in contrast to an aggregated approach for all
vehicles usually found in the traffic flow theory (cf. Lighthill and Whitham [12] and Highway
Capacity Manual [7]). Our approach is intuitive in the sense that a plot of the vehicle’s speed
over time corresponds to a sample path of a continuous-time stochastic process, possibly on a
finite state space. Owing to its generality, the model may be used in a number of transportation
settings directly or by making suitable alterations. We describe in detail applications in ground
and maritime transportation.

● Ground transportation: Consider a vehicle that traverses a roadway segment with x
corresponding to the physical length of the segment. Several factors influence the speed
of the vehicle as it attempts to traverse the roadway segment. Some of those may be
physical factors (e.g., roadway geometry, grades, visibility), traffic factors (e.g., density,
presence of heavy vehicles, merging traffic), or environmental factors (e.g., weather
conditions, speed limits, etc.). It is assumed that the environment process {Z(t) : t � 0}
is known, and thus, may be used to obtain the moments of the random variable T( x).
These moments can then be applied to construct parametric distributions for stochastic
arc weights in transportation networks within the context of automatic route guidance
systems described in [6] or in least-time stochastic transportation network problems such
as those described in [13] and [14].

● Maritime transportation: The environment process approach is similarly applicable in
maritime scenarios. In particular, consider a ship traversing one leg of its journey of
length x. Stochastic and dynamic weather conditions directly influence the speed with
which the ship may travel. In such case, the stochastic process {Z(t) : t � 0} may be
used to model the set of meteorological variables which determines the ship’s speed at
a given point in time (and possibly space). By assigning a cost for each speed (e.g., fuel
consumption) and making appropriate alterations, our model may be used to compute the
expected cost incurred for traversing each leg of the ship’s sojourn. Furthermore, if each
arc of a network is governed by its own environment process, then it may be possible to
solve a stochastic and dynamic minimum cost problem such as that considered by
Psaraftis and Tsitsiklis [17].

Throughout the remainder of this paper, we concern ourselves with the general setting of a
vehicle traversing a link of length x with the understanding that this may pertain to either of the
above scenarios. Moreover, we may model a number of real-world contexts with appropriate
alterations to the problem parameters and their physical interpretations.
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The main contributions of this work can be summarized as follows. First, using the tools of
fluid queueing models, we present a transparent approach for implicitly incorporating the time
dependence of speed for a vehicle traversing a link of length x. Next, we give an explicit matrix
transform expression for the rth moment of the link travel time which gives exact results when
the transform can be algebraically inverted, and very accurate approximate results with numer-
ical inversion. Third, we discuss asymptotic results for the first and second moments of the link
travel time which serve as computationally expedient approximations or as parameter estimates
for surrogate link travel time distributions.

The remainder of the paper is organized as follows. The next section reviews the pertinent
concepts from the theory of fluid queues and demonstrates the means by which the theory is
applied to the link travel time problem. Section 3 demonstrates how to compute the moments
of the link travel time for a link of arbitrary (but finite) length x. In Section 4, we use the
transform results of Section 3 to provide intuitive asymptotic expressions for the mean and
variance of the link travel time. Section 5 presents numerical results on two example problems
followed by our concluding remarks in Section 6.

2. MATHEMATICAL MODEL

2.1. Fluid Queueing Concepts

In this section, we provide a brief overview of the notation and rudimentary concepts of fluid
queueing models. A fluid queueing model can be described as one in which the input to a
stochastic system is modeled as a continuous fluid that enters a buffer and then leaves the buffer
through an output channel (service mechanism) with constant output capacity c. One measure
of importance for such systems is the amount of fluid contained in the buffer at time t denoted
by the random variable X(t). The stochastic process, {X(t) : t � 0}, is often referred to as the
buffer content process. There exists an external process called the random environment process
that modulates the input of fluid to the buffer. That is, the state of the random environment
process dictates the rate at which fluid flows into the buffer.

Suppose {Z(t) : t � 0} denotes the random environment process that drives fluid generation.
Define RZ(t) as entrance rate of fluid to the buffer at time t and let the drift function of this
process be

�Z�t� � RZ�t� � c. (1)

The overall storage capacity of the buffer is denoted by a fixed, deterministic value B. The
dynamics of the buffer-content process when B � � are given by

dX�t�

dt
� ��Z�t�, X�t� � 0,

�Z�t�
� , X�t� � 0,

where w� � max{w, 0}. In case B � �, the system is governed by

dX�t�

dt
� ��Z�t�

� , X�t� � 0,
�Z�t�, 0 � X�t� � B,
�Z�t�

	 , X�t� � B,

where w	 � max{0, 	w}. The probability law of the buffer-content process, {X(t) : t � 0}
is dictated by the form of the random environment process, {Z(t) : t � 0}, and the associated
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function �. This function, referred to as the drift function, corresponds to the net input rate of
fluid to the buffer (entrance rate 	 exit rate). The diagonal matrix 
 � diag(�1, �2, . . . , �K)
is called the drift matrix. The first time the buffer fluid crosses some fixed level x corresponds
directly to a first passage time for the stochastic process {X(t) : t � 0}.

Many researchers in the field of telecommunications have recognized the utility of such
models for solving engineering problems. A few important papers in this area are due to Anick,
Mitra, and Sondhi [2], Elwalid and Mitra [5], Kesidis, Walrand, and Cheng-Shang [8], and
Kulkarni and Gautam [11]. Other researchers have considered more generalized fluid queueing
problems and some good examples are the papers due to Asmussen [3], Rogers [18], and, more
recently, Takada [19]. The approach of our paper is to apply a fluid queueing model for the
mathematical characterization of link travel time moments as simple expressions that may be
computed in a computationally expedient manner. We next demonstrate the means by which this
may be accomplished.

2.2. Fluid Model for Vehicle Displacement

Now consider a vehicle that must traverse a link of length x whose speed is governed by a
random environment on a finite state space S � {1, 2, . . . , K}, where K � N, the set of natural
numbers. Define the random environment process by {Z(t) : t � 0} so that at time t, the vehicle
assumes a (strictly positive) speed VZ(t). Since the environment process has a finite state space,
the vehicle may assume speeds in the finite set {Vi : i � 1, 2, . . . , K}, where Vi � 0 for all
i. Moreover, define the matrix V � diag(V1, V2, . . . , VK). Hence, the time dependence of
vehicle speed is captured implicitly through the environment process, {Z(t) : t � 0}. The initial
conditions experienced by the vehicle are captured by the initial state of the environment Z(0),
and we denote the initial distribution of the environment process, a row vector, z0 � [P{Z(0) �
i}]. Define by D(t), the total displacement of the vehicle up to time t and the associated
stochastic process {D(t) : t � 0}. With these definitions, we are now prepared to formalize the
analogy to a fluid queueing model. Table 1 summarizes the relationship between the concepts
of a fluid queueing model and those of the link travel time model.

Though many analogous concepts exist between the two models, there are some noteworthy
distinctions. In our model, we limit the movement of a vehicle to the positive direction only and
we allow only positive velocities. Once the vehicle begins its sojourn, it does not stop, nor does
it move in the negative direction. The analogous situation in the fluid queueing model is that the
output capacity of the system is zero (c � 0) and the buffer accumulates fluid until it first
reaches the threshold value x. Hence, our link travel time model is a special case of a general
fluid queueing model in which the drift rates ({�i}) are all positive, and the D process,
corresponding to the buffer content process X, possesses monotonically increasing sample paths.
The cumulative distance travelled by the vehicle up to time t � 0 is defined by

Table 1. Analogous fluid queueing and transportation concepts.

Fluid queueing concept Transportation analogy

Environment process Z Environment process Z
Drift function �i, i � S Velocity function Vi, i � S
Drift matrix 
 Velocity matrix V
Buffer content process X Vehicle displacement process D
Fluid level crossing time T(x) Vehicle distance crossing time T(x)
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D�t� � �
0

t

VZ�u� du. (2)

Equation (2) indicates that D is a Markov additive functional of Z and that the random travel
time T( x) is given by the first passage time

T�x� � inf�t : D�t� � x�. (3)

When the process {Z(t) : t � 0} is an irreducible, continuous-time Markov chain (CTMC)
on S � {1, 2, . . . , K} with infinitesimal generator matrix Q � [qij], the dynamics of the
buffer-content process are well understood. For example, Rogers [18] solved for the stationary
probability law of the buffer-content process when the buffer is finite or infinite using the
Wiener-Hopf factorization for the generator matrix of the governing Markov process. Asmussen
[3] derives the stationary distribution in two cases, with and without an additional Brownian
component. Recently, Takada [19] presented a fluid queueing model that generalizes previous
results for the MAP/G/1 queue by allowing the buffer content process to additionally have
jumps. These works provide mathematically elegant approaches for computing the invariant
probability distribution of the buffer-content process. By contrast, the link travel time problem
requires the transient probability law as indicated by Equation (3). For the purposes of this work,
we consider a transform approach for the probability distribution of D(t) from which we are able
to obtain both transient and asymptotic measures for the link travel time moments. The
following brief review of this distribution follows from [9].

Define the joint distribution function

Hi�x, t� � P�D�t� � x, Z�t� � i�, i � S. (4)

Moreover, define the cumulative distribution function for T( x) by

G�x, t� � P�T�x� � t� � 1 � P�D�t� � x� � 1 � �
i�S

Hi�x, t�. (5)

Let H( x, t) � [Hi( x, t)]i�S denote a 1  K vector. It can be shown that the joint probability
distribution H( x, t) satisfies the partial differential equation (PDE),

�H�x, t�

�t
	

�H�x, t�

�x
V � H�x, t�Q, (6)

with initial condition H( x, 0) � z0. Denote by H*( x, s2), the Laplace transform (LT) of H( x,
t) with respect to t given by

H*�x, s2� � �
0

�

e	s2tH�x, t� dt, (7)

and the Laplace-Stieltjes transform (LST) of H*( x, s2) with respect to x as
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H̃*�s1, s2� � �
0

�

e	s1x dH*�x, s2�. (8)

so that H̃*(s1, s2) � [H̃*i(s1, s2)]i�S is a 1  K row vector of transform expressions. The
following result of [9] can be used in conjunction with Eq. (5) to obtain the probability
distribution of the random link travel time T( x).

THEOREM 1: The solution to the differential Eq. (6) in the transform space is given by

H̃*�s1, s2� � z0�s1V 	 s2I � Q�	1, (9)

where H̃*(s1, s2) is defined by Eq. (8), z0 is the initial environment distribution, and s1 and s2

are complex transform variables with Re(s1) � 0 and Re(s2) � 0.

Finally, it is easy to see that the cumulative distribution function for T( x) is given by

G̃*�s1, s2� �
1

s2
� z0H̃*�s1, s2�e, (10)

where e denotes a K-dimensional column vector of ones. It should be noted that the LST of the
link travel time distribution can be obtained as a 1-dimensional transform with respect to the
temporal variable t in a slightly more mathematically elegant manner. In particular, we note that
our problem is a special case of the problems considered by both Rogers [18] and Asmussen [3]
with the exception that Eq. (9) corresponds to a transient distribution.

The distributions of this section can be accurately computed using a two-dimensional
numerical inversion algorithm such as the one due to Moorthy [15]. However, it is possible to
generate approximate distributions with far less computational effort by computing the moments
of the vehicle link travel time and using them in surrogate, parametric distributions. This
approach may be especially useful in the analysis of stochastic transportation networks wherein
the entire cumulative distribution function is needed to compute stochastically shortest paths.
However, in lieu of the link travel time distribution, the moments of this random time can be
computed in a simple fashion. Moreover, asymptotic approximations of the link travel time
moments can be obtained as closed-form analytical expressions. In Section 3, we show how to
compute the moments of the random link travel time using Eq. (9) when the length of the link
( x) is finite.

3. TRANSIENT LINK TRAVEL TIME MOMENTS

In this section, we derive an expression using the fluid queueing approach for the moments
of the link travel time whenever the link length is finite. By Eq. (5),

G�x, t� � 1 � �
i�S

Hi�x, t�, (11)

where G is the CDF of the random link travel time, Hi( x, t) � P{D(t) � x, Z(t) � i}, and
S is the finite state space of the random environment process {Z(t) : t � 0} that modulates
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vehicle speed. It is well-known that the rth moment of the random variable T( x) may be
obtained by evaluating at 0, the rth-order derivative of the Laplace-Stieltjes transform (LST) of
G which is given by

G̃�x, s2� � �
0

�

e	s2t dG�x, t� � 1 � �
i�S

H*i�x, s2�s2, (12)

where H*i( x, s2) is given by Eq. (7). The rth moment of the link travel time, denoted by mr( x),
is

mr�x� � E��T�x��r� � �	1�r
�r

�s2
r G̃�x, s2��s2�0. (13)

Next define

Ks2

r �x� � �	1�r
�rG̃�x, s2�

�s2
r � �	1�r�1�s2 �

i�S

�rH*i�x, s2�

�s2
r 	 r �

i�S

�r	1H*i�x, s2�

�s2
r	1 �. (14)

Equation (14), which is derived from Eq. (12), implies that

mr�x� � K0
r�x� � �	1�r�1r �

i�S

�r	1H*i�x, s2�

�s2
r	1 �

s2�0

. (15)

In order to solve the differential equation (15), transform methods are again employed. The LST
of mr( x) with respect to x is

m̃r�s1� � �
0

�

e	s1x dmr�x�.

By taking the LST of Eq. (15) on both sides,

m̃r�s1� � �	1�r�1r �
i�S

�r	1H̃*i�s1, s2�

�s2
r	1 �

s2�0

� �	1�r�1r
�r	1H̃*�s1, s2�

�s2
r	1 �

s2�0

e, (16)

where H̃*(s1, s2) is the matrix transform of Eq. (9). Assuming the existence of all derivatives
of Hi( x, s2) at s2 � 0, inversion of Eq. (16) yields the rth moment of the random link travel
time. The following lemma will be needed to derive a matrix expression for Eq. (16).

LEMMA 1: The kth order partial derivative of the vector H̃*(s1, s2) with respect to s2 is

�kH̃*�s1, s2�

�s2
k � �	1�kk!z0�s1V 	 s2I � Q�	k	1, k � 0.
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Lemma 1 can be easily proved by mathematical induction and is next used to derive a general
expression for the rth moment of the link travel time.

THEOREM 2: The Laplace-Stieltjes transform of mr( x) is given by

m̃r�s1� � r!z0�s1V � Q�	re. (17)

PROOF: Applying Lemma 1 to Eq. (16) directly shows that

m̃r�s1� � �	1�r�1r
�r	1

�s2
r	1 H̃*�s1, s2��s2�0e

� �	1�r�1r�	1�r	1�r � 1�!z0��s1V � Q�	1�re � r!z0�s1V � Q�	re,

and the proof is complete. �

Equation (17) gives an exact analytical expression for the LST of the rth moment of the random
link travel time, provided that all derivatives exist at s2 � 0. In some cases, the transform may
be inverted algebraically for an exact solution. However, very close approximations may be
obtained via numerical inversion in only one dimension by using a number of widely available
inversion algorithms such as the one due to Abate and Whitt [1].

4. ASYMPTOTIC LINK TRAVEL TIME MOMENTS

In this section, the asymptotic behavior of the moments of the random link travel time is
considered. In subsections 4.1 and 4.2, we investigate the first and second moments of the link
travel time in the asymptotic region (as x3 �) when the speed is modulated by a CTMC, {Z(t)
: t � 0}. In subsection 4.3, the asymptotic variance is considered. Asymptotic approximations
often yield computationally expedient expressions that can drastically reduce computational
effort by eliminating the need for iterative algorithms. Furthermore, these approximations may
be used to construct surrogate, parametric distributions for the link travel time.

4.1. Asymptotic First Moment of T(x)

In order to prove our result for the asymptotic mean of the random link travel time, we first
need the following lemma.

LEMMA 2: Let Q be the infinitesimal generator matrix for the environment process, {Z(t) :
t � 0}, having stationary distribution p � [ pj]j�S. Then the matrix Q̂ � V	1Q is an
infinitesimal generator for a CTMC, {Ẑ(t) : t � 0}, with limiting distribution p̂ � [ p̂j]j�S

given by

p̂j �
pjVj

pv
, j � S, (18)

which satisfies p̂Q̂ � 0 and p̂e � 1, where v � Ve and pv � ¥j pjVj.
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PROOF: The proof is immediate since V	1Q is positive recurrent and clearly possesses the
stated unique, stationary distribution. �

Theorem 3 provides an intuitive result for the mean link travel time, namely, that the long-run
average link travel time divided by its displacement converges to the reciprocal of the long-run
average speed of the vehicle.

THEOREM 3: As x 3 �,

m1�x�

x
3

1

pv
. (19)

PROOF: By the asymptotic properties of the LST, it is well known (Kulkarni [10], p. 583)
that

lim
s130

s1m̃1�s1� � lim
x3�

m1�x�/x.

Thus, it will be shown that s1m̃1(s1) 3 ( pv)	1 as s1 3 0. Applying Theorem 2,

s1m̃1�s1� � s1z0�s1V � Q�	1e � z0s1�s1I � V	1Q�	1V	1e. (20)

By Lemma 2, Q̂ � V	1Q is a generator matrix for the CTMC, {Ẑ(t) : t � 0}, with probability
transition matrix P̂(t) satisfying the forward equation,

dP̂�t�

dt
� P̂�t�Q̂. (21)

Transform methods are employed to solve Eq. (21). After simplification, the LST of P̂(t),
denoted by, �(s1), is

��s1� � s1�s1I � Q̂�	1. (22)

By the limiting properties of the LST (Kulkarni [10]),

lim
s130

��s1� � lim
t3�

P̂�t� � P̂���, (23)

where the jth column of P̂(�) has p̂j of Eq. (18) for each row, provided the CTMC is ergodic.
Now, substituting Eqs. (22) and (17) into Eq. (20) gives

lim
s130

s1m̃1�s1� � lim
s130

z0s1�s1I � V	1Q�	1V	1e � z0P̂���V	1e � �pv�	1,

and the result is obtained. �

250 Naval Research Logistics, Vol. 51 (2004)



4.2. Asymptotic Second Moment of T(x)

In this subsection, we provide a similar, intuitive result for the asymptotic second moment of
the random link travel time. The following lemma is needed to prove the result.

LEMMA 3: Let f� be a function of exponential order on the positive real line such that f(t)
3 � and f�(t) 3 � as t 3 �. Let the Laplace transform of f be denoted by f *(s) and let its
Laplace-Stieltjes transform be f̃(s). Then,

lim
s30

s3f*�s� � lim
s30

s2f̃�s� � 2 lim
t3�

f�t�

t2 . (24)

PROOF: The lemma will be proved by considering the Laplace transform of the third
derivative of f. Assuming the existence of this transform, we have that (see Churchill [4])

��d3f

dt3� � �
0

�

e	stf�3��t� dt � s3f*�s� � s2f�0� � sf��0� � f�2��0�,

where f(n) (n � 2) denotes the nth-order derivative of f with respect to t. Letting s3 0 on both
sides of the above equation yields,

lim
s30

s3f*�s� � f �2��0� � lim
s30

�
0

�

e	stf �3��t� dt � lim
a3�

�
0

a

f �3��t� dt � lim
a3�

f �2��a� � f �2��0�,

which implies

lim
s30

s3f*�s� � lim
t3�

f �2��t�. (25)

It will next be shown that the right-hand side of Eq. (24) is equal to the right-hand side of Eq.
(25):

2 lim
t3�

f�t�

t2 � 2 lim
t3�

f ��t�

2t
� lim

t3�

f �2��t�.

The equality is obtained by applying L’Hospital’s rule twice. �

THEOREM 4: Assume that m�2( x) 3 � as x 3 �. Then as x 3 �

m2�x�

x2 3
1

�pv�2 .

PROOF: By Lemma 3, it follows directly that
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lim
s130

s1
2m̃2�s1� � 2 lim

x3�

m2�x�/x2.

Thus, it will be shown that s1
2m̃2(s1) 3 2( pv)	2 as s1 3 0:

lim
s130

s1
2m̃2�s1� � lim

s130

2z0s1�s1I � V	1Q�	1V	1s1�s1I � V	1Q�	1V	1e

� 2z0P̂���V	1P̂���V	1e � 2�pv�	2,

which implies m2( x)/x2 3 ( pv)	2. �

Theorems 3 and 4 indicate that the asymptotic approximation for m1( x) is m̂1( x) � x/pv and
the asymptotic approximation for m2( x) is given by m̂2( x) � x2/( pv)2 � (m̂1( x))2. Thus, the
asymptotic approximations for the first two moments of the link travel time reduce to simple
functions of the link length x. Before proceeding to an analysis of the variance of the random
variable T( x), it should be noted that the transform expressions provided by Theorems 3 and 4
directly provide insight to the limiting behavior of T( x)/x, as indicated in the following
corollary.

COROLLARY 1: Assume m�2( x) 3 � as x 3 �. Then, as x 3 �,

T�x�/x 3 P 1/pv,

i.e., the random variable T( x)/x converges to 1/pv in probability.

PROOF:

lim
x3�

Var�T�x�

x � � lim
x3�

x	2�m2�x� � m1
2�x�� � 0. (26)

Fix 
 � 0. By Chebyshev’s inequality and Eq. (26), we have that

P��T�x�

x
�

1

pv� � 
	 �
1


2 Var�T�x�

x � 3 0. �

The corollary states that, just as m1( x)/x 3 1/pv, the random variable T( x)/x converges to the
reciprocal of the long-run, average speed, even though T( x) 3 � as x 3 �. In the following
subsection, it will be shown that the standard deviation of the link travel time in the asymptotic
regime is proportional to the square root of the link length.

4.3. Asymptotic Variance of T(x)

In order to construct meaningful distribution approximations using the asymptotic moments
of this section, we now examine the variance of link travel time as the length of the link tends
toward infinity. The limiting behavior of Var[T( x)] is characterized using the K-dimensional
generator matrix Q and the velocity matrix V. First we require some notation for the spectral
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representation of the matrix V	1Q. Let �i, i � 1, 2, . . . , K, denote the K eigenvalues of
V	1Q, and let li (ri), i � 1, 2, . . . , K, denote their corresponding left (right) eigenvectors. Of
the K eigenvalues, one eigenvalue is zero, and the remaining K 	 1 are strictly negative. In
particular, we note that the vector p̂ is the left eigenvector corresponding to the zero eigenvalue.
Using the remaining K 	 1 eigenvalues (and eigenvectors), the limiting behavior of Var[T( x)]
is characterized in Theorem 5.

THEOREM 5:

lim
x3�

Var�T�x��

x
� 	

2

pv �
i�2

K 1

�i

�pri��liV
	1e�

liri
. (27)

PROOF: By Eq. (19), it can be shown that

m1�x� � x/�pv� 	 O�x�, (28)

where O( x)/x 3 0 as x 3 �. In like manner, it can be shown that m2( x) is of the form

m2�x�

x
�

x

�pv�2 	 c�x� 	
O1�x�

x
, (29)

where c( x) is a function that depends on x and O1( x)/x 3 0 as x 3 �. Let

��x� �
Var�T�x��

x
�

m2�x�

x
�

�m1�x��2

x

and define its Laplace-Stieltjes transform (LST) as

�̃�s� � �
0

�

e	sx d��x�. (30)

For sufficiently large x, the function �( x) can be written as

��x� � c�x� � 2O�x�/�pv�. (31)

Taking the LST of both sides of Eq. (31) gives

�̃�s� � c̃�s� � 2Õ�s�/�pv�, (32)

where �̃(s) is defined as in Eq. (30). Next, we compute the transforms c̃(s) and Õ(s). By taking
the LST of both sides of Eq. (28) and rearranging terms,

Õ�s� � m̃1�s� �
1

�pv�s
,
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where m̃1(s) is the LST of m1( x) so that

Õ�s� � z0�sV � Q�	1e �
1

�pv�s
, (33)

and z0 is the initial distribution of the environment process. Now, to compute c̃(s), we take the
LST of both sides of Eq. (29) and rearrange terms to obtain

c̃�s� � sm̃2�s� �
2

s�pv�2 � LST�O1�x�

x 	 � 2z0s�sV � Q�	2e �
2

s�pv�2 � LST�O1�x�

x 	 , (34)

where LST{h�} denotes the LST of the function h�. Substituting Eqs. (34) and (33) into Eq.
(32) and letting s 3 0 yields

lim
s30

�̃�s� � lim
s30

2z0�sV � Q�	1�s�sV � Q�	1 � I�pv�	1�e � LST�O1�x�

x 	
� lim

s30

2

pv �p�sV � Q�	1e �
1

spv�.

Now let �i denote one of the K 	 1 strictly negative eigenvalues of V	1Q, and let li (ri), i �
2, . . . , K denote the corresponding left (right) eigenvectors of V	1Q. It can be shown (see
Asmussen [3]) that, using the spectral representation of V	1Q,

p�sV � Q�	1e �
1

spv
	 �

i�2

K � 1

s � �i
� 1

liri
�pri��liV

	1e�,

where we omit the zero eigenvalue and its corresponding eigenvector. Hence, we obtain

lim
x3�

Var�T�x��

x
�

2

�pv�
lim
s30

�p�sV � Q�	1e �
1

spv� � 	
2

pv �
i�2

K 1

�i

�pri��liV
	1e�

liri
. �

5. NUMERICAL EXAMPLES

In this section, the performance of the analytical results of Sections 3 and 4 are demonstrated
on two numerical examples. The numerical transform inversions, obtained by using the algo-
rithm of Abate and Whitt [1], are validated via Monte-Carlo simulation of link travel times
under the assumption that vehicle speed is modulated by a continuous-time Markov chain.

5.1. Example 1: Ground Transportation Problem

Consider a vehicle traversing a roadway segment of length x miles. Due to time-variant traffic
factors (e.g., flow and density), the speed of the vehicle may be categorized in one of 10 distinct
ranges. Then the random environment process is a general, 10-state CTMC with state space S �
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{1, 2, . . . , 10}. When the environment is in state i, the speed of the vehicle is Vi � 75/i for
i � S. The off-diagonal entries of the generator matrix, Q � [qij]i, j�S, are distributed
uniformly on the interval (200, 400) and the units are 1/h. If the CTMC is currently in state i �
S, the process transitions to state j � S{i} with probability qij/(	qii). It is arbitrarily assumed
that, with probability 1, the system starts in state 1 at time 0. The off-diagonal entries of Q were
computed by generating a uniform variate on the interval (0, 1) and translating each entry so that
it lies in the interval (200, 400), which is chosen arbitrarily. Table 2 displays the numerical
results for this example.

5.2. Example 2: Variance Calculations

The purpose of this example is to demonstrate the variance calculations using Eq. (27). We
assume the random environment process is a general, 5-state CTMC with state space S � {1,
2, . . . , 5}. When the environment is in state i, the speed of the vehicle is Vi � 75/i for i �
S. The off-diagonal entries of the generator matrix, Q � [qij]i, j�S, are distributed uniformly on
the interval (20, 60) with units 1/h. If the CTMC is currently in state i � S, the process
transitions to state j � S{i} with probability qij/(	qii). It is arbitrarily assumed that, with
probability 1, the system starts in state 1 at time 0. The off-diagonal entries of Q were computed
by generating a uniform variate on the interval (0, 1) and translating each entry so that it lies in
the interval (20, 60). Table 3 displays numerical results comparing values obtained from Eq.
(27) and Monte-Carlo simulation.

6. CONCLUSIONS

We have presented a fluid queueing model for implicitly incorporating the time dependence
of speed for a vehicle traversing a link of length x by considering a random environment process

Table 3. Asymptotic variance results.

x Simulated Asymptotic

1.00 0.232525 0.408426
5.00 2.111038 2.042130
10.00 3.968300 4.084261
50.00 20.491260 21.030564
100.00 41.294269 41.141287

Table 2. Lower moments for vehicle link travel time.

x (mi) Measure Transient Simulated Asymptotic

0.25 m1(x) 0.647889 0.647530 0.681060
m2(x) 0.439642 0.439307 0.463843

0.50 m1(x) 1.317198 1.318089 1.348891
m2(x) 1.779084 1.781252 1.819507

1.00 m1(x) 2.658887 2.657945 2.691188
m2(x) 7.158717 7.153180 7.242492

5.00 m1(x) 12.977443 12.978734 13.005931
m2(x) 168.807281 168.842391 169.154242

10.00 m1(x) 26.218836 26.224240 26.249637
m2(x) 688.289778 688.571303 689.043454
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that evolves stochastically over time. When the environment process is known to be a contin-
uous-time Markov chain, an explicit expression is obtained for the rth moment of the link travel
time. The derived expression gives exact results when the transform can be algebraically
inverted, and very accurate approximate results with numerical inversion. Moreover, the
transform expressions give rise to useful, asymptotic approximations in the form of limit
theorems for the mean, second moment and variance of the random link travel time.

There are several real-world contexts that motivate the study of a vehicle traversing a random
environment. The generality of our model allows for the exact analysis of the link travel time
moments in a variety of transportation settings. In this work, we were primarily motivated by
the need for computationally expedient measures that may be directly applied to stochastic
transportation network problems. It is clear that the technique can be easily modified and
extended to accommodate a number of different problem settings.

The techniques of this paper can potentially be used to construct three types of distributions
for the random time to traverse a link of length x. First, it is always possible to solve for the
matrix H( x, t) via transform techniques and perform numerical inversion in two dimensions to
obtain an approximate distribution. However, the numerical inversion process is computation-
ally intensive. An alternative is to construct surrogate transient or asymptotic normal approxi-
mations. Transient normal approximations would utilize the transient moment results of Section
3 for the mean and variance of the distribution. Asymptotic normal approximations would use
the limiting results for the mean and variance of link travel time (Section 4). The appropriate
choice of distribution will depend on the computation time or accuracy required by the algorithm
in which the link travel time is used. The simpler, parametric distributions, particularly normal
approximations, will be useful since look-up tables can be utilized to obtain cumulative
distribution function values. The model can be suitably extended to more general environment
processes (such as semi-Markov processes), depending upon the application.
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