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Abstract

We present transient and asymptotic reliability indices for a single-unit system that is subject

to Markov-modulated shocks and wear. The transient results are derived from the (transform)

solution of an integro-differential equation describing the joint distribution of the cumulative

degradation process and the state of the modulating process. Additionally, we prove the asymp-

totic normality of a properly centered and time-scaled version of the cumulative degradation at

time t. This asymptotic result leads to a simple normal approximation for a properly centered

and space-scaled version of the system’s lifetime distribution. Two numerical examples illustrate

the quality of the normal approximation.

1Author to whom correspondence should be addressed.
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1 Introduction

In this paper we investigate transient and asymptotic reliability indices for a single-unit system

that degrades over time due to normal wear induced by its operating environment and randomly-

occurring shocks that cause additional damage to the system. The wear rate and shock arrival

rate are both modulated by an external process (the random environment) which is modeled as

a continuous-time, regenerative stochastic process {Zt : t ≥ 0}. At time zero, the device begins

its lifetime in perfect working order but degrades over time under the influence of its random

environment and shock damage until the cumulative degradation reaches a fixed threshold x, at

which time it fails. We denote this random time until failure by Tx. Derived herein are transform

expressions for the cumulative distribution function (c.d.f.) of Tx and its nth moment (n ≥ 1) when

the environment is assumed to evolve as a time-homogeneous Markov process. The main transient

results are obtained by showing that the joint distribution of the cumulative degradation level

and the environment state conditionally satisfies an integro-differential equation. This equation

leads to the Laplace-Stieltjes transform (LST) of the lifetime distribution function and the LST

of its moments. We additionally investigate a scaled version of the unit’s lifetime with the aim

of developing simple approximations that allow us to circumvent (numerical) Laplace transform

inversion. The asymptotic results are obtained by analyzing the degradation process as a cumulative

stochastic process which is shown to obey a central limit theorem.

Systems that incur degradation due to their operating environment and shock damage can be

identified in a variety of settings. For instance, low-observable technologies are commonly employed

to ensure that weapons systems are difficult to detect, track and engage. These “stealth” systems are

usually coated with a radar-absorbing material (RAM) for energy absorption and cancelation. RAM

coatings must maintain precise tolerances for an array of electrical properties, most importantly the

permeability, and consequently, the near-field reflectivity. However, RAM is extremely sensitive to

the ambient environment and suffers wear from normal usage and exposure to the elements (e.g.,

sun, rain, hail, etc.). Additionally, the coating suffers random strikes (e.g., scratches resulting from

aerial refueling, bird strikes and pebble strikes during take-off and landing) that cause damage

to the external skin, degrading the aircraft’s near-field reflectivity. Assessing the impact of wear

and random damage on the near-field reflectivity of the RAM coating is very difficult, but can

be done through a detailed and involved inspection process. Once the degradation of the RAM

coating reaches or exceeds a significant level, the aircraft must be taken out of service and repaired.
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Another example of a device that is subject to a time-varying operating environment and random

damage is a cutting tool on manufacturing equipment (e.g., the cutting tool on a lathe). The tool is

subject to different wear rates that may depend on several factors including the composition of the

work piece, the cutting speed and even variability among machine operators. The cutting tool may

also encounter defects in the material that cause excessive tool wear. Once the tool’s degradation

level reaches a critical threshold, it is unable to maintain engineering specifications and must be

replaced.

Stochastic failure models that attempt to capture the impact of a randomly evolving envi-

ronment have been examined extensively in the applied probability literature. An excellent survey

contributed by Singpurwalla [25] presents a number of models with various attributes. Much earlier

work, due to Esary, et al. [7] provided several results for both wear and shock processes. That work

has been extended in numerous directions by several authors. For instance, Çinlar [3] generalized

most of the models of [7] by demonstrating that the joint process of the unit’s wear level and the

state of its ambient environment may be considered as a Markov-additive process and gave several

such examples. The first example considered the case when the random environment is a general

Markov process with a finite state space and the wear is assumed to increase as a Lévy process.

Additionally, random shocks were assumed to occur at environment transition epochs. The second

example (see [3], pp. 201-202) is similar to the problem discussed here where the cumulative wear

is a continuous, additive functional of the operating environment, and the first time to failure is a

first passage time for the degradation process. However, that model did not include shocks.

Though R̊ade [23], Shanthikumar and Sumita [24], and Nakagawa [21] provide extensions to the

models of [7] they did not incorporate the effect of the unit’s operating environment on reliability

measures. Ebrahimi [6] investigated survival functions for a cumulative damage shock model with

a critical threshold and provided some stochastic ordering results. Li and Luo [19] considered a

Markov-modulated shock process wherein the shock inter-arrival times and the random shock dam-

age are both governed by a Markov chain. They obtain reliability bounds when the inter-arrival

times have heavy- or light-tailed distributions. Their degradation model does not include a con-

tinuous wear component. Mallor and Omey [20] considered a generalized shock process and study

some limiting properties. Igaki et al. [12], Skoilakis [26], and Kharoufeh [13] present degradation

models that include the influence of a random environment but do not consider random shocks.

Klutke et al. [18] examined the availability of an inspected system whose inter-inspection times

and wear rates are random. Subsequently, Klutke and Yang [17] derived an availability result
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for a system subject to constant linear degradation, shocks and a deterministic inspection policy.

Kiessler et al. [16] investigated the limiting average availability of a system whose time-varying wear

rates are governed by a continuous-time Markov chain. Kharoufeh et al. [15] extended the model

of [16] by including damage-inducing shocks that arrive according to a time-homogeneous Poisson

process and deriving the Laplace-Stieltjes transforms of a few transient reliability indices. However,

they did not consider the asymptotic behavior of these indices. Ebrahimi [5] considered a system

whose degradation is comprised of a continuous wear component as well as jumps. The properties

of the model were investigated and bounds were established for the reliability function. However,

the random environment in that model corresponds to a shock process that is superimposed on a

gamma wear process.

Our work here extends the results of [15], [13] and [16] in several ways. First we consider a

model in which the rate of continuous wear and the arrival rate of damage-inducing shocks are

both modulated by an external environment. Initially, we focus on characterizing the transient

reliability indices (i.e., when the critical degradation threshold is finite) in the spirit of [15, 13].

We provide a characterization of the transient distribution and the lifetime moments of the single-

unit system in the form of Laplace-Stieltjes transforms that are amenable to numerical inversion.

However, our aim is to go beyond these transform solutions to gain further insight into the behavior

of the degradation process (and the resulting lifetime distribution) in an asymptotic sense (as the

threshold goes to infinity). To this end, we state and prove several limit theorems related to a

time-scaled version of the degradation process and a space-scaled version of the unit’s random

lifetime. Specifically, we prove the asymptotic normality of these properly scaled quantities. The

asymptotic results serve as simple approximations for the lifetime distribution and may be useful for

degradation-based reliability models such as those described by Gebraeel et al. [9] and Kharoufeh

and Cox [14] among others.

The remainder of the paper is organized as follows. Section 2 provides the model description

and the notation used throughout the paper. In section 3, we characterize the lifetime distribution

and the nth moment (n ≥ 1) of the lifetime in a transient sense (i.e., when the degradation

threshold x is finite). These characterizations are in the form of Laplace-Stieltjes transforms.

Section 4 investigates a time-scaled version of the degradation process and a space-scaled version

of the system’s lifetime, both of which are shown to obey a central limit theorem. Two illustrative

examples are included in section 5, while section 6 provides a few concluding remarks.
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2 Model Description

In this section, we describe our mathematical model for a single-unit system subject to environment-

induced wear and shocks. All random variables are defined on a common and complete probability

space (Ω,A,P). A single-unit system is placed into service at time zero in perfect working order.

The system accumulates degradation until a deterministic, critical threshold value x is reached or

exceeded, at which time the system is said to be failed. Denote this random first passage time by

Tx. We assume throughout that Tx is proper, i.e., for each x > 0,

lim
t→∞P(Tx ≤ t) = 1.

In fact, the dynamics of our model ensure that Tx is bounded. The degradation accrued over time

by the system is attributed to environment-induced wear, as well as shocks that occur at random

time intervals. Both the wear and shock arrival rates are modulated by an external stochastic

process (the random environment). The wear- and shock-inducing mechanisms are assumed to

behave independently of one another; however, they share a common dependence on the state of

the random environment.

The random environment is assumed to be a regenerative process, namely an irreducible

continuous-time Markov chain (CTMC), Z ≡ {Zt : t ≥ 0}, on a finite state space S ≡ {1, 2, . . . , `}.
The CTMC has an infinitesimal generator matrix Q, initial distribution vector α and transition

probability functions πi,j(t), i, j ∈ S which comprise the matrix Π(t) ≡ [πi,j(t)]. The limiting dis-

tribution of Z is π. Define positive functions r, λ : S → R+ such that whenever Zt = i, the system

wears linearly at a rate r(i), r(i) > 0, and shocks occur according to a Poisson process at rate λi,

λi > 0 for i = 1, 2, . . . , `. That is, both the wear rates and shock arrival rates are Markov-modulated.

For notational convenience, let Rd ≡ diag(r(1), r(2), . . . , r(`)) and λ ≡ diag(λ1, λ2, . . . , λ`). While

the assumption of linear wear appears, on first glance, to be restrictive, non-linear wear paths can

be effectively approximated by piece-wise linear paths as demonstrated by Kharoufeh and Cox [14].

Next we describe the total degradation process. The cumulative wear up to time t, denoted by

Wt, is

Wt = W0 +
∫ t

0
r(Zu)du (1)

where we assume W0 ≡ 0, and ∫ t

0
|r(Zu)|du < ∞ a.s.

so that Wt is well defined for each t ≥ 0. The process W ≡ {Wt : t ≥ 0}, is a cumulative stochastic

process (i.e., an additive functional of a regenerative process) as defined in [2, 11, 10, 27]. The
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system is also damaged by shocks that arrive according to a Poisson process with rate λi whenever

Zt = i. The damage caused by an individual shock is assumed to be relatively small; however,

the cumulative effect of small shocks may be significant, as in the case of fatigue deterioration

resulting from mechanical vibrations. Denote by Nt the number of shocks occurring up to time t.

The corresponding counting process {Nt : t ≥ 0} is a Markov-modulated Poisson process (MMPP)

with ` Poisson arrival rates, λ1, λ2, . . . , λ` (see [8] for further details). The damage caused by the

nth shock is a (nonnegative) random variable Yn, and {Yn}∞n=1 is an i.i.d. sequence with proper

c.d.f. FY (y) ≡ P(Y ≤ y), mean µ ≡ E(Y1) and variance σ2
Y ≡ Var(Y1). We assume throughout that

E(Y1) < ∞ and E(Y 2
1 ) < ∞. The cumulative damage due to shocks up to time t is a nonnegative

random variable,

βt =
Nt∑

n=0

Yn, t ≥ 0. (2)

The total degradation accrued by the system up to time t is the sum of degradation due to wear

and that due to shocks given by

Xt =
∫ t

0
r(Zu)du +

Nt∑

n=0

Yn, t ≥ 0. (3)

The positivity of the degradation rates, r(1), r(2), . . . , r(`), ensures that the sample paths of X ≡
{Xt : t ≥ 0} are monotonically increasing almost surely (a.s.), and consequently, that events

{Xt ≤ x} and {Tx ≥ t} are equivalent. The system’s random lifetime is given by

Tx = inf{t > 0 : Xt ≥ x}, (4)

or the first time the degradation process X reaches or exceeds x. Let G(x, t) ≡ P(Tx ≤ t) =

1 − P(Xt ≤ x) denote the unconditional c.d.f. of the unit’s lifetime, and let its nth moment be

denoted by E(Tn
x ) for n ≥ 1. This paper is concerned with two primary aims. First, we characterize

the transient versions of G(x, t) and E(Tn
x ), n ≥ 1 and their conditional counterparts. By transient,

we mean for all x such that 0 < x < ∞. Second, we investigate a centered and time-scaled version

of Xt as t →∞, and a centered and space-scaled version of Tx as x →∞, to construct asymptotic

approximations for the transient indices. Sections 3 and 4 provide our main results, and section 5

presents a few numerical illustrations.

3 Transient Analysis

This section provides the transient reliability indices for a single-unit system whose degradation

evolution is described by a Markov-modulated shock and wear process. Provided are expressions
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for the system’s lifetime c.d.f., as well as the moments of the lifetime, in the form of Laplace-

Stieltjes transforms (LSTs). Let us first introduce the following definitions and notation. The

complementary c.d.f. of the lifetime is

R(x, t) ≡ P(Xt ≤ x) = 1−G(x, t). (5)

Define the joint probability distributions

Ri,j(x, t) = P(Xt ≤ x, Zt = j|Z0 = i), i, j ∈ S. (6)

Our first main result characterizes the joint distribution of the process (X ,Z), conditioned on the

initial state of the environment. This result intuitively extends Theorem 1 of [15] to the case of a

time-varying (modulated) shock arrival rate.

Theorem 1 For each i, j ∈ S, the distribution function Ri,j(x, t) verifies the partial integro-

differential equation

∂Ri,j(x, t)
∂t

+
∂Ri,j(x, t)

∂x
r(j) = λj ([Ri,j(·, t) ∗ FY ] (x)−Ri,j(x, t)) +

∑̀

k=1

qk,jRi,k(x, t) (7)

for x > 0, t ≥ 0 where (∗) denotes the convolution operator.

Proof. The proof is similar to that of Theorem 1 in [15]. Considering only the cumulative

wear of the system first, let Vi,j(x, t) ≡ P(Wt ≤ x,Zt = j|Z0 = i) and let ε > 0 denote a small

time increment. Because Z is a temporally homogeneous Markov process and is independent of

the degradation process X , we may write

Vi,j(x, t + ε) = P(Wt+ε ≤ x, Zt+ε = j|Z0 = i)

=
∑̀

k=1

P(Wt+ε ≤ x, Zt+ε = j|Zt = k, Z0 = i)P(Zt = k)

=
∑̀

k=1

P(Zt+ε = j|Zt = k, Z0 = i)P(Wt+ε ≤ x|Zt = k, Z0 = i)P(Zt = k)

=
∑̀

k=1

P(Zt+ε = j|Zt = k)P(Wt+ε ≤ x,Zt = k|Z0 = i)

=
∑̀

k=1

πk,j(ε)P(Wt+ε ≤ x,Zt = k|Z0 = i)

=
∑̀

k=1

πk,j(ε) Vi,k(x− r(k)ε, t). (8)
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Next we incorporate the impact of Markov-modulated Poisson shocks occurring at rate λZt . Let

Nt denote the random number of shocks up to time t. The transition probability functions for the

Z process, πi,j(ε), i, j ∈ S, can be written as

πi,j(ε) = δi,j + εqi,j + o(ε) (9)

where δi,j assumes the value 1 when i = j and 0 when i 6= j. It is well known that

P(Nt+ε −Nt = 0|Zt = k) = 1− λkε + o(ε), (10a)

P(Nt+ε −Nt = 1|Zt = k) = λkε + o(ε), (10b)

P(Nt+ε −Nt ≥ 2|Zt = k) = o(ε). (10c)

The magnitude of cumulative damage caused by n-independent shocks is given by

βn =
n∑

i=1

Yi.

Since the shock magnitudes form an i.i.d. sequence with distribution function FY , we note that

P(βn ≤ y) ≡ F
(n)
Y (y),

where F
(n)
Y denotes the n-fold convolution of FY with itself. Conditioning on the number of shocks

in the interval (t, t + ε) and the magnitude of damage due to those shocks, we may now write

Rij(x, t + ε) =
∑̀

k=1

πi,k(ε)
∞∑

n=0

P(Nt+ε −Nt = n|Zt = k)

×
∫ ∞

0
P(Xt+ε ≤ x,Zt+ε = j|Zt = k, Y = y)F (n)

Y (dy). (11)

Substituting equations (8) and (10) into (11) we have

Ri,j(x, t + ε) =
∑̀

k=1

πk,j(ε)×
(

Ri,k(x− r(k)ε, t)(1− λkε) + λkε

∫ ∞

0
Ri,k(x− r(k)ε− y, t)FY (dy)

)
+ o(ε). (12)

Using (9) in (12) and simplifying gives

Ri,j(x, t + ε) = (1− λkε)Ri,j(x− r(j)ε, t) + ε
∑̀

k=1

(1− λkε)qk,jRi,k(x− r(k)ε, t)

+ λjε

∫ ∞

0
Ri,j(x− r(j)ε− y, t)FY (dy)

+ ε2
∑̀

k=1

λkqk,j

∫ ∞

0
Ri,k(x− r(k)ε− y, t)FY (dy) + o(ε). (13)
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Rearranging and simplifying the terms of (13), dividing by the time increment ε, and letting ε ↓ 0,

shows that

∂Ri,j(x, t)
∂t

+
∂Ri,j(x, t)

∂x
r(j) =

− λjRi,j(x, t) +
∑̀

k=1

qk,jRi,k(x, t) + λj

∫ ∞

0
Ri,j(x− y, t)FY (dy) (14)

where the right-most term of (14) is the convolution of the distributions Ri,j and FY .

The differential equation (7) describes the joint (spatial) evolution of the degradation process with

the (temporal) evolution of the unit’s operating environment. The impact of shocks is captured by

the convolution term on the right-hand side of (7).

The system of equations can be written in matrix form to make the solution procedure more

transparent. Define the ` × ` matrix R(x, t) = [Rij(x, t)] and recall that λ = diag(λ1, λ2, . . . , λ`).

In matrix notation, (7) may be written as

∂R(x, t)
∂t

+
∂R(x, t)

∂x
Rd = ([R(·, t) ∗ FY ] (x)−R(x, t))λ + R(x, t)Q (15)

where [R(·, t) ∗ FY ] (x) denotes the convolution of each entry of R(x, t) with FY . The initial prob-

ability vector of the environment process Z is α = [αi] where αi ≡ P(Z0 = i), i ∈ S. Let

Pi(A) ≡ P(A|Z0 = i) for A ∈ A, and let Ei(Tn
x ) ≡ E(Tn

x |Z0 = i). The vector e will denote a column

vector of ones, and ei is a column vector whose ith entry is unity and all others are zero. The

unconditional c.d.f. of the system’s lifetime is given by

G(x, t) ≡ P(Tx ≤ t) = 1−αR(x, t)e, (16)

and the conditional c.d.f. is given by

Gi(x, t) ≡ Pi(Tx ≤ t) = 1− e′iR(x, t)e (17)

where e′i denotes the transpose of ei. Let the Laplace-Stieltjes transforms of G(x, t) and Gi(x, t)

with respect to x be

G̃(u, t) ≡
∫ ∞

0
e−uxG(dx, t), Re(u) > 0,

and

G̃i(u, t) ≡
∫ ∞

0
e−uxGi(dx, t), Re(u) > 0,
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respectively. Define an `× ` diagonal matrix, F̃d(u), with each diagonal entry identically equal to

F̃Y (u) ≡
∫ ∞

0
e−uyFY (dy), (18)

the LST of FY with respect to y. The following result generalizes the lifetime distributions of [16],

[13] and [15] to the case of a Markov-modulated shock and wear process.

Theorem 2 The Laplace-Stieltjes transforms of the c.d.f.’s G(x, t) and Gi(x, t), with respect to x

are, respectively,

G̃(u, t) = 1−α exp (X(u)t) e (19)

and

G̃i(u, t) = 1− e′i exp (X(u)t) e, (20)

where X(u) = Q + (F̃d(u)− I)λ− uRd, I is the identity matrix and Re(u) > 0.

Proof. Define the matrix LST of R(x, t) with respect to x as

R̃(u, t) =
∫ ∞

0
e−uxR(dx, t). (21)

Taking the LST of both sides of (15) with respect to x yields a first order, ordinary differential

equation in t,
dR̃(u, t)

dt
+ R̃(u, t)

[
uRd +

(
I− F̃d(u)

)
λ−Q

]
= 0. (22)

Applying the initial condition, R̃(u, 0) = I and rearranging terms, this ordinary differential equation

has the obvious solution,

R̃(u, t) = exp
[(

Q− (I− F̃d(u))λ− uRd

)
t
]
.

Thus, the LST of G(x, t) is given by

G̃(u, t) = 1−α

[∫ ∞

0
e−uxR(dx, t)

]
e

= 1−αR̃(u, t)e.

The LST of the conditional c.d.f., Gi(x, t), is obtained by replacing α by e′i.

We next examine the unconditional and conditional moments of the system lifetime. To this

end, let Tn
x be the nth power of the random variable Tx, and respectively denote the unconditional
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and conditional moments of Tx by E(Tn
x ) and Ei(Tn

x ), n ≥ 1. Define the LST of E(Tn
x ) with respect

to x by

Ẽ(Tn
u ) ≡

∫ ∞

0
e−uxdE(Tn

x ),

and the LST of Ẽi(Tn
x ) as

Ẽi(Tn
u ) ≡

∫ ∞

0
e−uxdE(Tx|Z0 = i).

Corollary 1 For each n ≥ 1, the Laplace-Stieltjes transform of E(Tn
x ) with respect to x is given by

Ẽ(Tn
u ) = n! ·α

(
uRd + (1− F̃Y (u))λ−Q

)−n
e, (23)

and

Ẽi(Tn
u ) = n! · e′i

(
uRd + (1− F̃Y (u))λ−Q

)−n
e (24)

with Re(u) > 0.

Proof. The result can be shown by first defining the Laplace-Stieltjes transform of G̃(u, t)

(with respect to t) given by

Ĝ(u, s) ≡
∫ ∞

0
e−stG̃(u,dt).

Apply standard matrix calculus operations (cf. Neuts [22]), we obtain the first result by

Ẽ(Tn
u ) = (−1)n ∂Ĝ(u, s)

∂sn

∣∣∣∣∣
s=0

.

The conditional version (24) is obtained by simply replacing Ĝ(u, s) by Ĝi(u, s) in the above

expression.

We note that if, for some constant λ (λ > 0), λi = λ for all i ∈ S, the results of Theorem 2

and Corollary 1 reduce to the corresponding LSTs of [15]. Furthermore, if λi = 0 for all i ∈ S,

the model reduces to a Markov-modulated wear process with no shocks as described in [13] and

[16]. The transient results presented here are amenable to numerical Laplace transform inversion;

however, numerical inversion can be unstable when x is either very small or very large, or when |S|
is large. Alternatively, we may consider the limiting behavior of the degradation process with the

aim of constructing asymptotic distribution and moment approximations.
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4 Limiting Behavior

We now examine the cumulative degradation process and lifetime distribution in the asymptotic

regime (i.e., when t → ∞ and x → ∞, respectively). As before, the row vector, π = [πi] for

i = 1, 2, . . . , `, denotes the stationary distribution of the environment process Z. Let

∆ ≡ (Rd + µλ)e,

and note that π∆ is the long-run average rate of degradation (including wear and damage from

shocks). Intuitively, we would expect that, when x is large, the average time for the degradation

process to first reach level x should be very close to x/π∆. Proposition 1 confirms this intuition

by establishing convergence in the mean of the scaled r.v. x−1Tx as x →∞.

Proposition 1 As x →∞,
E(Tx)

x
→ 1

π∆
. (25)

Proof. To prove this result, we first note that as u → 0

F̃Y (u)− 1
u

→ d
du

F̃Y (u)
∣∣∣∣
u=0

= −µ,

so that
1− F̃Y (u)

u
= µ + ε(u)

where uε(u) = o(u). Therefore, using (23),

lim
u→0

u[uRd + (1− F̃Y (u))λ−Q]−1 = lim
u→0

u

[
u

(
Rd +

(
1− F̃Y (u)

u

)
λ

)
−Q

]−1

= lim
u→0

u [u(Rd + µλ)−Q + o(u)λ]−1

=
(

lim
u→0

u−1 [u(Rd + µλ)−Q + o(u)λ]
)−1

=
(

lim
u→0

u−1 [u(Rd + µλ)−Q]
)−1

= lim
u→0

u [u(Rd + µλ)−Q]−1 .

Next we make use of the asymptotic properties of the Laplace transform to obtain,

lim
x→∞

E(Tx)
x

= lim
u→0

uẼ(Tu)

= lim
u→0

uα[uRd + (1− F̃Y (u))λ−Q]−1e

= lim
u→0

αu[u(Rd + µλ)−Q]−1e

= lim
u→0

αu[uI− (Rd + µλ)−1Q]−1(Rd + µλ)−1e.
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Since (Rd + µλ)−1 is diagonal, Q̂ ≡ (Rd + µλ)−1Q is a generator matrix for a CTMC {Ẑt : t ≥ 0}
with transition probability functions Π̂(t) and limiting distribution,

π̂ =
π(Rd + µλ)

π∆
(26)

since (Rd + µλ)−1Q is positive recurrent. The transition probability functions have LST

Ψ(u) =
∫ ∞

0
e−utdΠ̂(t) = u(uI− Q̂)−1. (27)

Applying the asymptotic properties of the LST gives,

lim
u→0

Ψ(u) = lim
t→∞ Π̂(t) ≡ Π̂(∞).

Therefore, we may write

lim
x→∞

E(Tx)
x

= lim
u→0

αΨ(u)(Rd + µλ)−1e

= αΠ̂(∞)(Rd + µλ)−1e

=
1

π∆
.

Before generalizing Proposition 1 to the nth moment (n ≥ 2), we need the following lemma.

Lemma 1 Let f(·) be a function of exponential order on the positive real line such that f (m)(t) →
∞ as t →∞ for m = 0, 1, . . . , n− 1, and let f̃(s) denote its Laplace-Stieltjes transform. Then

lim
s→0

snf̃(s) = n! lim
t→∞

f(t)
tn

.

Proof. It is well known that

L
(

dn+1f

dtn+1

)
(s) = sn+1f∗(s)−

n+1∑

k=1

sk−1f (n−k+1)(0),

where f∗(s) denotes the Laplace transform of f . Letting s → 0 on both sides of the above expression,

we have

lim
s→0

sn+1f∗(s)− f (n)(0) = lim
s→0

L
(

dn+1f

dtn+1

)
(s)

= lim
s→0

∫ ∞

0
e−stf (n+1)(t)dt

= lim
a→∞

∫ a

0
f (n+1)(t)dt

= lim
a→∞ f (n)(a)− f (n)(0).
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That is,

lim
s→0

snf̃(s) = lim
s→0

sn+1f∗(s) = lim
t→∞ f (n)(t) = n! lim

t→∞
f(t)
tn

,

where the last equality is obtained by n applications of l’Hospital’s rule.

Proposition 2 For each n ≥ 2, as x →∞,

E(Tn
x )

xn
→ 1

(π∆)n
. (28)

Proof. Lemma 1 gives us

lim
u→0

unẼ(Tn
u ) = n! lim

x→∞
E(Tn

x )
xn

.

That is,

lim
x→∞

E(Tn
x )

xn
=

1
n!

lim
u→0

unẼ(Tn
u )

= lim
u→0

α
[
u(uI− (Rd + µλ)−1Q(Rd + µλ)−1)

]n
e

= α
[
Π̂(∞)(Rd + µλ)−1

]n
e

=
1

(π∆)n
.

Proposition 2 provides some insight as to the behavior of x−1Tx as the degradation threshold x

gets large. In particular, we see that as x →∞,

E
[(

Tx

x
− 1

π∆

)n]
= E

[
n∑

k=0

(
n

k

)(
Tx

x

)n−k ( −1
π∆

)k
]

=
n∑

k=0

(
n

k

)
(−1)kE

[(
Tx

x

)n−k
](

1
π∆

)k

→
(

1
π∆

)n n∑

k=0

(
n

k

)
(−1)k = 0.

However, a stronger result can be proved. Note that the environment process {Zt : t ≥ 0} is

regenerative with regeneration epochs S0 = 0 and

Sk+1 = min{t > Sk : Zt = Z0, Zt− 6= Z0}, k ≥ 0.

Let r̄ ≡ πRde denote the long-run average wear rate, let κ ≡ 1/E(S1) be the average cycle frequency

and λ̄ ≡ πλe is the long-run average shock arrival rate. Using these quantities, we now prove that

x−1Tx converges almost surely to a fixed value.

Theorem 3 As x →∞,
Tx

x
→ 1

π∆
a.s. (29)
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Proof. Let U0 ≡ WS0 = 0 and Uk+1 ≡ WSk+1
− WSk

for k ≥ 0. We note that {Uk}∞k=1 is

an i.i.d. sequence of random variables. Thus, by the strong law of large numbers (SLLN) and the

renewal reward theorem,

WSn

Sn
=

n

Sn
· 1
n

n∑

k=1

Uk → κE(WS1) = r̄ a.s.

We see also by the SLLN that

βt

t
=

Nt

t
· 1
Nt

Nt∑

k=1

Yk → λ̄µ a.s.

Combining the shock and wear components, we have

lim
t→∞

Xt

t
= lim

t→∞
Wt + βt

t
= lim

n→∞
WSn

Sn
+ lim

t→∞
βt

t

= r̄ + λ̄µ a.s.

= π∆ a.s.

Now note that XTx = x < XTx+1, and so

lim inf
x→∞

x

Tx
= lim

x→∞
XTx

Tx
= π∆ = lim

x→∞
XTx+1

Tx
≥ lim sup

x→∞
x

Tx
a.s.

Therefore,

lim
x→∞

x

Tx
= π∆ a.s.,

which implies our result.

Next our aim is to characterize centered and scaled versions of Xt and Tx as t →∞ and x →∞,

respectively. To this end, define the random variable

ψ1(r̄) =
∫ S1

0
[r(zu)− r̄] du = WS1 − r̄S1,

and let σ2
W ≡ Var(ψ1(r̄)) denote the cyclic wear variance. In the results that follow, N(0, 1) denotes

a standard normal random variable (i.e., one with mean 0 and variance 1), and⇒means convergence

in distribution. Before stating our main results, it will be helpful to review an important result due

to Glynn and Whitt [11] which applies to both the shock and wear processes.

Theorem 4 (Glynn and Whitt [11]). There exist constants a and b such that

t−1/2(Wt − at) ⇒ bN(0, 1) as t →∞

if and only if E(ψ1(a)) = 0 and Var(ψ1(a)) = E(S1)b2.
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This result establishes necessary and sufficient moment conditions for the shock and wear processes

to converge to a standard normal variable when properly scaled.

Proposition 3 As t →∞,

t−1/2(Xt − π∆t) ⇒ σN(0, 1),

where σ =
√

κσ2
W + λ̄σ2

Y .

Proof. To prove this result, we can consider the damage due to shocks and the wear degrada-

tion separately. For the shock damage, note that t−1Nt → λ̄ a.s., so we may conclude by Theorem

2.1 of [11] that

t−1/2(βt − µλ̄t) ≈ t−1/2
Nt∑

n=0

(Yn − µ) ⇒ N(0, λ̄σ2
Y ) (30)

as t → ∞. The environment process Z is regenerative with the first regeneration epoch having

duration S1. Therefore, the renewal reward theorem shows that

E(ψ1(r̄)) = E
(∫ S1

0
[r(Zu)− r̄]du

)
= 0.

Furthermore, we have that

Var(ψ1(r̄)) = κσ2
WE(S1).

Because ψ(r̄) satisfies the moment conditions outlined in [11], we conclude that

t−1/2(Wt − r̄t) ⇒ N(0, κσ2
W ) (31)

as t → ∞. The result is finally obtained by combining equations (30) and (31) and noting that

π∆ = r̄ + µλ̄.

Proposition 3 provides the means by which to analyze a centered and space-scaled version of the

lifetime distribution in the asymptotic regime.

Theorem 5 As x →∞,

( x

π∆

)−1/2 (
Tx − x

π∆

)
⇒ σ

π∆
N (0, 1) .

where σ =
√

κσ2
W + λ̄σ2

Y .
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Proof. The equivalence of events {Tx > t} and {Xt ≤ x} shows that

P(Tx > t) = P(Xt ≤ x) = P
(

Xt − (π∆)t
σ
√

t
≤ x− (π∆)t

σ
√

t

)
.

Let t, x →∞ in a nontrivial way, i.e., such that

x− (π∆)t
σ
√

t
→ c,

where c is a real constant. By Theorem 3, this equivalently means that

t− x/(π∆)√
σ2x/(π∆)3

→ −c,

as t, x →∞. Since

P(Tx > t) = P

(
Tx − x/(π∆)√

σ2x/(π∆)3
>

t− x/(π∆)√
σ2x/(π∆)3

)
,

we have

lim
t,x→∞P

(
Tx − x/(π∆)√

σ2x/(π∆)3
>

t− x/(π∆)√
σ2x/(π∆)3

)
= lim

t,x→∞P
(

Xt − (π∆)t
σ
√

t
≤ x− (π∆)t

σ
√

t

)
.

Denote by Φ(·) the standard normal distribution function. Then we may write,

lim
x→∞P

(
Tx − x/(π∆)√

σ2x/(π∆)3
> −c

)
= lim

t→∞P
(

Xt − (π∆)t
σ
√

t
≤ c

)
= Φ(c),

by Proposition 3. Thus,

lim
x→∞P

(
Tx − x/(π∆)√

σ2x/(π∆)3
≤ c

)
= 1− Φ(−c) = Φ(c),

which implies our result.

Theorem 5 provides a simple normal approximation to the lifetime distribution that may be

used as a surrogate for equations (19) and (20). This approximation, along with the asymptotic

moment results, can be used in a variety of ways. For instance, the standard reliability indices

(e.g., mean time-to-failure or the reliability function) can be compared for identical, single-unit

systems that operate in different environments. Moreover, the asymptotic normality of the lifetime

distribution can be used in the context of sequential decision making, particularly for adaptive

maintenance planning. By inspecting and updating the unit’s degradation level periodically, one

can prescribe dynamic optimal maintenance actions that evolve temporally with the unit’s remain-

ing useful lifetime distribution. The remaining lifetime distribution can be easily computed (via

look-up tables) using the asymptotic normal distribution, whereas it is very cumbersome to repeat-

edly compute its transient counterpart. The next section illustrates the quality of the asymptotic

approximations through two numerical examples.
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5 Numerical Illustrations

This section provides two numerical examples that illustrate the usefulness of the simple asymp-

totic approximations of section 4. To this end, let γ ≡ 1/π∆, and define the random variable

Γx ≡ (γx)−1/2 (Tx − γx) .

Theorem 4 asserts that Γx ⇒ γσN(0, 1) as x → ∞. Define the (conditional) c.d.f. of Γx, given

that the initial state of the environment is i ∈ S, as

Fi(x, t; γ) ≡ P(Γx ≤ t|Z0 = i)

= P((γx)−1/2 (Tx − γx) ≤ t|Z0 = i)

= Gi(x, t
√

γx + γx). (32)

Next denote by Φ̂(t; γ, σ) the c.d.f. of a normal random variable with mean zero and variance

(γσ)2. Furthermore, let T ⊆ R+ ≡ [0,∞), and denote the maximum absolute deviation between

Fi(x, t; γ) and Φ̂(t; γ, σ) by

sup
t∈T

|Fi(x, t; γ)− Φ̂(t; γ, σ)|, x > 0.

By Theorem 5, we can assert that sup
t∈T

|Fi(x, t; γ)−Φ̂(t; γ, σ)| → 0 as x →∞. However, the analytical

rate of convergence is unavailable because the distribution function Fi(x, t; γ) can only be obtained

numerically via the inverse Laplace transform,

Fi(x, t; γ) = L−1
(
u−1G̃i(u, t

√
γx + γx)

)
(33)

where L−1 denotes the inverse Laplace transform operator. This inverse transform will serve as the

baseline distribution against which we will compare the asymptotic normal approximation Φ̂(t; γ, σ)

on the fixed set T for several (increasing) degradation thresholds.

Additionally, we would like to assess the quality of the asymptotic moment approximations by

comparing them to the transient moments given by

E(Tn
x ) = L−1

(
u−1E(Tn

u )
)
, n ≥ 1. (34)

The asymptotic approximation of the nth moment of Tx is given by

E(Tn
x ) ≈ xn

(π∆)n
, n ≥ 1. (35)

The transient c.d.f. values of (33), and the transient moments of (34), were obtained by coding

the inversion algorithms of Abate and Whitt [1] in the MATLAB computing environment.
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5.1 An Alternating Environment

The first example is a simple environment which alternates between two distinct states (S =

{1, 2}). Thus, the environment may be viewed as an alternating renewal process (or up-down

machine) wherein the up and down times are mutually independent. The (positive recurrent)

generator matrix of the process is

Q =


 −8.0 8.0

6.0 −6.0


 ,

and its stationary distribution is

π = [ 0.4286 0.5714 ].

The diagonal matrix of wear rates is Rd = diag (1.0, 0.25), the diagonal matrix of Poisson shock

arrival rates is λ = diag (0.25, 2.0), and the vector ∆ is given by

∆ =


 1.0625

0.7500


 .

The Laplace-Stieltjes transform of the shock-magnitude distribution function is

F̃Y (u) =
4.0

4.0 + u
, Re(u) > 0,

i.e., the damage induced by each shock is an exponential random variable with rate parameter 4.0.

Using these input parameters, and assuming the environment is initially in state 1 with probability

1.0, we can easily compute the following:

γ =
1

π∆
≈ 1.13131; λ̄ = πλe ≈ 1.25000;

σ2
W ≈ 0.02778; σ2

Y = 0.06250;

κ = 1/E(S1) ≈ 3.4286; σ =
√

κσ2
W + λ̄σ2

Y ≈ 0.41637.

First we compare the lower (first and second) moments of Tx using equations (34) and (35). The

results are summarized in Table 1.
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Table 1: E(Tn
x |Z0 = 1), n = 1, 2, when Z has two states.

E(Tx|Z0 = 1) E(T 2
x |Z0 = 1)

Threshold (x) Transient Asymptotic Transient Asymptotic

0.25 3.41992E-01 2.82828E-01 1.35629E-01 7.99918E-02

0.50 6.45565E-01 5.65657E-01 4.74599E-01 3.19967E-01

1.00 1.21845E+00 1.13131E+00 1.64830E+00 1.27987E+00

5.00 5.74431E+00 5.65657E+00 3.40842E+01 3.19967E+01

10.00 1.14009E+01 1.13131E+01 1.32223E+02 1.27987E+02

20.00 2.27140E+01 2.26263E+01 5.20481E+02 5.11948E+02

50.00 5.66534E+01 5.65657E+01 3.22110E+03 3.19967E+03

100.00 1.13219E+02 1.13131E+02 1.28416E+04 1.27987E+04

200.00 2.26350E+02 2.26263E+02 5.12807E+04 5.11948E+04

500.00 5.65744E+02 5.65657E+02 3.20182E+05 3.19967E+05

As seen in Table 1, the asymptotic approximations track closely with their transient counterparts.

The discrepancy between the values is diminishing as x increases. In general, the asymptotic ap-

proximation underestimates the time to reach level x and can, therefore, be viewed as a conservative

approximation.

Next we compared the asymptotic normal lifetime distribution Φ̂(t; γ, σ) with the numerically

inverted lifetime c.d.f. using (33). Figure 1 displays three different transient distributions and

the asymptotic approximation. For this illustration, we note that the asymptotic approximation

performs well, even when x is small.
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Figure 1: Transient versus asymptotic lifetime c.d.f.s.

To further illustrate the quality of the c.d.f. approximations, we compared the transient and

asymptotic distributions using the maximum absolute deviation in probability. This error measure

is plotted against values of x ranging from 1.0 to 100.0 in increments of 5.0 units in Figure 2.
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Figure 2: Maximum absolute deviation in probability as x →∞.

Figure 2 indicates a possibly exponential rate of convergence to the limiting distribution; however,

this cannot be verified analytically. For this example, the deviation is very small, even with x < 10.0.

Next we study a more diverse environment with ten distinct states.

5.2 General CTMC Environment

The second example considers an environment that transitions between ten states, i.e., the

environment {Zt : t ≥ 0} has state space S = {1, 2, . . . , 10}. The 10 × 10 infinitesimal generator

matrix is given by

Q =




−3.86 0.06 0.49 0.51 0.07 0.49 0.41 0.93 0.37 0.53

0.39 −3.37 0.04 0.45 0.38 0.50 0.56 0.26 0.25 0.55

0.25 0.46 −3.93 0.33 0.37 0.84 0.27 0.20 0.92 0.28

0.35 0.86 0.33 −4.67 0.48 0.81 0.78 0.05 0.63 0.37

0.74 0.86 0.90 0.89 −6.18 0.86 0.39 0.61 0.88 0.06

0.65 0.47 0.31 0.76 0.34 −4.30 0.03 0.55 0.64 0.54

0.94 0.79 0.25 0.88 0.25 0.57 −5.41 0.10 0.80 0.84

0.83 0.66 0.43 0.46 0.58 0.61 0.56 −4.71 0.44 0.15

0.47 0.00 0.84 0.80 0.52 0.10 0.20 0.44 −3.55 0.17

0.63 0.13 0.18 0.13 0.16 0.16 0.09 0.07 0.10 −1.65



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The stationary distribution of this chain is

π = [ 0.1257 0.1004 0.0894 0.0984 0.0497 0.0992 0.0574 0.0683 0.1179 0.1937 ].

The Markov-modulated wear rates and shock arrival rates are summarized in Table 2.

Table 2: Summary of shock and wear rates for example 2.

State (i) Wear Rate (r(i)) Shock Arrival Rate (λi)

1 1.0000 0.2359

2 2.0000 0.7117

3 3.0000 0.5264

4 4.0000 0.4782

5 5.0000 0.5673

6 6.0000 0.5698

7 7.0000 0.9437

8 8.0000 0.6053

9 9.0000 0.9887

10 10.0000 0.0794

We assume that the damage induced by each shock follows an Erlang distribution with parameters

2 and 8.0. That is, E(Y1) = 2/8.0 = 0.25. The Laplace-Stieltjes transform of the shock-magnitude

c.d.f. is therefore

F̃Y (u) =
(

8.0
8.0 + u

)2

, Re(u) > 0.

The remaining parameter values are as follows:

γ =
1

π∆
≈ 0.16937; λ̄ = πλe ≈ 0.50731;

σ2
W = 13.30623; σ2

Y = 0.03125;

κ = 1/E(S1) ≈ 0.48523; σ =
√

κσ2
W + λ̄σ2

Y ≈ 2.5411.

As before, we first assess the quality of the asymptotic moment approximations. The results are

summarized in Table 3, and they consistently show that the asymptotic approximation improves

as the degradation threshold x increases. As in the first example, the asymptotic approximation

tends to underestimate the transient moments.
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Table 3: E(Tn
x |Z0 = 1), n = 1, 2, when Z has ten states.

E(Tx|Z0 = 1) E(T 2
x |Z0 = 1)

Threshold (x) Transient Asymptotic Transient Asymptotic

10.00 1.97116E+00 1.69365E+00 4.15994E+00 2.86846E+00

25.00 4.50836E+00 4.23413E+00 2.10670E+01 1.79279E+01

40.00 7.03183E+00 6.77461E+00 5.07335E+01 4.58954E+01

55.00 9.54684E+00 9.31509E+00 9.30839E+01 8.67709E+01

70.00 1.20536E+01 1.18556E+01 1.48036E+02 1.40555E+02

85.00 1.45522E+01 1.43961E+01 2.15506E+02 2.07246E+02

100.00 1.70425E+01 1.69365E+01 2.95412E+02 2.86846E+02

115.00 1.95247E+01 1.94770E+01 3.87671E+02 3.79354E+02

130.00 2.19988E+01 2.20175E+01 4.92203E+02 4.84770E+02

145.00 2.44647E+01 2.45580E+01 6.08924E+02 6.03094E+02

160.00 2.69226E+01 2.70984E+01 7.37755E+02 7.34326E+02

Next we consider the lifetime distribution approximations. In Figure 3 we plot three distinct

transient distributions along with the asymptotic normal approximation. The discrepancy between

the c.d.f.s is significant when x is small (namely when x = 1.0), but improves dramatically as x

increases. When x = 100.0, the asymptotic approximation is very accurate as expected.
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Figure 3: Transient versus asymptotic lifetime c.d.f.s.

As for the two-state example, we next plotted the maximum absolute deviation in probability as a

function of the degradation threshold, x. Consistent with the two-state case, Figure 4 shows that

the worst-case deviation is monotonically decreasing (to zero) as x →∞.
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Figure 4: Transient versus asymptotic lifetime c.d.f.s.

The two numerical examples illustrate the usefulness of the asymptotic approximations, namely

that they allow one to circumvent the task of numerically inverting Laplace transforms. The next

section summarizes our main contributions and provides some concluding remarks.

6 Conclusions

In this paper we have presented both transient and asymptotic reliability indices for a single-

unit system whose degradation process may be modeled as a Markov-modulated shock and wear

process. This analytical framework provides a great deal of modeling flexibility, particularly in the

context of degradation-based reliability modeling, by allowing for a wide range of wear dynamics

and the inclusion of damage-inducing shocks that are dictated by the device’s random operating

environment. These characteristics make it appealing for modeling real systems when degradation

can be directly observed, or when a direct mapping between the environmental conditions and the

degradation can be accurately modeled (e.g., by employing specific physics-of-failure models).

While the models are mathematically sound and easy to implement, in their current form they

lack the flexibility to account for environment state sojourn times, or shock inter-arrival times, that

are not exponentially distributed. In this sense, the models are somewhat restrictive. Moreover,

the models assume that future wear and damage are independent of the history of the degradation

process – an assumption that may be very difficult to justify in practice. Nevertheless, the main
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results provide a framework for simple, asymptotically accurate approximations that can serve as

a starting point for applications requiring real-time updating of remaining lifetime distributions

(as in a condition-based maintenance environment). Specifically, real-time observations of the

evolution of the environment, or the degradation level, can be used to update the parameters

of the modulating process, the state-dependent wear rates, and the shock arrival rates, using

the techniques described in Kharoufeh and Cox [14]. Tracking the occurrence of environment

transitions, and the number of shocks occurring over a (sufficiently long) time interval will provide

reasonable statistical estimates, so long as the number of environment states is not too large.

The existence of a minimal representation of the modulating Markov chain that leads to accurate

distribution estimates was posited in [14]. Such a representation indicates that the results of this

work can be implemented in a realistic setting.

In the future it will be instructive to investigate similar approximation schemes that allow

for a generalized environment process that does not evolve as a continuous-time Markov chain.

If the models are to be of any practical value, it will be necessary to accurately estimate the

functions r and λ describing the evolution of wear and damage as a function of the environment.

For this purpose, real degradation data is required, as is the guidance and experience of subject

matter experts, to ensure the wear and damage models are appropriate for the application. An

examination of multi-unit systems is also warranted. However, for a multi-unit system in a random

environment, it may not be possible to treat each unit independently because, although the unit

lifetimes may be statistically independent, they share a common dependence on the operating

environment; therefore, under certain conditions, the unit lifetimes are associated to one another

as shown by Çinlar et al. [4]. Nevertheless, our approach allows for a multi-unit system to be viewed

as a single-unit system if the aggregate influence of the environment can be discerned. Finally, an

important issue that we did not consider in this paper is the rate of convergence of the lifetime

moments and distributions to their respective limits. Our empirical results indicate that the rate

of convergence may be exponential, though this conjecture cannot be confirmed analytically using

the transform results. It will be instructive to derive error bounds for our approximations in future

work.
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