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Abstract

We present simpli0ed analytical results for the numerical evaluation of failure time probabilities for a
single-unit system whose cumulative wear over time depends on its external environment. The failure time
distribution is derived as a one-dimensional Laplace–Stieltjes transform with respect to the temporal variable
using a direct solution approach and by inverting an existing two-dimensional result with respect to the spatial
failure threshold variable. Two numerical examples demonstrate that accurate cumulative probability values
can be obtained in a straightforward manner using standard computing environments.

Scope and purpose

Reliability models that incorporate the e(ect of a stochastic and dynamic environment on a unit’s lifetime have
attracted a moderate amount of attention in the past decade. However, evaluating failure time probabilities using
such models is nontrivial in all but a few cases. Kharoufeh [1] provided a closed-form lifetime distribution
for a continuous Markovian wear process as a two-dimensional Laplace transform. The main purpose of this
paper is to reduce the lifetime distribution to a one-dimensional Laplace transform in order to facilitate simpler
numerical implementation.
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1. Introduction

The need for an accurate assessment of a unit’s reliability is apparent in many areas of operations
research, and especially for the purpose of prescribing sound repair or replacement polices. Over
the past four decades, parametric distributions (e.g., Weibull, exponential, normal) have been used
to characterize the useful lifetime of single-unit systems. The assumption that the random lifetime
follows a parametric distribution is usually employed as a result of goodness-of-0t tests using failure
time observations obtained via accelerated life testing. However, these tests are usually performed in
a controlled, static laboratory environment. Unfortunately, these testing conditions may not provide
an accurate representation of the unit’s true operating environment.

In light of these concerns, a relatively recent class of failure models has been proposed to capture
the e(ects of the physical environment on the unit’s cumulative degradation (wear) and lifetime.
For instance, some recent models in the reliability literature, such as those due to Gillen and Celina
[2], consider the degradation of materials. Meeker et al. [3] discuss general approaches to predicting
lifetime distributions in accelerated life tests for highly variable environments. The models presented
therein focus on speci0cation of the degradation path as it depends explicitly on the environment. In
that paper, the authors note the need for a formal stochastic-process model representing the ambient
environment and for expedient numerical techniques for the estimation of relevant measures.

In the stochastic modelling community, numerous techniques focused on a stochastic-process
approach to lifetime analysis have been reviewed in a cogent survey by Singpurwalla [4] who high-
lights the most important contributions. The common thread running through each of these approaches
is a mathematical characterization of the environment as a continuous-time stochastic process on a
continuous or discrete state space. This approach is naturally appealing since it provides a means
by which the stochastic evolution of the environment, and its ultimate e(ect on the operating unit,
may be modelled. Singpurwalla [4] reviews failure models describing (i) the state (or wear) of the
unit, (ii) the failure or hazard rate function, (iii) combinations of unit state and an external, co-
variate driving process, (iv) stochastic shock models, and (v) a response variable (highly correlated
with unit lifetime) modelled as a stationary, Gaussian process. As noted in [4], the computational
requirements for implementation of these techniques remains a signi0cant challenge.

In some cases, however, results exist in the recent literature as multidimensional Laplace transforms
(see Kharoufeh [1]) that allow for the explicit calculation of the unit’s lifetime distribution. The unit
lifetime is closely related to the task completion time in the performability analysis of computer
systems whose distribution also exists as a two-dimensional Laplace transform (cf. [5] and [6]).
Numerical solutions for such models may be obtained in the time domain via multidimensional
inversion of the Laplace transform. However, numerical procedures may be di<cult to apply, can
be computationally intensive and are, at times, unstable. For these reasons, it is desirable to obtain
transform results in a single dimension, thereby allowing for the implementation of one-dimensional
inversion algorithms, based on a Fourier-series representation, which have proven to be robust for a
variety of problems. We shall further discuss such procedures in Section 4.

This paper provides simpli0ed results for the numerical evaluation of the lifetime distribution of
a single-unit system that accumulates wear over time due to the in;uence of its operating environ-
ment. The environment, which is often time-varying, is modelled as a continuous-time stochastic
process denoted throughout by {Z(t): t¿ 0}. The wear rate of the unit depends explicitly on the
state of its random environment. Assuming that repairs do not take place to restore the condition of
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the system, the cumulative wear up to time t may be characterized by a nondecreasing stochastic
process {X (t) : t¿ 0}. The system begins its lifetime in perfect working order but experiences wear
under the in;uence of its random environment until the state of the system exceeds a 0xed threshold
value x, at which time it fails. We denote the time until failure by a random variable Tx. When the
environment process is assumed to be a temporally homogeneous, continuous-time Markov chain
(CTMC) on a 0nite state space, an explicit result exists for the unit lifetime distribution as a double
Laplace transform (see Kharoufeh [1]). The two-dimensional result stems from the Laplace transform
solution of a weakly-coupled matrix partial di(erential equation. The evaluation of numerical values
for this model is nontrivial due to the computationally intensive (and sometimes unstable) process
of multidimensional, numerical inversion. Hence, our aim is to simplify the procedure by analyti-
cally reducing the dimensionality of the problem and exploiting widely available single-dimension
inversion algorithms.

The main result of this work is a closed-form, analytical expression for the system lifetime in
the form of a one-dimensional Laplace transform as opposed to two dimensions. The distribution
function can be computed through direct numerical inversion of the Laplace transform with respect
to the temporal variable only. The simpli0ed result is proven in two ways: (i) by directly solving
an ordinary (matrix) di(erential equation via standard methods, and (ii) by analytically inverting the
two-dimensional result of [1] with respect to the spatial dimension x. The moments of the system
lifetime are also computed explicitly. The one- and two-dimensional distribution function results will
be demonstrated via two numerical examples.

In the context of failure models in a dynamic environment, our model considers the state of the
unit and an external covariate process (the environment process). Though the failure time distribution
can be derived analytically, the issue of implementation remains a challenge. This work provides
a viable approach that can be implemented in a relatively simplistic manner, particularly when
compared with the previous two-dimensional results of [1]. We are able to compute failure time
probabilities in a far more expedient manner with little to no degradation in performance. Moreover,
our analytical result may be easily implemented with o(-the-shelf software packages and known
numerical inversion techniques (such as the algorithm in [7]).

The remainder of the paper is organized in the following manner. The next section reviews the
formal mathematical model for the lifetime distribution as a two-dimensional Laplace transform. In
Section 3, we present our main analytical result and prove the result in two ways. In Section 4,
numerical examples are provided to compare the one- and two-dimensional results with simulated
cumulative probability values. Finally, we provide some concluding remarks in Section 5.

2. Mathematical model

In this section, we brie;y review the mathematical model and main results of Kharoufeh [1] from
which the results of this paper will be derived. The single-unit system is subject to continuous and
additive deterioration in time due to an explicit dependence on the state of an external random
environment. Under normal operating conditions, the system accumulates wear until the magnitude
of its cumulative wear exceeds a 0xed threshold value x, at which time the system fails. Such
failures are often referred to as “soft failures” (cf. Meeker and Escobar [8], p. 327). The rate of
deterioration (or wear rate) of the system at time t ¿ 0 is governed by a random environment that
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is modelled as an ergodic, continuous-time Markov chain, {Z(t): t¿ 0}, on a 0nite state space
S := {1; 2; : : : ; K} where K is a positive integer. The evolution of the wear process can be described
by a continuous-time stochastic process {X (t): t¿ 0} that assumes values on the nonnegative real
line denoted by R+.

The random variable Z(t) denotes the state of the environment process at time t ∈R+. De0ne
R(t) as the wear rate of the system at time t ∈R+ and de0ne a positive function r : S→R+ \
{0}. The properties of the function r(·) are dictated by the type of system under consideration
and its surrounding environment. Since the wear rate of the system is explicitly dependent on
the environment process, the wear rate process {R(t): t¿ 0} assumes values in the space D =
{r(1); : : : ; r(K)}. If Z(t) = i∈ S, then R(t) := r(Z(t)) = r(i)∈D. The environment transitions from
state i∈ S to state j ∈ S, j �= i, at time t according to a Markov transition function P(t) := [pi;j(t)]
where pi;j(t) := P{Z(t) = j|Z(0) = i}. The in0nitesimal generator matrix for the Z process shall be
denoted by Q, and its initial distribution vector shall be denoted by � := [�i] with �i := P{Z(0)= i}.

The cumulative wear process of the single-unit system, {X (t) : t¿ 0} (abbreviated as X ), is a
continuous, additive functional of Z , and thus, (X; Z) constitutes a special case of a Markov additive
process (cf. CP inlar [9]). The single-unit system will fail when the cumulative wear exceeds a 0xed
threshold level x. For this reason, the time until failure for the unit is a type of 0rst passage time
for the cumulative wear process X . Let � := R+ × S denote the appropriate sample space for the
Markov additive process {(X (t); Z(t)): t¿ 0}. For each sample path, !∈�, the cumulative wear
of the single-unit system up to time t ∈R+ is de0ned by

X!(t) =
∫ t

0
r(Z!(u)) du: (1)

For brevity, we shall suppress the dependence of (X; Z) on !. The lifetime of the unit is de0ned by
the random variable

Tx = inf{t : X (t)¿x}: (2)

That is, the random variable Tx is that instant of time at which the degradation of the unit 0rst
exceeds the failure threshold value x. To obtain the distribution of this random variable, de0ne the
following joint probability distribution

Vi;j(x; t) = P{X (t)6 x; Z(t) = j|Z(0) = i} (3)

and the distribution matrix of X (t) as V(x; t) = [Vi;j(x; t)]. Due to the dual relationship of (2), it
follows that G(x; t) := P{Tx6 t}, the unconditional distribution of Tx, is given by

G(x; t) = 1 − �V(x; t)1 (4)

where 1 denotes a K-dimensional column vector of ones. Let Vt(x; t) and Vx(x; t) denote the partial
derivatives of V(x; t) with respect to t and x, respectively, and RD := diag(r(1); r(2); : : : ; r(K))
denote the diagonal matrix of wear rates. The following result from [1] is revisited here owing to
its relevance to the main result of this paper.

Theorem 1 (Kharoufeh [1]): The distribution matrix V(x; t) satisAes the matrix partial diBerential
equation

Vt(x; t) + Vx(x; t)RD = V(x; t)Q: (5)
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Proof. The result is proved via a standard conditioning argument. Let �¿ 0. Then,

Vi;j(x; t + �) =P{X (t + �)6 x; Z(t + �) = j|Z(0) = i}

=
∑
k

P{Z(t + �) = j|X (t + �)6 x; Z(t) = k; Z(0) = i}

×P{X (t + �)6 x|Z(t) = k; Z(0) = i}P{Z(t) = k}

= (1 + �qjj)Vi;j(x − �r(j); t) +
∑

k∈S\{j}
�qkjVi;k(x − �r(k); t) + o(�): (6)

Simplifying Eq. (6), dividing by the time increment � and letting � ↓ 0, Vi;j(x; t) is seen to satisfy
the partial di(erential equation

@Vi; j(x; t)
@t

+
@Vi; j(x; t)

@x
r(j) =

∑
k∈S

qkjVi;k(x; t); j ∈ S (7)

which may be written in matrix form as

Vt(x; t) + Vx(x; t)RD = V(x; t)Q: (8)

De0ne V∗(x; s) as the Laplace transform (LT) of V(x; t) with respect to t and Ṽ∗(u; s), the Laplace–
Stieltjes transform (LST) of V∗(x; s) with respect to x. Using these de0nitions, the double Laplace
transform of the distribution function G(x; t) is given by

G̃∗(u; s) = s−1 − �Ṽ∗(u; s)1

= s−1 − �(uRD + sI − Q)−11 (9)

with Re(s)¿ 0 and Re(u)¿ 0.
The appealing aspect of this solution is that the double transform is available in closed form,

lending itself to numerical inversion by the approaches of Choudhury et al. [10] and Moorthy
[11]. However, the multidimensional inversion algorithms are di<cult to apply and computationally
expensive. Moreover, appropriate algorithm parameter selection is not immediately obvious. The
main objective of this research is to circumvent the two-dimensional inversion process altogether by
providing the transform of the lifetime distribution function in one dimension. Our main results for
the distribution function and moments are provided in Section 3.

3. Main results

Owing to the fact that our result is in one transform variable, we adopt the following notation for
the distribution function of the random lifetime:

Gx(t) := G(x; t) = P{Tx6 t}: (10)
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De0ne the Laplace–Stieltjes transform of Gx by

G̃x(s) =
∫
R+

e−stGx(dt): (11)

Our main result is given by the following theorem.

Theorem 2. Suppose the single-unit system is subject to a Markovian environment process Z with
initial distribution, �, inAnitesimal generator matrix, Q, and wear rate matrix, RD. The Laplace–
Stieltjes transform of the failure time distribution is

G̃x(s) = � exp(R−1
D (Q − sI)x)1: (12)

Theorem 2 will be proved in two ways. The 0rst is a direct solution while the second involves
analytical inversion of the two-dimensional result with respect to the spatial variable x.

Proof (Method 1): The result is 0rst obtained by converting the partial di(erential equation:

Vt(x; t) + Vx(x; t)RD = V(x; t)Q

into an ordinary di(erential equation (ODE) and solving in the transform space. Taking the Laplace
transform of both sides of the above equation with respect to t, noting that V(x; 0) = I (the identity
matrix), and rearranging terms yields the linear ODE with constant coe<cients,

dV∗(x; s)
dx

+ V∗(x; s)(sI − Q)R−1
D = R−1

D : (13)

We solve the ODE of (13) using an appropriate integrating factor which is given by

"(x) = exp
(∫

(sI − Q)R−1
D dx

)

=exp
(
(sI − Q)R−1

D x
)
: (14)

Multiplying both sides of (13) by "(x) and integrating with respect to the spatial variable x shows
that

V∗(x; s) exp((sI − Q)R−1
D x) = R−1

D (RD(sI − Q)−1) exp((sI − Q)R−1
D x) +  ;

where  is a (matrix) constant of integration. Due to the initial condition, V∗(0; s) = 0, this matrix
is given by

 = −(sI − Q)−1:

By substituting the constant of integration and rearranging terms, we may write

V∗(x; s) = (sI − Q)−1 − (sI − Q)−1 exp((Q − sI)R−1
D x): (15)

By Eq. (4), the LST of Gx may be written as

G̃x(s) = 1 − �V∗(x; s)s1: (16)



J.P. Kharoufeh, J.A. Sipe / Computers & Operations Research 32 (2005) 1131–1145 1137

Substituting Eq. (15) into (16) shows that

G̃x(s) = 1 − �{(sI − Q)−1 − exp(R−1
D (Q − sI)x))(sI − Q)−1}s1

=1 − �{I − exp(R−1
D (Q − sI)x)}(I − Q=s)−11: (17)

By applying the Neumann expansion (cf. [12]),(
I − Q

s

)−1

=
∞∑
k=0

Qk

sk
; (18)

and noting that Q1= 0 and �1= 1, (17) reduces to

G̃x(s) = � exp(R−1
D (Q − sI) x)1 (19)

and the proof is complete.

Method 2: In the second method, the one-dimensional transform is obtained by analytical inversion
of the two-dimensional result. Rewriting Eq. (9) as a LST with respect to both x and t, and then
converting to a LT with respect to x, it is seen that

uG̃∗
u(s) = 1 − �(uRD + sI − Q)−1s1: (20)

Rearranging terms appropriately yields

uG̃∗
u(s) = 1 − �

u

(
I − R−1

D (Q − sI)
u

)−1

R−1
D s1:

Applying the Neumann expansion (18) to the bracketed inverse matrix above and dividing through
by u gives

G̃∗
u(s) =

1
u

− �

(
I
u2

+
∞∑
k=1

(
R−1

D (Q − sI)
)k 1

uk+2

)
R−1

D s1: (21)

Owing to the linearity of the inverse Laplace operator, the expression of (21) may be analytically
inverted term by term. Performing this inversion with respect to the spatial variable x, we obtain

G̃x(s) = 1 − �

(
Ix +

∞∑
k=1

(
R−1

D (Q − sI)
)k xk+1

(k + 1)!

)
R−1

D s1 (22)

which, after some manipulation, yields

G̃x(s) = 1 − �

(
xR−1

D (Q − sI) +
∞∑
k=1

(R−1
D (Q − sI)x)k+1 1

(k + 1)!

)
(Q − sI)−1s1

=1 − �

(
I −

∞∑
k=0

(R−1
D (Q − sI)x)k =k!

)(
I − Q

s

)−1

1: (23)
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Applying Eq. (18) to the right-most inverse matrix of Eq. (23), using the de0nition of matrix
exponentiation, and noting that Q1= 0 and �1= 1, Eq. (23) reduces to

G̃x(s) = 1 − �
(
I − exp(R−1

D (Q − sI)x)
)(

I − Q
s

)−1

1

=1 − �
(
1 − exp(R−1

D (Q − sI)x)1
)

= � exp(R−1
D (Q − sI)x)1:

The main advantage of the one-dimensional result is that it requires numerical Laplace inversion
with respect to the complex variable s only. It is worth mentioning that the resulting distribution
function is of the matrix-exponential type as described by Bladt and Neuts [13].

For completeness, we derive the moments of the failure time of the unit using the one-dimensional
result. De0ne the rth moment of the system lifetime as

mr(x) = E[T r
x ]: (24)

The Laplace–Stieltjes transform (LST) of this deterministic function is

m̃r(u) =
∫
R+

e−ux dmr(x): (25)

Our main result for the moments of the failure time is stated in Theorem 3. It should be noted that
this result is also found in [1], but our derivation using Eq. (12) is simpler than the former.

Theorem 3. The Laplace–Stieltjes transform of the rth moment of unit failure time is given by

m̃r(u) = r!�(uRD − Q)−r1: (26)

Proof. De0ne the matrix

'x(s) = exp(R−1
D (Q − sI)x) (27)

and its corresponding Laplace–Stieltjes transform with respect to x

'̃u(s) =
∫
R+

e−ux d'x(s)

= (uRD − (Q − sI))−1(Q − sI)

= (uRD + sI − Q)−1uR−1
D − I: (28)

The above result is obtained via standard matrix analysis operations as outlined in the appendix of
Neuts [14]. In order to obtain the LST of the rth failure time moment, we evaluate the rth derivative
of Eq. (28) with respect to s and then evaluate at s= 0. Doing so gives,

@r'u(s)
@sr

∣∣∣∣
s=0

= (−1)rr!(uRD − Q)−r−1uRD (29)

so that the LST of the rth moment is 0nally obtained as

m̃r(u) = (−1)rr!�
@r'u(s)

@sr

∣∣∣∣
s=0

1= r!�(uRD − Q)−r1: (30)
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4. Numerical implementation and examples

In this section, we compare lifetime cumulative probability values obtained using the one- and
two-dimensional transforms. First, we describe numerical implementation of the Laplace inversion
algorithms.

To obtain the single dimension inverse Laplace transform values, we 0rst pre-multiply the Laplace–
Stieltjes transform result by s−1 in order to convert it to the Laplace transform (LT)

G∗
x (s) = s−1� exp(R−1

D (Q − sI)x)1:

This conversion allows for direct implementation of the inversion algorithm of Abate and Whitt
[7]. It remains to address the issue of matrix exponentiation in computing the Laplace transform.
The preferred approach is the method of scaling and squaring with PadTe approximations (cf. Moler
and van Loan [15]). Vanden Bosch et al. [16] demonstrated that those algorithms using a PadTe
approximation are generally reliable. Let C denote any square matrix. The exponentiation of C may
be written as

exp(C) = (exp(C=m))m (31)

where m is an integer power of two. The idea is to select m such that exp(C=m) may be reliably
computed. It is noted in [15] that m should be chosen as the smallest power of two satisfying
‖C=m‖6 1 where ‖C‖ denotes the norm of C. In such case, the matrix exp(C=m) may be reli-
ably computed using PadTe approximations. By squaring this matrix repeatedly, the desired result,
exp((C=m)m), is obtained. The scaling and squaring method is that which is implemented in the
internal MATLABJ function EXPM.

In the case of two dimensions, the Laplace and inverse Laplace transforms for a function f are,
respectively,

f∗(u; s) =
∫ ∞

0

∫ ∞

0
e−ut1−st2f(t1; t2) dt1 dt2; (32)

and

f(t1; t2) =
1

(2*i)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
eut1+st2f∗(u; s) du ds; (33)

where f(t1; t2) is a real-valued function of t1 and t2, f(t1; t2) = 0 for t1 or t2 ¡ 0, and |f(t1; t2)|6
Me�1t1+�2t2 ; where �1 and �2 are real numbers and M is a positive constant. It is also assumed that
c1 ¿�1 and c2 ¿�2. Moorthy [11] provides a technique to approximate f(t1; t2) by extending the
standard discrete Fourier cosine transform [17] to two dimensions as

f(t1; t2)≈ (2T 2)−1

{
1
2
f∗(c1; c2) +

∞∑
m=1

[
Re
{
f∗
(
c1; c2 +

im*
T

)}
cos
(m*t2

T

)

− Im
{
f∗
(
c1; c2 +

im*
T

)}
sin
(m*t2

T

)]
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+
∞∑
n=1

[
Re
{
f∗
(
c1 +

in*
T

; c2

)}
cos
(n*t1

T

)

− Im
{
f∗
(
c1 +

in*
T

; c2

)}
sin
(n*t1

T

)]

+
∞∑
m=1

∞∑
n=1

[
Re
{
f∗
(
c1 +

in*
T

; c2 +
im*
T

)}
cos
(n*t1

T
+

m*t2
T

)

+Re
{
f∗
(
c1 +

in*
T

; c2 − im*
T

)}
cos
(n*t1

T
− m*t2

T

)

− Im
{
f∗
(
c1 +

in*
T

; c2 +
im*
T

)}
sin
(n*t1

T
+

m*t2
T

)

−Im
{
f∗
(
c1 +

in*
T

; c2 − im*
T

)}
sin
(n*t1

T
− m*t2

T

)]}
: (34)

The approximation requires appropriate selection of the parameters c1, c2, and T , as well as some
appropriate criterion for terminating the in0nite series. Suppose f̂ r is the r-term approximation. One
approach is to compute the 0rst N terms of the summation where N is the smallest integer for
which |f̂ N+1 − f̂ N+N=4|¡0, and 0 is some acceptable tolerance level. A di(erent approach, based
on PadTe approximants, was used in this paper and will be described in what follows. The parameters
c1 and c2 may be selected arbitrarily provided that c1 ¿�1 and c2 ¿�2. However, selection of the
parameters �1 and �2 is not immediately obvious.
We compute the cumulative probability values Gx(t) for various values of t by numerically

inverting the two-dimensional result,

G̃∗
u(s) = s−1 − �(uRD + sI − Q)−11:

The two-dimensional Laplace–Stieltjes transform is converted to a two-dimensional Laplace transform
by pre-multiplying both sides of the above equation by u−1. A variant of Moorthy’s algorithm [11]
was implemented to evaluate distribution function values using Eq. (34). Let Tmax := max{x; t}. The
parameter T need only satisfy Tmax ¡ 2T . However, Moorthy [11] notes that good results may be
obtained when T is selected such that

0:5Tmax6T6 0:8Tmax:

One pragmatic choice for the parameter T is the mid-point of the interval, 0:65Tmax. The technique
also requires speci0cation of the parameters c1 and c2. We note the equivalence of Moorthy’s [11]
parameters ci, i=1; 2, and the values ai, i=1; 2, of Choudhury et al. [10]. Consequently, we select
c1 = A1=2xl1 and c2 = A2=2tl2 where the parameters, Ai and li; i = 1; 2, were chosen (as per the
guidance of [10]) to be A1 = A2 = 28:324 and l1 = l2 = 3 to control the aliasing (discretization) and
roundo( error. We implemented the �-algorithm (which is described in detail in [18]) to accelerate
convergence. The approximation for an in0nite series is constructed by solving recursively

�nk+1 = �n+1
k−1 + (�n+1

k − �nk)
−1
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upto the 0nal term �n2m. The initial conditions are given by �n−1 = 0 and �n0 is the nth partial sum
of the in0nite series. For these initial conditions, �n2m is the (m;m + n) PadTe approximation to the
in0nite series. Our computational experience indicates that the values m=6 and n=24 are adequate
for good results.

Distribution function values were compared to simulated values obtained via the Monte Carlo
method. For each replication, we simulated 10,000 sample paths of the environment process {Z(t):
t¿ 0}. In each case, we allowed the Markov process to evolve until the cumulative wear reached
a critical threshold value (x = 1:0 in all experiments). The 10,000 observations of this 0rst passage
time were used to construct an empirical distribution function over a 0nite support. A total of 10
statistically independent replications were performed for each distribution, and 95% con0dence inter-
vals (CI) were constructed to bound each cumulative probability value. The Monte-Carlo simulation
and one-dimensional inversion algorithms were coded in the MATLABJ computing environment
while the two-dimensional algorithm was coded in the C programming language. All algorithms
were executed on a single personal computer with a 2:0 GHz processor and 528 Mb of RAM.

4.1. Example 1: Fatigue crack dynamics

Assume X (t) denotes the length of a crack in a metallic component (cf. [19]) at time t and assume
that the (linear) rate at which the crack grows is subject to its random environment (applied stress,
ambient conditions, and other factors). The process {Z(t): t¿ 0} is a temporally homogeneous
Markov chain that alternates between the two distinct states in its 0nite state space S = {1; 2}.
Whenever the environment is in state i∈ S, the crack grows at rate r(i) units per unit time, i∈ S.
The initial distribution of the environment process is arbitrarily chosen to be � = (1 0), i.e., the

environment starts in state 1 with probability 1. The in0nitesimal generator matrix is given by

Q=

[−b b

a −a

]

while the diagonal matrix of wear rates is

RD =

[
r(1) 0

0 r(2)

]
:

The speci0c problem parameters chosen for this example are as follows. The threshold value is
x=1:0, and the values comprising the generator matrix are a= b=25=3. The state-dependent crack
growth rates are r(1)=1.0833 and r(2)=0.250. The cumulative probability values using one- and
two-dimensional inversion were compared with Monte Carlo-simulated values at 94 distinct points.
In Table 1, we report 30 of these values representing the entire range of the distribution.

The example demonstrates that both inversion approximations produce accurate results as compared
to the simulated benchmark values (and corresponding con0dence intervals). However, our compu-
tational experience indicates that the two-dimensional inversion algorithm exhibits instability when
evaluating the inverse transform for smaller values of t (i.e., in the regime where G1:0(t) is close
to zero). Such instability was not observed in the one-dimensional implementation. We also note
a marked di(erence in the computation time of the two algorithms. In particular, the one-dimensional
algorithm computed the 94 cumulative probability values in 0:73 s, while the two-dimensional
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Table 1
G1:0(t) when Z is an on/o( process

t Simulated Analytical

CI Lower Mean CI Upper 1-Dimensional 2-Dimensional

0.96 2.5208E-03 3.0000E-03 3.4792E-03 2.9661E-03 7.8100E-04
0.98 4.8639E-03 5.5600E-03 6.2561E-03 5.5638E-03 3.3400E-03
1.00 7.9532E-03 8.5000E-03 9.0468E-03 9.1149E-03 6.8870E-03
1.02 1.2645E-02 1.3160E-02 1.3675E-02 1.3812E-02 1.1781E-02
1.04 1.8665E-02 1.9580E-02 2.0495E-02 1.9890E-02 1.8308E-02
1.06 2.6660E-02 2.7340E-02 2.8020E-02 2.7533E-02 2.6333E-02
1.08 3.5420E-02 3.6600E-02 3.7780E-02 3.6839E-02 3.5643E-02
1.10 4.6350E-02 4.7650E-02 4.8950E-02 4.7857E-02 4.6700E-02
1.12 5.9091E-02 6.0960E-02 6.2829E-02 6.0632E-02 5.9064E-02
1.14 7.3114E-02 7.5390E-02 7.7666E-02 7.5224E-02 7.4658E-02
1.44 4.5978E-01 4.6273E-01 4.6568E-01 4.6630E-01 4.6620E-01
1.46 4.9076E-01 4.9366E-01 4.9656E-01 4.9699E-01 4.9681E-01
1.48 5.2087E-01 5.2448E-01 5.2809E-01 5.2726E-01 5.2715E-01
1.50 5.5167E-01 5.5528E-01 5.5889E-01 5.5696E-01 5.5684E-01
1.52 5.8169E-01 5.8490E-01 5.8811E-01 5.8598E-01 5.8575E-01
1.54 6.0991E-01 6.1317E-01 6.1643E-01 6.1419E-01 6.1417E-01
1.56 6.3615E-01 6.3895E-01 6.4175E-01 6.4149E-01 6.4148E-01
1.58 6.6198E-01 6.6514E-01 6.6830E-01 6.6779E-01 6.5239E-01
1.60 6.8673E-01 6.9019E-01 6.9365E-01 6.9303E-01 6.9301E-01
1.62 7.1130E-01 7.1502E-01 7.1874E-01 7.1713E-01 7.1696E-01
2.62 9.9970E-01 9.9981E-01 9.9992E-01 9.9981E-01 9.9980E-01
2.64 9.9976E-01 9.9986E-01 9.9996E-01 9.9985E-01 9.9986E-01
2.66 9.9980E-01 9.9988E-01 9.9996E-01 9.9988E-01 9.9990E-01
2.68 9.9980E-01 9.9989E-01 9.9998E-01 9.9990E-01 9.9992E-01
2.70 9.9988E-01 9.9993E-01 9.9998E-01 9.9992E-01 9.9993E-01
2.72 9.9991E-01 9.9995E-01 9.9999E-01 9.9994E-01 9.9994E-01
2.74 9.9994E-01 9.9997E-01 1.0000E+00 9.9995E-01 1.0000E+00
2.76 9.9995E-01 9.9998E-01 1.0000E+00 9.9996E-01 1.0000E+00
2.78 9.9997E-01 9.9999E-01 1.0000E+00 9.9997E-01 1.0000E+00
2.80 1.0000E+00 1.0000E+00 1.0000E+00 9.9997E-01 1.0000E+00

algorithm computed the 94 values in 9:93 s. Although the computation time for the two-dimensional
algorithm is small (owing to the fact that K=2), this represents a 1260% increase in the computation
time as compared to the one-dimensional algorithm.

4.2. Example 2: Stochastic tool wear model

Consider a machine cutting tool (e.g., an outside diameter grinding wheel) in which the work
rate of the machine varies between 0ve distinct settings. These settings may correspond to various
cutting speeds, each of which corresponds to a particular workpiece composition. In order for the
workpiece to have the appropriate surface 0nish, it is imperative that the cutting tool be in good
form. We assume that a cutting tool is scrapped and replaced once its level of accumulated wear
reaches a threshold value of x wear units.
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Table 2
G1:0(t) when Z is a 5-state Markov process

t Simulated Analytical

CI Lower Mean CI Upper 1-Dimensional 2-Dimensional

1.00 3.4108E-03 3.7900E-03 4.1692E-03 3.6419E-03 1.5100E-03
1.04 6.2081E-03 6.8400E-03 7.4719E-03 7.0582E-03 5.3790E-03
1.08 1.1307E-02 1.2120E-02 1.2933E-02 1.2641E-02 1.1354E-02
1.12 1.9816E-02 2.0480E-02 2.1144E-02 2.1210E-02 2.0241E-02
1.16 3.1571E-02 3.2710E-02 3.3849E-02 3.3670E-02 3.2908E-02
1.20 4.7807E-02 4.9620E-02 5.1433E-02 5.0942E-02 5.0371E-02
1.24 6.9775E-02 7.2320E-02 7.4865E-02 7.3872E-02 7.3432E-02
1.28 9.8751E-02 1.0222E-01 1.0569E-01 1.0314E-01 1.0282E-01
1.32 1.3540E-01 1.3803E-01 1.4066E-01 1.3916E-01 1.3893E-01
1.36 1.7808E-01 1.8144E-01 1.8480E-01 1.8200E-01 1.8184E-01
1.52 4.0730E-01 4.1018E-01 4.1306E-01 4.0965E-01 4.0964E-01
1.56 4.7328E-01 4.7565E-01 4.7802E-01 4.7462E-01 4.7463E-01
1.60 5.3657E-01 5.3926E-01 5.4195E-01 5.3965E-01 5.3969E-01
1.64 5.9913E-01 6.0198E-01 6.0483E-01 6.0312E-01 6.0318E-01
1.68 6.6254E-01 6.6477E-01 6.6700E-01 6.6353E-01 6.6358E-01
1.72 7.1852E-01 7.2113E-01 7.2374E-01 7.1963E-01 7.1969E-01
1.76 7.6924E-01 7.7167E-01 7.7410E-01 7.7048E-01 7.7056E-01
1.80 8.1408E-01 8.1616E-01 8.1824E-01 8.1550E-01 8.1559E-01
1.84 8.5329E-01 8.5501E-01 8.5673E-01 8.5443E-01 8.5451E-01
1.88 8.8712E-01 8.8843E-01 8.8974E-01 8.8729E-01 8.8738E-01
2.48 9.9970E-01 9.9982E-01 9.9994E-01 9.9971E-01 9.9981E-01
2.52 9.9982E-01 9.9989E-01 9.9996E-01 9.9980E-01 9.9989E-01
2.56 9.9986E-01 9.9994E-01 1.0000E+00 9.9985E-01 9.9994E-01
2.60 9.9988E-01 9.9995E-01 1.0000E+00 9.9987E-01 9.9997E-01
2.64 9.9994E-01 9.9997E-01 1.0000E+00 9.9989E-01 9.9999E-01
2.68 9.9997E-01 9.9999E-01 1.0000E+00 9.9989E-01 9.9999E-01
2.72 9.9997E-01 9.9999E-01 1.0000E+00 9.9990E-01 1.0000E+00
2.76 9.9997E-01 9.9999E-01 1.0000E+00 9.9990E-01 1.0000E+00
2.80 9.9997E-01 9.9999E-01 1.0000E+00 9.9990E-01 1.0000E+00
2.84 1.0000E+00 1.0000E+00 1.0000E+00 9.9990E-01 1.0000E+00

Let X (t) denote the amount of wear incurred by the cutting tool by time t and suppose cutting
speeds are selected from the 0nite set {r(1); r(2); r(3); r(4); r(5)}. Let Z(t)∈ {1; 2; 3; 4; 5} denote the
type of workpiece on the machine at time t such that if Z(t)= k, then the tool wears at a rate r(k).
Thus, we assume the environment process, {Z(t) : t¿ 0}, is a 0ve-state CTMC. The speci0c wear
rates in this problem were arbitrarily selected as

r(k) = 1:25=k; k ∈ S;

so that the (i; j) entry of the matrix RD, denoted by RD(i; j), is given by

RD(i; j) =

{
1:25=i j = i;

0 j �= i:
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With probability 1, the system begins in state 1 at time 0 so that the initial environment distribution
is �= (1 0 0 0 0). The o(-diagonal entries of the 5 × 5 in0nitesimal generator matrix were drawn
from a uniform distribution on the interval (3.333, 6.667). We set the failure threshold value to
unity (x = 1:0). The cumulative probability value, G1:0(t) was computed for 54 distinct values of t,
and Table 2 provides the results for 30 representative cases.

The second example also demonstrates that both the one- and two-dimensional techniques provide
good results as compared to the simulated values. However, we again note a marked di(erence in the
computation time between the two algorithms. The one-dimensional algorithm computed a total of 54
cumulative probability values in 0:55 s while the two-dimensional algorithm computed the same 54
values in 222:98 s (approximately 3.72 min). We surmise that, as the number of states in governing
environment process increases, the di(erence in computation time will be even more marked.

5. Conclusions

Owing to the limitations of unit lifetime prediction via accelerated life testing, there exists a
growing need for failure models that capture the e(ects of the physical environment on a unit’s
cumulative degradation (wear) and lifetime. Such models include a mathematical characterization
of the environment as a continuous-time stochastic process on a continuous or discrete state space.
This approach is naturally appealing since it provides a means by which the stochastic evolution
of the environment, and its ultimate e(ect on the operating unit, may be modelled. However, the
numerical implementation of such procedures lags far behind their analytical development. This paper
has proposed a simpler means by which numerical results may be obtained for a speci0c class of
failure models, namely continuous wear processes.

In particular, we have analytically proven simpli0ed results for the evaluation of the lifetime
cumulative distribution values for a single-unit system that continuously accumulates wear due to
the in;uence of its time-varying operating environment. The need to incorporate the impact of
the ambient environment has become prevalent in the reliability theory literature. This paper has
considered the case in which the environment process is modelled as a 0nite state Markov process.
We demonstrated the means by which to compute cumulative probability values by inverting a
one-dimensional transform as opposed to the two-dimensional result of [1]. The one-dimensional
result has the obvious advantage of requiring numerical inversion of a Laplace transform with respect
to only a single complex variable, a process for which numerical algorithms abound. Though the
simpli0ed result requires matrix exponentiation, the method of scaling and squaring (using PadTe
approximations) appears to provide reliable results in a far more expedient manner. Moreover, the
need to specify algorithm parameters is virtually eliminated. In the future, it will be instructive to
consider numerical algorithms for models that additionally consider the e(ect of shocks occurring
at random intervals such as the one reviewed by Singpurwalla [4]. To the authors’ knowledge, no
suitable numerical techniques exist in the current literature for such models.

Acknowledgements

The authors acknowledge, with gratitude, the suggestions of the referee which greatly improved
the presentation of this work.



J.P. Kharoufeh, J.A. Sipe / Computers & Operations Research 32 (2005) 1131–1145 1145

References

[1] Kharoufeh JP. Explicit results for wear processes in a Markovian environment. Operations Research Letters
2003;31:237–44.

[2] Gillen KT, Celina M. The wear-out approach for predicting the remaining lifetime of materials. Polymer Degradation
and Stability 2001;71:15–30.

[3] Meeker WQ, Escobar LA, Chan V. Using accelerated tests to predict service life in highly variable environments. In:
Bauer DR, Martin JW, editors. Service life prediction: methodologies and metrologies. Washington, DC: American
Chemical Society; 2002.

[4] Singpurwalla ND. Survival in dynamic environments. Statistical Science 1995;10:86–103.
[5] Bobbio A, Kulkarni VG, Telek M. Partial loss in reward models. In: Proceedings of the Second International

Conference on Mathematical Methods in Reliability, Bordeaux, France: July 2000. p. 207–10.
[6] Bobbio A, Telek M. The task completion time in degradable sytems. In: Haverkort GRBR, Marie R, Trivedi KS,

editors. Performability modelling: techniques and tools. New York: Wiley; 2001. p. 139–61.
[7] Abate J, Whitt W. Numerical inversion of Laplace transforms of probability distributions. ORSA Journal on

Computing 1995;7:36–43.
[8] Meeker WQ, Escobar LA. Statistical methods for reliability data. New York: Wiley Inc.; 1998.
[9] CP inlar E. Shock and wear models and Markov additive processes. In: Shimi IN, Tsokos CP, editors. The theory and

applications of reliability. New York: Academic Press; 1977. p. 193–214.
[10] Choudhury GL, Lucantoni D, Whitt W. Multidimensional transform inversion with applications to the transient M/G/1

queue. The Annals of Applied Probability 1994;4:719–40.
[11] Moorthy MV. Numerical inversion of two-dimensional Laplace transforms-Fourier series representation. Applied

Numerical Mathematics 1995;17:119–27.
[12] Noble B, Daniel JW. Applied linear algebra, 3rd ed. Englewood Cli(s, NJ: Prentice-Hall; 1988.
[13] Bladt M, Neuts MF. Matrix-exponential distributions: calculus and interpretations via ;ows. Stochastic Models

2003;19:113–24.
[14] Neuts MF. Algorithmic probability: a collection of problems. London: Chapman & Hall; 1995.
[15] Moler C, van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-0ve years laters.

SIAM Review 2003;45:3–49.
[16] Vanden Bosch PM, Dietz DC, Pohl EA. Choosing the best approach to matrix exponentiation. Computers and

Operations Research 1999;29:871–82.
[17] Dubner H, Abate J. Numerical inversion of Laplace transforms by relating them to the 0nite Fourier cosine transform.

Journal of the Association for Computing Machinery 1968;15:115–23.
[18] Macdonald JR. Accelerated convergence, divergence, iteration, extrapolation, and curve 0tting. Journal of Applied

Physics 1964;35:3034–41.
[19] Ray A, Tangirala S. A nonlinear stochastic model of fatigue crack dynamics. Probabilistic Engineering Mechanics

1997;12:33–40.

Je+rey P. Kharoufeh is an assistant professor of Operations Research at the Air Force Institute of Technology. He
holds a Ph.D. in Industrial Engineering and Operations Research from Pennsylvania State University. His research inter-
ests include the development and analysis of stochastic models in operations research. He is a professional member of
INFORMS.

Je+rey A. Sipe is Chief of the Tanker Airlift Control Center (TACC) Business Center Analysis Division at Scott Air
Force Base, Illinois. He holds a B.S. in Mathematics from Angelo State University and a M.S. in Applied Mathematics
from the Air Force Institute of Technology.


	Evaluating failure time probabilities for a Markovianwear process
	Introduction
	Mathematical model
	Main results
	Numerical implementation and examples
	Example 1: Fatigue crack dynamics
	Example 2: Stochastic tool wear model

	Conclusions
	Acknowledgements
	References


