
Optimally Maintaining a Markovian Deteriorating System with Limited

Imperfect Repairs

Murat Kurt1 and Jeffrey P. Kharoufeh2

Department of Industrial Engineering

University of Pittsburgh

1048 Benedum Hall

3700 O’Hara Street

Pittsburgh, PA 15261 USA

Final version appears in

European Journal of Operational Research, 205 (2010), 368-380.

Abstract

We consider the problem of optimally maintaining a periodically inspected system that de-

teriorates according to a discrete-time Markov process and has a limit on the number of repairs

that can be performed before it must be replaced. After each inspection, a decision maker must

decide whether to repair the system, replace it with a new one, or leave it operating until the

next inspection, where each repair makes the system more susceptible to future deterioration.

If the system is found to be failed at an inspection, then it must be either repaired or replaced

with a new one at an additional penalty cost. The objective is to minimize the total expected

discounted cost due to operation, inspection, maintenance, replacement and failure. We formu-

late an infinite-horizon Markov decision process model and derive key structural properties of

the resulting optimal cost function that are sufficient to establish the existence of an optimal

threshold-type policy with respect to the system’s deterioration level and cumulative number of

repairs. We also explore the sensitivity of the optimal policy to inspection, repair and replace-

ment costs. Numerical examples are presented to illustrate the structure and the sensitivity of

the optimal policy.
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1 Introduction

In this paper, we consider the problem of optimally maintaining a periodically inspected, re-

pairable system that is subject to stochastic deterioration and has a limit on the number of repairs

it may undergo before it must be replaced. Following an inspection, if repair is still feasible, a

decision maker must decide whether to repair the system, replace it with a new one, or leave it

operating until the next inspection. On the other hand, if repair is no longer- feasible, then the

system can only be replaced, or it may be allowed to continue operating if it is not failed. Each

repair makes the system more susceptible to future deterioration. The primary objective is to

devise a maintenance and replacement strategy that minimizes the total expected discounted cost

due to operation, inspection, maintenance, replacement and failure. To this end, we formulate and

analyze a sequential decision model.

Stochastically deteriorating systems that can be repaired only a limited number of times can

be found in a variety of engineering and service applications. For example, aircraft engine turbine

blades operate at high temperatures and experience centrifugal stresses that lead to elongated

particles at the microstructure level. This elongation leads to degradation of fatigue strength that

can result in voids and crack initiation in the blade tips. The blades can be reworked only a limited

number of times before the blade must be scrapped and replaced with a new one to ensure flight

safety. Another example is the strategic use of a limited number of available repairs of a system

that is purchased with a limited warranty. While most warranties are valid for a fixed time period,

some impose a limit on the number of allowable repair actions before the warranty becomes void.

Finally, we can consider systems for which each repair exhausts one unit from a finite pool of units

needed to repair a critical component in the system. For instance, in military applications, only

a finite number of line-replaceable units (LRUs) are held in inventory to perform routine aircraft

maintenance between planned missions. Once the LRUs are exhausted, it may be necessary to

replace an entire subsystem such as the aircraft’s engine.

Maintenance optimization models have been studied extensively in the operations research

literature for the past few decades. For a broad overview of several classes of models, the reader is

referred to the excellent surveys by Pierskalla and Voelker [19], Sherif and Smith [23], Valdez-Flores

and Feldman [25], Pham and Wang [18], Scarf [22], and Wang [26]. Although many researchers

have studied systems subject to Markovian deterioration, the case of a limited number of repairs

that we examine has been addressed by only a few. A common theme among those approaches is
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the development of optimization models for systems that deteriorate stochastically under limited

sequential preventive maintenance actions with single or multiple failure modes. In these models,

each preventive maintenance action is imperfect in the sense that it affects either the virtual age

or the hazard rate function of the system. A representative sample of these works includes [4,

5, 7, 8, 12, 13, 15, 16, 17]. The majority of these models set out to determine the length of a

working period between each successive preventive maintenance action and/or the optimal number

of repairs that minimizes the average cost rate. To our knowledge, there has not been much

emphasis on systems with predetermined repair restrictions with the exception of two papers. Goyal

et al. [9] studied the lifetime distribution and mean lifetime of a deteriorating unit which can be

repaired only a limited number of times. More recently, Lugtigheid et al. [14] developed a dynamic

repair/replacement decision model in which the system can be replaced with a new one at any point

in time or repaired at failure or preventively, where each repair action increases the system’s failure

intensity deterministically, and the total number of failure and preventive repairs is limited to fixed

number. To minimize the total expected cost of repair and replacement over a finite planning

horizon, they formulated a continuous-time Markov decision process (MDP) model and explored

several structural properties of the underlying optimal cost function and policy. Specifically, for

a system with an exponential lifetime distribution with a failure intensity that is nondecreasing

in the cumulative number of completed repairs, they established the non-optimality of preventive

repair and replacement actions so that the system can only be repaired or replaced at the time of a

failure. They provide a time-dependent control-limit function on the system’s cumulative number

of repairs to reveal the underlying optimal policy by a switching curve.

In this work, we study optimal maintenance and replacement strategies for a periodically in-

spected, repairable system that deteriorates stochastically and can be repaired only a limited num-

ber of times before it must be replaced. The system’s deterioration status is assumed to evolve as

a discrete-time Markov chain (DTMC) on a finite state space whose transition probability matrix

is influenced by each repair so that the system becomes more susceptible to deterioration as the

cumulative number of completed repairs increases. Our main objective is to determine the opti-

mal maintenance or replacement actions in each state that minimize the total expected discounted

cost due to operating the system, repairs, inspections, failures, and replacements. To this end, we

formulate the problem as a discrete-time, infinite-horizon, discounted MDP model that provides a

unifying framework for a broad class of discrete-time, condition-based Markov deterioration models

by limiting the number of repairs on the system and incorporating the negative effects of each repair

3



action into the system’s deterioration process. Therefore, from a modeling point of view, it can be

viewed as generalization of a class of optimal replacement models for systems subject to Markovian

deterioration.

Our main results include sufficient conditions for the existence of an optimal threshold-type

policy and a formal sensitivity analysis of the optimal policy with respect to the major cost pa-

rameters of the model. As such, it differs from that of Lugtigheid et al. [14] in a few important

ways. Specifically, we derive sufficient conditions that ensure the existence of an optimal policy

resulting in three non-overlapping regions separated by switching curves: (i) a region where it is

always optimal to do nothing; (ii) a region where it is always optimal to perform maintenance;

and (iii) a region for which it is always optimal to replace the system with a new one. We also

examine the behavior of these switching curves and their sensitivity to one or two-way changes in

inspection, maintenance and replacement costs. With such a sensitivity analysis, we reveal intuitive

and interesting insights into the effects of the cost parameters on the optimal policy. Furthermore,

we illustrate the structure and the sensitivity of the optimal policy by a few numerical examples.

Methodologically, because the proofs of some of our results are difficult to approach by standard

dynamic programming techniques, we propose novel methods to establish the main results.

The remainder of the paper is organized as follows: Section 2 defines the problem in detail

and provides a formal description of our MDP model. In section 3, we explore several structural

properties of the optimal cost function, including its monotonicity, and prove the existence of an

optimal threshold-type policy. Section 4 examines the sensitivity of the optimal actions in each state

to the major cost parameters. Finally, in section 5, we illustrate the optimal policies graphically

through four numerical examples that highlight the behavior of the optimal policies under various

conditions.

2 Model Description and Formulation

We consider a repairable system whose deterioration status evolves as a discrete-time Markov

chain (DTMC) on a finite state space, Ψ = {0, 1, . . . , S}, which is structured in order of increasing

deterioration levels so that state 0 corresponds to the least amount of deterioration and state S

represents failure of the system. The deterioration status of the system is inspected periodically,

i.e., it is inspected at time points {τ, 2τ, 3τ, . . .} for some τ > 0, and the cost of each inspection is

I. Given that the system is found to be in an operational state s ∈ Ψ \ {S}, the decision maker
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can choose among three actions: (i) operate the system for one more period at an immediate cost

of c(s) < ∞, (ii) repair the system at a cost of M , or (iii) immediately replace the system with

a new one at a cost of R < ∞ where R ≥ M . On the other hand, if the system is found to be

failed after an inspection, then it must be either repaired or replaced with a new one. Each repair

restores the status of the system to the best possible operating condition in a negligible amount of

time but affects the evolution of the system’s deterioration process by accelerating its movements

toward more degraded states. Because the system’s susceptibility to deterioration increases by

each repair, only a limited number of repairs, N , is allowed. Therefore, following an inspection

after N repairs have been completed, given the system is found to be in an operational state, it

can either be left in operation for one more period or replaced with a new one; however, if it is

detected to be in a failed state then it must be replaced with a new one. Each failure has a fixed

penalty cost denoted by ρ (ρ < ∞). All costs are discounted at a rate β per period, 0 < β < 1,

and the objective is to minimize the total expected discounted cost due to operation, inspection,

maintenance, replacement and failure.

We formulate a discrete-time, infinite-horizon, discounted MDP model for this problem. In

our model, each decision epoch refers to the instant of time just after an inspection, and the time

interval between any two successive inspections is called a period. Specifically, we let period t

refer to the time interval between decision epochs t and t + 1. For notational convenience, we

define Θ = {1, 2, . . . , N}, Θ′ = Θ \ {N} and let Φ = Ψ \ {S} denote the set of operational states.

Therefore, the state of the MDP is an ordered pair (s, n) ∈ Υ ≡ Ψ×Θ, where s ∈ Ψ represents the

deterioration status of the system and n ∈ Θ denotes the cumulative number of completed repairs.

After each inspection, the decision-maker chooses an action from the set {0, 1, 2}, where 0 means

waiting for one more period, 1 means repairing the system, and 2 means replacing the system

immediately. Because each repair makes the system less resistant to deterioration, the system’s

deterioration process depends on the number of completed repairs, which we model as follows: For

a system that has been repaired n times prior to epoch t, we let P (s′|s, n) denote the probability

that the system transitions to state s′ at epoch t+1 given that it starts operating in state s at epoch

t. Note that waiting for one more period is not a feasible action if the system is found to be failed

at an inspection. Therefore, for each pair (s, n) ∈ Φ×Θ, we let w(s, n) denote the total expected

discounted cost corresponding to action 0 when the process starts in state (s, n). Then, for each

(s, n) ∈ Υ, we define ϑ(s, n) as the minimum total expected discounted cost starting in state (s, n)

and denote the corresponding optimal action by a(s, n). Note that in any state (s, n) ∈ Υ, action 2
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immediately moves the process into state (0, 0) with probability 1. Likewise, because repairing the

system restores its status to the best operating condition, but increments the cumulative number

of repairs by one, if feasible, action 1 moves the process into state (0, n + 1) immediately. Then,

we can characterize an optimal policy that yields the minimum total expected cost in each state

(s, n) ∈ Υ by solving the following optimality equations:

ϑ(s, n) = min {w(s, n), ϑ(0, n + 1) + M, ϑ(0, 0) + R} for (s, n) ∈ Φ×Θ′, (1a)

ϑ(s, N) = min {w(s,N), ϑ(0, 0) + R} for s ∈ Φ, (1b)

ϑ(S, n) = min {ϑ(0, n + 1) + M,ϑ(0, 0) + R} for n ∈ Θ′, (1c)

ϑ(S, N) = ϑ(0, 0) + R, (1d)

where for (s, n) ∈ Φ×Θ′,

w(s, n) = c(s) + β

(
P (S|s, n)

[
ϑ(S, n) + ρ + I

]
+

∑

s′∈Φ

P (s′|s, n)
[
ϑ(s′, n) + I

]
)

. (2)

To simplify the notation, for (s, n) ∈ Φ × Θ′, we define `(s, n) = c(s) + β
[
P (S|s, n)ρ + I

]
as the

total expected immediate cost due to operation, failure and inspection. Then the expected waiting

cost function of (2) can be rewritten as

w(s, n) = `(s, n) + β
∑

s′∈Ψ

P (s′|s, n)ϑ(s′, n) for (s, n) ∈ Φ×Θ. (3)

Note that because the immediate operation, replacement and failure penalty costs are finite, by

the fact that β < 1, the optimality equations (1a)-(1d) and (3) admit a unique and finite solution

[3]. It is also worth noting that if N = 0, i.e., no repairs are allowed, or M = ∞, then the

optimality equations of our model reduce to those of a classical optimal replacement problem for

a Markovian deteriorating system originally introduced by Derman [6], and extended by Klein [10]

and Kolesar [11], among others. Therefore, our framework unifies the modeling approaches to the

optimal replacement problem under limited imperfect repairs.

In section 3, we explore the structure of the optimal maintenance and replacement policy

of the MDP model formulated in this section. Structured policies not only lend themselves to

characterization by more efficient solution techniques [3, 21, 24], but they also help facilitate more

accurate and efficient approximation architectures when the exact solution of the problem becomes

computationally intractable due to the curse of dimensionality [2, 20].
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3 Structural Properties

Our results in this section primarily concern the monotonicity of the optimal cost function, ϑ,

and its effects on the structure of the optimal policy. Under reasonable assumptions, we show that

the optimal cost function is monotonically nondecreasing in both dimensions of the state of the

MDP. We exploit the monotonicity of the optimal cost function to characterize an optimal policy

in the form of three disjoint regions, one for each action, which are partitioned by two switching

curves. We also provide a sufficient condition to examine a monotonic behavior of the switching

curve that separates the wait region from repair and replace regions.

Prior to our analysis we make some structural assumptions about the immediate operating cost

function and the system’s deterioration matrices. First, we assume that it is more costly to operate

the system as its condition worsens.

Assumption 1 : The immediate operating cost function c(s) is nondecreasing in s ∈ Φ.

Assumption 2 relates the system’s likelihood of moving into a set of states which are worse than

a given particular condition. In fact, Assumption 2 can be viewed as the first order stochastic

dominance relationship among the rows of the matrix P(n) ≡ [P (s′|s, n)]s∈Φ,s′∈Ψ, which is also

commonly known as the increasing failure rate (IFR) property for stochastic matrices [1]. The IFR

property is commonly utilized in the reliability and maintenance optimization literature to analyze

the structure of the underlying optimal cost functions and policies [19, 25].

Assumption 2 : For each n ∈ Θ,
∑S

s′=j P (s′|s+1, n) ≥ ∑S
s′=j P (s′|s, n) for all s ∈ Φ and j ∈ Ψ.

This assumption implies that, given two systems functioning with the same repair history (i.e., with

the same cumulative number of completed repairs) in states s and s + 1, respectively, the system

in state s + 1 is more likely to be worse at the next epoch than the system in state s. Note that

Assumption 2 orders the system’s rate of deterioration with respect to its current deterioration

status. Next, Assumption 3 orders the system’s rate of deterioration with respect to its repair

history.

Assumption 3 : For each s ∈ Φ,
∑S

s′=j P (s′|s, n+1) ≥ ∑S
s′=j P (s′|s, n) for all n ∈ Θ′ and j ∈ Ψ.

Similar to Assumption 2, Assumption 3 can be viewed as the first order stochastic dominance

relationship among the system’s deterioration matrices corresponding to different repair histories.

More explicitly, given two systems with different repair histories functioning at the same level of

7



deterioration, the system with the greater cumulative number of completed repairs is more likely to

get worse than the other during operation. Along with Assumptions 1–3, by definition, it is clear

that the total expected immediate cost function ` is nondecreasing in both dimensions of the state

of the process. In the remainder of this section, we suppose Assumptions 1–3 hold.

The value iteration algorithm, also known as the successive approximation algorithm, is one

of the most commonly used techniques to solve discounted MDP models. Because of its simple

structure, it is easy to understand and to implement when solving models numerically. Moreover,

it is widely used to derive structural results regarding the optimal value function and the policies

of these models. The algorithm starts with an arbitrary, finite initial value vector and updates

the values associated with each possible action iteratively until a certain performance guarantee

is satisfied. In Lemma 1, we describe a sequence of value iterates in an ordinary value iteration

algorithm for our model and analyze its structure.

Lemma 1 : For (s, n) ∈ Υ and k ≥ 0, define the function ϑk(s, n) as follows:

ϑ0(s, n) = 0 for all (s, n) ∈ Υ, (4a)

ϑk+1(s, n) = min
{

wk+1(s, n), ϑk(0, n + 1) + M,ϑk(0, 0) + R
}

for (s, n) ∈ Φ×Θ′ and k ≥ 0, (4b)

ϑk+1(s,N) = min
{

wk+1(s,N), ϑk(0, 0) + R
}

for s ∈ Φ and k ≥ 0, (4c)

ϑk+1(S, n) = min
{

ϑk(0, n + 1) + M, ϑk(0, 0) + R
}

for n ∈ Θ′ and k ≥ 0, (4d)

ϑk+1(S, N) = ϑk(0, 0) + R for k ≥ 0, (4e)

where

wk+1(s, n) = `(s, n) + β
∑

s′∈Ψ

P (s′|s, n)ϑk(s′, n) for (s, n) ∈ Φ×Θ′ and k ≥ 0. (5)

Then, the following hold for all k ≥ 0:

(i) ϑk(s, n) is nondecreasing in s ∈ Ψ for all n ∈ Θ,

(ii) ϑk(s, n) is nondecreasing in n ∈ Θ for all s ∈ Ψ.

Proof : We will prove the results by induction on k ≥ 0.

(i) By construction, ϑ0(s, n) is nondecreasing in s ∈ Ψ for all n ∈ Θ. As the induction hypothesis,

for some m ≥ 0, suppose ϑm(s, n) is nondecreasing in s ∈ Ψ for all n ∈ Θ. By Assumption 2

and Lemma 4.7.2 of Puterman [21], this implies that
∑

s′∈Ψ P (s′|s, n)ϑm(s′, n) is nondecreasing in
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s ∈ Φ for all n ∈ Θ. Then, because `(s, n) is nondecreasing in s ∈ Φ for all n ∈ Θ, wm+1(s, n) is

also nondecreasing in s ∈ Φ for all n ∈ Θ. By the definition of the function ϑm+1, this implies that

ϑm+1(s, n) is nondecreasing in s ∈ Φ for all n ∈ Θ, and the result follows by induction.

(ii) By construction, ϑ0(s, n) is nondecreasing in n ∈ Θ for all s ∈ Ψ. As the induction hypothesis,

for some m ≥ 0, suppose ϑm(s, n) is nondecreasing in n ∈ Θ for all s ∈ Ψ. This implies,

∑

s′∈Ψ

P (s′|s, n + 1)ϑm(s′, n + 1) ≥
∑

s′∈Ψ

P (s′|s, n + 1)ϑm(s′, n) for all (s, n) ∈ Φ×Θ′. (6a)

From part (i), recall that ϑm(s′, n) is nondecreasing in s′ ∈ Ψ for all n ∈ Θ. Then, by Assumption

3, Lemma 4.7.2 of Puterman [21] implies

∑

s′∈Ψ

P (s′|s, n + 1)ϑm(s′, n) ≥
∑

s′∈Ψ

P (s′|s, n)ϑm(s′, n) for all (s, n) ∈ Φ×Θ′. (6b)

By (6a) and (6b),

∑

s′∈Ψ

P (s′|s, n + 1)ϑm(s′, n + 1) ≥
∑

s′∈Ψ

P (s′|s, n)ϑm(s′, n) for all (s, n) ∈ Φ×Θ′. (7)

Note that `(s, n) is nondecreasing in n ∈ Θ for all s ∈ Φ. Therefore, by (7), wm+1(s, n) is

nondecreasing in n ∈ Θ for all s ∈ Φ. Then, by the definition of the function ϑm+1 and the

induction hypothesis, this implies that ϑm+1(s, n) is nondecreasing in n ∈ Θ for all s ∈ Ψ, and the

result follows by induction. 2

By Lemma 1 part (i), we show that, for a particular repair history, the value iteration algorithm

preserves the monotonicity of the function ϑk with respect to system’s deterioration status at

each iteration. Then, we exploit this in Lemma 1 part (ii) to show that, at each iteration, the

algorithm also preserves the monotonicity of the function with respect to the number of repairs

for any particular level of deterioration. Recall that the immediate operation, replacement and

failure penalty costs are all finite and β < 1. Therefore, by Theorem 6.2.1 of Puterman [21], the

value iterates
{
ϑk(s, n)

}
k≥0

converge to the unique solution of the optimality equations (4a)-(4e)

and (5) componentwise, and the monotonicity properties of this sequence in the limit imply the

monotonicity of the optimal cost function in both dimensions of the state of the process. More

explicitly, by Lemma 1 part (i), Proposition 1 states that the optimal total expected cost does not

decrease as the system gets worse with the same repair history.

Proposition 1 : The function ϑ(s, n) is nondecreasing in s ∈ Ψ for all n ∈ Θ.

Similarly, by Lemma 1 part (ii), Proposition 2 states that the optimal total expected cost starting

in any particular level of deterioration does not decrease as the system gets repaired more.
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Proposition 2 : The function ϑ(s, n) is nondecreasing in n ∈ Θ for all s ∈ Ψ.

Note that Proposition 2 relies on all Assumptions 1–3, whereas Proposition 1 depends only on

Assumptions 1 and 2.

As a consequence of Propositions 1 and 2, Theorem 1 reveals the existence of an optimal policy

which is threshold structured in both the system’s deterioration status and the cumulative number

of repairs. Specifically, it states that there exists an optimal policy which can be described as

the union of three non-overlapping regions, one for each action. The proof of the theorem follows

directly from Propositions 1 and 2 and is therefore omitted.

Theorem 1 : There exists a threshold number of repairs n∗ ∈ Θ, and for each n ∈ Θ, a threshold

operational state s∗n ∈ Φ such that for n < n∗

a(s, n) =





0 if s ≤ s∗n,

1 if s > s∗n,

and for n ≥ n∗

a(s, n) =





0 if s ≤ s∗n,

2 if s > s∗n.

Note that if M > 0, then because ϑ(0, n) is nondecreasing in n ∈ Θ, by the definition of the

function ϑ(0, ·), it is obvious that a(0, n) 6= 1 for any n ∈ Θ. In other words, if maintenance is not

free, then it is not optimal to repair a system when it is operating at its best condition. Similarly,

when R > 0, it is never optimal to replace a unit if it has not been repaired so far and is operating

at its best condition.

By Theorem 1, it is clear that the switching curve between repair and replace regions is a

straight line. In what follows, for each n ∈ Θ we let s∗n = max {s ∈ Ψ : a(s, n) = 0} be the associated

threshold deterioration status beyond which it is either optimal to repair or replace a system that

has been repaired n times. In Theorem 2, we examine the behavior of the thresholds s∗n. Specifically,

we provide a sufficient condition for s∗n to be nonincreasing in the cumulative number of completed

repairs, n. Intuitively, this can be interpreted as follows: As the cumulative number of completed

repairs increases, the decision maker becomes less likely to choose action 0 (waiting) at the same

deterioration level. For the optimal policy defined in Theorem 1, this implies monotonicity of the

switching curve that separates the wait region from the repair and replace regions.
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Theorem 2 : If

βρ
[
P (S|s, n + 1)− P (S|s, n)

] ≥ (1− β)(R−M) for all s ∈ Φ and n ∈ Θ′, (8)

then, s∗n is nonincreasing in n ∈ Θ.

Note that in Theorem 2, the left-hand side of inequality (8) represents an increase in the expected

discounted failure penalty cost by an additional repair at a particular level of deterioration, and

the term R−M on the right-hand side represents an upper bound for the increase in the minimum

expected cost of repair or replacement by an additional repair. Also note that the discount factor, β,

approaches unity as the time between two consecutive inspections, τ , approaches zero. Therefore,

condition (8) is weak for systems that are subject to frequent reviews.

Although the result of Theorem 2 is intuitive, it is difficult to establish using standard dynamic

programming methods; therefore, we devise a novel technique to prove Theorem 2. Specifically, in

Lemma 2, we describe a sequence of value iterates and prove its convergence to the unique solution of

the optimality equations (1a)-(1d) and (2). The sequence that we describe differs from an ordinary

value iteration algorithm as it updates the associated cost function by iteratively updating only the

cost of waiting in each state. Note that this sequence is not appropriate to solve a given problem

instance numerically without the value of the optimal cost function in states {(0, n) : n ∈ Θ}.
Before proceeding to Lemma 2, for notational convenience, we restate the optimality equations

(1a)-(1d) and (2). For n ∈ Θ, we define

Z(n) =





min {ϑ(0, n + 1) + M, ϑ(0, 0) + R} if n < N ,

ϑ(0, 0) + R if n = N .
(9)

Note that Z(n) represents the minimum expected cost of maintenance or replacement when the

system has already been repaired n times. Therefore, using (9), we can rewrite the optimality

equations (1a)-(1d) and (2) as follows:

ϑ(s, n) = min

{
`(s, n) + β

∑

s′∈Ψ

P (s′|s, n)ϑ(s′, n), Z(n)

}
for (s, n) ∈ Φ×Θ, (10a)

ϑ(S, n) = Z(n) for n ∈ Θ. (10b)
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Lemma 2 : For (s, n) ∈ Υ and k ≥ 0, define the function ϑk(s, n) as follows:

ϑ0(s, n) = Z(n) for all (s, n) ∈ Υ, (11a)

ϑk+1(s, n) = min

{
`(s, n) + β

∑

s′∈Ψ

P (s′|s, n)ϑk(s′, n), Z(n)

}

for (s, n) ∈ Φ×Θ and k ≥ 0, (11b)

ϑk+1(S, n) = Z(n) for n ∈ Θ and k ≥ 0. (11c)

Then,

(i) ϑk(s, n) is nondecreasing in s ∈ Ψ for all n ∈ Θ and k ≥ 0,

(ii) lim
k→∞

ϑk(s, n) = ϑ(s, n) for all (s, n) ∈ Υ.

Proof : (i) By (11a), ϑ0(s, n) is nondecreasing in s ∈ Ψ for all n ∈ Θ. Then, by induction on

k ≥ 0, the rest of the proof is similar to that of Lemma 1 part (i) and is omitted.

(ii) First, by induction on k ≥ 0, we will show that ϑk(s, n) is nonincreasing in k ≥ 0 for all

(s, n) ∈ Υ. By definition, ϑ1(s, n) ≤ ϑ0(s, n) for all (s, n) ∈ Υ. As the induction hypothesis, for

some m ≥ 1, suppose ϑm(s, n) ≤ ϑm−1(s, n) for all (s, n) ∈ Υ. This implies

`(s, n) + β
∑

s′∈Ψ

P (s′|s, n)ϑm(s′, n) ≤ `(s, n) + β
∑

s′∈Ψ

P (s′|s, n)ϑm−1(s′, n) for (s, n) ∈ Φ×Θ. (12)

By the definitions of the functions ϑm and ϑm+1, (12) implies that ϑm+1(s, n) ≤ ϑm(s, n) for all

(s, n) ∈ Υ, and the induction step is complete. Next, we will establish the following:

max
(s′′,n′)∈Υ

[
ϑk(s′′, n′)− ϑk+1(s′′, n′)

] ≤ β max
(s′′,n′)∈Υ

[
ϑk−1(s′′, n′)− ϑk(s′′, n′)

]
for all k ≥ 1. (13)

For an arbitrary m ≥ 1, consider the following possible cases for ϑm(s, n)− ϑm+1(s, n). Note that

since β > 0 and ϑm−1(s, n) ≥ ϑm(s, n) for all (s, n) ∈ Υ,

0 ≤ β max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]
. (14)

1. If s = S, then by (14) and the fact that ϑm+1(s, n) = ϑm(s, n) = Z(n),

ϑm(s, n)− ϑm+1(s, n) = 0 ≤ β max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]
.

2. If s < S, then there are two subcases:

12



(a) If ϑm+1(s, n) = Z(n), then because ϑm(s, n) ≤ Z(n), by (14) we obtain

ϑm(s, n)− ϑm+1(s, n) ≤ 0 ≤ β max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]
. (15)

(b) If ϑm+1(s, n) = `(s, n) + β
∑

s′∈Ψ P (s′|s, n)ϑm(s′, n), then

ϑm(s, n)− ϑm+1(s, n) ≤ β
∑

s′∈Ψ

P (s′|s, n)
[
ϑm−1(s′, n)− ϑm(s′, n)

]
(16)

≤ β
∑

s′∈Ψ

P (s′|s, n) max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]

= β max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]
,

where the inequality in (16) is implied by ϑm(s, n) ≤ `(s, n)+β
∑

s′∈Ψ P (s′|s, n)ϑm−1(s′, n).

Thus, ϑm(s, n)− ϑm+1(s, n) ≤ β max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]
for all (s, n) ∈ Υ, implying

max
(s′′,n′)∈Υ

[
ϑm(s′′, n′)− ϑm+1(s′′, n′)

] ≤ β max
(s′′,n′)∈Υ

[
ϑm−1(s′′, n′)− ϑm(s′′, n′)

]
. (17)

Recall that we have chosen m arbitrarily. Therefore, by (17), (13) holds. Then, since ϑk(s, n) is

nonincreasing in k ≥ 0 for all (s, n) ∈ Υ, and the optimal cost function ϑ satisfies (10a) and (10b),

by the fact that β < 1, Theorem 6.2.3 of Puterman [21] establishes the result. 2

Note that Lemma 2 part (i) states that the function ϑk defined by (11a)-(11c) preserves the mono-

tonicity with respect to the level of deterioration for any particular repair history, and independent

from part (i), Lemma 2 part (ii) establishes the convergence of the sequence to the optimal cost

function, ϑ. Equipped with Lemma 2, we now proceed to the proof of Theorem 2.

Proof of Theorem 2: First, we will prove the following auxiliary result:

Z(n + 1)− Z(n) ≤ R−M for all n ∈ Θ′. (18)

For the proof of (18), we present only the case for n = N − 1 and omit the others since they

are similar. Consider the following two possible cases for Z(N) − Z(N − 1). Recall that Z(N) =

ϑ(0, 0) + R and R ≥ M .

1. If Z(N − 1) = ϑ(0, 0) + R, then Z(N)− Z(N − 1) = 0 ≤ R−M .

2. If Z(N − 1) = ϑ(0, N) + M , then (by Proposition 2) since ϑ(0, 0) ≤ ϑ(0, N),

Z(N)− Z(N − 1) = ϑ(0, 0) + R− ϑ(0, N)−M ≤ R−M.

13



Next, we will make use of the relation in (18) to show that

ϑ(s, n + 1)− Z(n + 1) ≥ ϑ(s, n)− Z(n) for all (s, n) ∈ Ψ×Θ′. (19)

For (s, n) ∈ Υ, consider the sequence of value iterates
{
ϑk(s, n)

}
k≥0

defined by (11a)-(11c). Because

lim
k→∞

ϑk(s, n) = ϑ(s, n) for all (s, n) ∈ Υ
(
by Lemma 2 part (ii)

)
, to establish (19), it suffices to

show that ϑk satisfies the following for all k ≥ 0:

ϑk(s, n + 1)− Z(n + 1) ≥ ϑk(s, n)− Z(n) for all (s, n) ∈ Ψ×Θ′. (20)

By (11a), (20) holds for k = 0. As the induction hypothesis, suppose (20) holds for some k = m ≥ 0.

Then, for fixed s ∈ Ψ, choose an arbitrary n ∈ Θ′, consider the following possible cases for

ϑm+1(s, n + 1)− ϑm+1(s, n):

1. If s = S, then because ϑm+1(s, n) = Z(n) and ϑm+1(s, n + 1) = Z(n + 1),

ϑm+1(s, n + 1)− ϑm+1(s, n) = Z(n + 1)− Z(n).

2. If s < S, then there are two subcases:

(a) If ϑm+1(s, n + 1) = Z(n + 1), then since ϑm+1(s, n) ≤ Z(n),

ϑm+1(s, n + 1)− ϑm+1(s, n) ≥ Z(n + 1)− Z(n).

(b) If ϑm+1(s, n+1) = `(s, n+1)+β
∑

s′∈Ψ P (s′|s, n+1)ϑm(s′, n+1), then since ϑm+1(s, n) ≤
`(s, n) + β

∑
s′∈Ψ P (s′|s, n)ϑm(s′, n), we have

ϑm+1(s, n + 1)− ϑm+1(s, n)

≥ `(s, n + 1)− `(s, n) + β
∑

s′∈Ψ

[
P (s′|s, n + 1)ϑm(s′, n + 1)− P (s′|s, n)ϑm(s′, n)

]
. (21)

Note that by Lemma 2 part (i), ϑm(s′, n + 1) is nondecreasing in s′ ∈ Ψ. Then, by

Assumption 3, Lemma 4.7.2 of Puterman [21] implies

∑

s′∈Ψ

P (s′|s, n + 1)ϑm(s′, n + 1) ≥
∑

s′∈Ψ

P (s′|s, n)ϑm(s′, n + 1). (22)

By (21) and (22),

ϑm+1(s, n + 1)− ϑm+1(s, n)

≥ `(s, n + 1)− `(s, n) + β
∑

s′∈Ψ

P (s′|s, n)
[
ϑm(s′, n + 1)− ϑm(s′, n)

]
. (23)
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By the induction hypothesis, ϑm(s′, n + 1)− ϑm(s′, n) ≥ Z(n + 1)−Z(n) for all s′ ∈ Ψ.

By (23), this implies

ϑm+1(s, n + 1)−ϑm+1(s, n)

≥ `(s, n + 1)− `(s, n) + β
∑

s′∈Ψ

P (s′|s, n)
[
Z(n + 1)− Z(n)

]

= `(s, n + 1)− `(s, n) + β
[
Z(n + 1)− Z(n)

]

= ρβ
[
P (S|s, n + 1)− P (S|s, n)

]
+ β

[
Z(n + 1)− Z(n)

]
. (24)

Note that Z(n + 1)− Z(n) ≤ R−M . By satisfying condition (8), this implies

ρβ
[
P (S|s, n + 1)− P (S|s, n)

] ≥ (1− β)
[
Z(n + 1)− Z(n)

]
. (25)

Then, by (24), (25) yields ϑm+1(s, n + 1)− ϑm+1(s, n) ≥ Z(n + 1)− Z(n).

Thus, (20) holds for k = m + 1, and the induction step is complete.

Now, to prove the main result, by the definition of s∗n, it is sufficient to show that for any s ∈ Ψ

and n ∈ Θ′, a(s, n) ∈ {1, 2} implies a(s, n+1) ∈ {1, 2}. For fixed s ∈ Ψ, choose an arbitrary n ∈ Θ′

and let a(s, n) ∈ {1, 2} implying that ϑ(s, n) = Z(n). Then, because (19) holds, we must have

ϑ(s, n + 1) ≥ Z(n + 1). By the definition of ϑ(s, n + 1), we also have ϑ(s, n + 1) ≤ Z(n + 1). These

yield ϑ(s, n + 1) = Z(n + 1). Therefore, a(s, n + 1) ∈ {1, 2}. 2

It is clear that the structure of the optimal policy is heavily influenced by the underlying cost

structure, i.e., the relative magnitudes of the repair costs, replacement costs, and inspection costs.

In the following section, we consider the sensitivity of the optimal policy to these cost parameters.

4 Sensitivity Analysis

Here, we examine the behavior of the optimal actions in each state of the process when we

compare the inspection, maintenance and replacement costs of two different systems. Note that

our analysis in this section does not impose any particular assumptions on the DTMC describing

the system’s deterioration. Throughout the section, we consider two systems differing in one or two

of the aforementioned cost parameters and let Πi denote problem instance i, (i = 1, 2). We also

specify the cost parameters and the cost functions resulting for system i by a subscript i, (i = 1, 2).

We begin our analyses by a technical lemma. Given the cost of inspection increases by a certain

amount, Lemma 3 provides an upper bound for the increase in the optimal cost function in terms

of the increase in the cost of inspection and the discount factor.
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Lemma 3 : If Π1 and Π2 are identical except that I1 ≥ I2, then

ϑ1(s, n)− ϑ2(s, n) ≤ β
[
I1 − I2

]
/(1− β) for all (s, n) ∈ Υ.

Proof : We will prove the result by induction on the iterates of the value iteration algorithm

described by (4a)-(4e) and (5). We will apply the algorithm simultaneously to both problem

instances. For problem instance i = 1, 2, let ϑk
i (s, n) be the value associated with state (s, n) ∈ Υ

at the kth iteration of the algorithm. By the convergence of the value iteration algorithm, it is

sufficient to show that the following holds for all k ≥ 0.

ϑk
1(s, n)− ϑk

2(s, n) ≤ β
[
I1 − I2

]
/(1− β) for all (s, n) ∈ Υ. (26)

By construction, ϑk
1(s, n) − ϑk

2(s, n) = 0 for all (s, n) ∈ Υ. Then, because I1 ≥ I2 and β < 1, (26)

holds for k = 0. As the induction hypothesis suppose (26) holds for some k = m ≥ 0. Then, the

following hold for all (s, n) ∈ Φ×Θ′:

wm+1
1 (s, n)− wm+1

2 (s, n) = `1(s, n)− `2(s, n) + β
∑

s′∈Ψ

P (s′|s, n)
[
ϑm

1 (s′, n)− ϑm
2 (s′, n)

]

≤ β
[
I1 − I2

]
+ β

∑

s′∈Ψ

P (s′|s, n)β
(

I1 − I2

1− β

)
= β

[
I1 − I2

]
+ β2

(
I1 − I2

1− β

)
= β

(
I1 − I2

1− β

)
. (27)

Note that by the definition of the function `i for i = 1, 2, we have `1(s, n) − `2(s, n) = β
[
I1 − I2

]

for all (s, n) ∈ Υ. By the induction hypothesis this implies the inequality in (27).

Thus, wm+1
1 (s, n)− wm+1

2 (s, n) ≤ β[I1 − I2]/(1− β) for all (s, n) ∈ Υ. Then, by the induction

hypothesis and the definitions of the functions ϑm+1
1 and ϑm+1

2 , this implies that ϑm+1
1 (s, n) −

ϑm+1
2 (s, n) ≤ β[I1 − I2]/(1− β) for all (s, n) ∈ Υ, and the result follows by induction. 2

Proposition 3 : Suppose Π1 and Π2 are identical except that I1 ≥ I2. Then, for any (s, n) ∈ Υ,

a2(s, n) ∈ {1, 2} ⇒ a1(s, n) ∈ {1, 2}.

Proof : It is sufficient to show that

ϑ1(s, n)− Z1(n) ≥ ϑ2(s, n)− Z2(n) for all (s, n) ∈ Υ. (28)

For each problem instance i = 1, 2, and each pair (s, n) ∈ Υ, consider the sequence of value iterates
{
ϑk

i (s, n)
}

k≥0
defined by (11a)-(11c). Because lim

k→∞
ϑk

i (s, n) = ϑi(s, n) for all (s, n) ∈ Υ and i = 1, 2
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(
by Lemma 2 part (ii)

)
, to establish (28), it suffices to show that the following relation holds for

all k ≥ 0.

ϑk
1(s, n)− ϑk

2(s, n) ≥ Z1(n)− Z2(n) for all (s, n) ∈ Υ. (29)

By (11a), ϑ0
i (s, n) = Zi(n) for all (s, n) ∈ Υ and i = 1, 2. Therefore, (29) holds for k = 0. As

the induction hypothesis, suppose (29) holds for some k = m ≥ 0. Then, choose an arbitrary pair

(s, n) ∈ Υ and consider the following possible cases for ϑm+1
1 (s, n)− ϑm+1

2 (s, n). By the definitions

of the functions Z1 and Z2, Lemma 3 implies that Z1(n)− Z2(n) ≤ β
[
I1 − I2

]
/(1− β).

1. If s = S, then since ϑm+1
i (s, n) = Zi(n) for i = 1, 2, ϑm+1

1 (s, n)−ϑm+1
2 (s, n) = Z1(n)−Z2(n).

2. If s < S, then there are two subcases.

(a) If ϑm+1
1 (s, n) = Z1(n), then since ϑm+1

2 (s, n) ≤ Z2(n), we have

ϑm+1
1 (s, n)− ϑm+1

2 (s, n) ≥ Z1(n)− Z2(n).

(b) If ϑm+1
1 (s, n) = `1(s, n) + β

∑
s′∈Ψ P (s′|s, n)ϑm

1 (s′, n), then

ϑm+1
1 (s, n)− ϑm+1

2 (s, n)

≥ `1(s, n)− `2(s, n) + β
∑

s′∈Ψ

P (s′|s, n)
[
ϑm

1 (s′, n)− ϑm
2 (s′, n)

]
(30a)

= β[I1 − I2] + β
∑

s′∈Ψ

P (s′|s, n)
[
Z1(n)− Z2(n)

]
= β[I1 − I2] + β

[
Z1(n)− Z2(n)

]

≥ Z1(n)− Z2(n), (30b)

where (30a) is implied by ϑm+1
2 (s, n) ≤ `2(s, n) + β

∑
s′∈Ψ P (s′|s, n)ϑm

2 (s′, n), and (30b)

follows from the fact that Z1(n)− Z2(n) ≤ β
[
I1 − I2

]
/(1− β).

Thus, (29) holds for k = m + 1 and the result follows by induction. 2

Similar to Lemma 2, Lemma 4 describes a special sequence of value iterates and establishes its

convergence to the optimal cost function. Specifically, the sequence described in Lemma 4 differs

from that of Lemma 2 in that it only keeps the cost associated with replacement action as constant

at its optimal value and updates the costs associated with wait and repair actions. Note that

this sequence is also not appropriate to compute the optimal cost function without the optimal

cost associated with state (0, 0), ϑ(0, 0). We use Lemma 4 to construct the proofs of some of our

sensitivity results.

17



Lemma 4 : For (s, n) ∈ Υ and k ≥ 0, define the function ϑk(s, n) as follows:

ϑ0(s, n) = ϑ(0, 0) + R for all (s, n) ∈ Υ, (31a)

ϑk+1(s, n) = min

{
`(s, n) + β

∑

s′∈Ψ

P (s′|s, n)ϑk(s′, n), ϑk(0, n + 1) + M, ϑ(0, 0) + R

}

for (s, n) ∈ Φ×Θ′ and k ≥ 0, (31b)

ϑk+1(s,N) = min

{
`(s, n) + β

∑

s′∈Ψ

P (s′|s, n)ϑk(s′, n), ϑ(0, 0) + R

}

for s ∈ Φ and k ≥ 0, (31c)

ϑk+1(S, n) = min
{

ϑk(0, n + 1) + M, ϑ(0, 0) + R
}

for n ∈ Θ′ and k ≥ 0, (31d)

ϑk+1(S, N) = ϑ(0, 0) + R for k ≥ 0. (31e)

Then, lim
k→∞

ϑk(s, n) = ϑ(s, n) for all (s, n) ∈ Υ.

Proof : By (31b)-(31e), ϑ1(s, n) ≤ ϑ(0, 0) + R for all (s, n) ∈ Υ. By (31a), this implies that

ϑ1(s, n) ≤ ϑ0(s, n) for all (s, n) ∈ Υ. Then, by induction on k ≥ 0, it can be shown that ϑk(s, n) is

nonincreasing in k ≥ 0 for all (s, n) ∈ Υ. The remainder of the proof is similar to that of Lemma

2 part (ii) and is therefore omitted. 2

Proposition 4 : Suppose Π1 and Π2 are identical except that I1 ≥ I2. Then, for any (s, n) ∈ Υ,

a2(s, n) = 2 ⇒ a1(s, n) = 2.

Proof : We sketch the proof and omit the details. For each problem instance i = 1, 2 and pair

(s, n) ∈ Υ, consider the sequence of value iterates
{
ϑk

i (s, n)
}

k≥0
defined by (31a)-(31e). Because

ϑ1(0, 0) − ϑ2(0, 0) ≤ β
[
I1 − I2

]
/(1 − β) (by Lemma 3), similar to the proof of Proposition 3, by

induction on k ≥ 0 it can be shown that ϑk
1 and ϑk

2 satisfy the following relation at each iteration

k ≥ 0.

ϑk
1(s, n)− ϑk

2(s, n) ≥ ϑ1(0, 0)− ϑ2(0, 0) for all (s, n) ∈ Υ. (32)

Since lim
k→∞

ϑk
i (s, n) = ϑi(s, n) for all (s, n) ∈ Υ and i = 1, 2 (by Lemma 4), satisfying (32) for all

k ≥ 0 implies ϑ1(s, n)− ϑ2(s, n) ≥ ϑ1(0, 0)− ϑ2(0, 0) for all (s, n) ∈ Υ, and the result follows. 2

Next, we examine the sensitivity of the optimal policy to maintenance and replacement costs.

First, we analyze the behavior of the optimal cost function with respect to a change in maintenance

and/or replacement costs. Intuitively, Lemma 5 states that the optimal cost function does not

decrease as maintenance and/or replacement costs increase.
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Lemma 5 : Suppose Π1 and Π2 are identical except that R1 ≤ R2 and/or M1 ≤ M2. Then,

ϑ1(s, n) ≤ ϑ2(s, n) for all (s, n) ∈ Υ.

Proof : We sketch the proof as follows: Suppose we solve problem instances 1 and 2 simultaneously

by the value iteration algorithm described by (4a)–(4e) and (5). For each problem instance i = 1, 2,

if we let ϑk
i (s, n) be the value associated with state (s, n) ∈ Υ at the kth iteration of the algorithm,

then by induction on k ≥ 0, it can be shown that ϑk
1(s, n) ≤ ϑk

2(s, n) for all (s, n) ∈ Υ and k ≥ 0,

and the result follows from the convergence of the algorithm. 2

Next, in Proposition 5, we use Lemmas 4 and 5 to explore the sensitivity of the optimality

of repair/replacement decisions with respect to change(s) in the cost of maintenance and/or re-

placement. Intuitively, Proposition 5 states that, if the cost of maintenance and/or replacement

decreases, then the decision maker becomes less likely to wait in all states.

Proposition 5 : Suppose Π1 and Π2 are identical except that R1 ≤ R2 and/or M1 ≤ M2. Then,

for any (s, n) ∈ Υ, a2(s, n) ∈ {1, 2} ⇒ a1(s, n) ∈ {1, 2}.

Proof : It is sufficient to show that

ϑ1(s, n)− Z1(n) ≥ ϑ2(s, n)− Z2(n) for all (s, n) ∈ Υ. (33)

For each problem instance i = 1, 2 and pair (s, n) ∈ Υ, consider the sequence of value iterates
{
ϑk

i (s, n)
}

k≥0
defined by (11a)-(11c). By Lemma 2 part (ii), to establish (33) it suffices to show

that ϑk
1 and ϑk

2 satisfy the following for all k ≥ 0:

ϑk
1(s, n)− Z1(n) ≥ ϑk

2(s, n)− Z2(n) for all (s, n) ∈ Υ. (34)

By construction, for each problem instance i = 1, 2, we have ϑ0
i (s, n) = Zi(n) for all (s, n) ∈ Υ.

Therefore, (34) holds for k = 0. As the induction hypothesis, suppose (34) holds for some k = m ≥
0. Then, for a fixed pair (s, n) ∈ Υ, consider the following possible cases for ϑm+1

2 (s, n)−ϑm+1
1 (s, n).

Note that because the problem instances have identical inspection and failure penalty costs, by the

definitions of the functions `1 and `2, we have `1(s, n) = `2(s, n). Also, by the definitions of the

functions Z1 and Z2, and Lemma 5, we have Z2(n) ≥ Z1(n).

1. If s = S, then because ϑm+1
i (s, n) = Zi(n) for i = 1, 2, we have ϑm+1

2 (s, n) − ϑm+1
1 (s, n) =

Z2(n)− Z1(n).

2. If s < S, then consider the following subcases:
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(a) If ϑm+1
1 (s, n) = Z1(n), then because ϑm+1

2 (s, n) ≤ Z2(n), we have

ϑm+1
2 (s, n)− ϑm+1

1 (s, n) ≤ Z2(n)− Z1(n).

(b) If ϑm+1
1 (s, n) = `1(s, n) + β

∑
s′∈Ψ P (s′|s, n)ϑm

1 (s′, n), then

ϑm+1
2 (s, n)− ϑm+1

1 (s, n) ≤ β
∑

s′∈Ψ

P (s′|s, n)
[
ϑm

2 (s′, n)− ϑm
1 (s′, n)

]
(35a)

≤ β
∑

s′∈Ψ

P (s′|s, n)
[
Z2(n)− Z1(n)

]
= β

[
Z2(n)− Z1(n)

] ≤ Z2(n)− Z1(n), (35b)

where (35a) is implied by ϑm+1
2 (s, n) ≤ `2(s, n) + β

∑
s′∈Ψ P (s′|s, n)ϑm

2 (s′, n). Then, in

(35b), the first inequality follows from the induction hypothesis and because β < 1, the

second inequality is implied by the fact that Z2(n) ≥ Z1(n).

Thus, (34) holds for k = m + 1 and the result follows by induction. 2

Next, Proposition 6 explores the sensitivity of the optimality of a replacement action with

respect to a change only in the cost of replacement, R. Intuitively, it states that, if the cost of

replacement increases then the decision maker becomes less likely to replace the system in any

particular state (s, n) ∈ Υ.

Proposition 6 : Suppose Π1 and Π2 are identical except that R1 ≤ R2. Then, for any (s, n) ∈ Υ,

a2(s, n) = 2 ⇒ a1(s, n) = 2.

Proof : For the sake of brevity, we again provide only the sketch of the proof. For each problem

instance i (i = 1, 2) and each pair (s, n) ∈ Υ, consider the sequence of value iterates
{
ϑk

i (s, n)
}

k≥0

defined by (31a)-(31e). Because ϑ1(0, 0) ≤ ϑ2(0, 0) (by Lemma 5), similar to the proof of Proposi-

tion 3, by induction on k ≥ 0 it can be shown that ϑk
1 and ϑk

2 satisfy the following relation at each

iteration k ≥ 0.

ϑk
1(s, n)− ϑk

2(s, n) ≥ ϑ1(0, 0) + R1 − ϑ2(0, 0)−R2 for all (s, n) ∈ Υ. (36)

Since lim
k→∞

ϑk
i (s, n) = ϑi(s, n) for all (s, n) ∈ Υ and i = 1, 2 (by Lemma 4), satisfying (36) for all

k ≥ 0 implies ϑ1(s, n) − ϑ2(s, n) ≥ ϑ1(0, 0) + R1 − ϑ2(0, 0) − R2 for all (s, n) ∈ Υ, and the result

follows. 2

In section 5, we elucidate the optimal policies specified in this section by way of four numerical

examples. These depict the structure and the sensitivity of the optimal policies obtained.
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5 Numerical Illustrations

In this section, we present a few numerical examples to illustrate the threshold structure and

sensitivity of the optimal policy. For each of these numerical examples we assume that inspections

are free, i.e., I = 0, and let Ψ = Θ = {0, 1, . . . , 9}, c(s) = 4(s + 1) for s ∈ Φ and ρ = 2000. Each

example uses the same deterioration process whose transition probability matrix is next defined.

Define the functions g(s) = 0.05 + 0.005s for s ∈ Φ, h(n) = 1 + 0.05n for n ∈ Θ, and a stochastic

matrix Q = [Q(s′|s)]s,s′∈Φ as follows:

Q(s′|s) =





0.99 for s = s′,

0.01 for s = 0 and s′ = 1, or s = 8 and s′ = 7,

0.005 for s ∈ Φ \ {0, 8} and s′ ∈ {s− 1, s + 1},
0 otherwise.

By the functional forms g and h, and the stochastic matrix Q, for s ∈ Φ, s′ ∈ Ψ and n ∈ Θ, we

define the transition probabilities P (s′|s, n) as follows:

P (s′|s, n) =





g(s)h(n) for s′ = S and n ∈ Θ,

[1− g(s)h(n)]Q(s′|s) for s, s′ ∈ Φ and n ∈ Θ,

0 otherwise.

(37)

By (37) and the definitions of the functions g and h, it is clear that the failure probabilities,

P (S|s, n), increase proportionally with the system’s cumulative number of completed repairs. Fi-

nally, for the first three examples we assume the system is inspected daily and consider an annual

discount rate 0.99, which is translated into a daily discount factor of β = 0.991/365. For the figures

that follow, the switching curves that separate the wait regions from repair and replace regions

exclude the wait regions, and the vertical lines between repair and replace regions are included in

the replace regions.

Example 1: In our first example, we illustrate the threshold structure of the optimal policy.

For maintenance and replacement costs we assume M = 800 and R = 5000, respectively. Along

with the other problem parameters, it can be easily verified that these parameter values satisfy

Assumptions 1–3 and condition (8). Therefore, in accordance with Theorems 1 and 2, we expect

to see an optimal policy that can be described as the union of three regions, one for each action,

that are non-overlapping and separated by switching curves. Figure 1 depicts the resulting optimal

policy.
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Figure 1: The optimal maintenance and replacement policy for Example 1.

Figure 1 shows that, for each specific cumulative number of repairs, there is a threshold deterioration

status beyond which it is either optimal to repair or replace system. Furthermore, as the decision

maker repairs the system more, he/she becomes more likely to replace or repair it again. For

instance, for a deterioration status corresponding to state 5, waiting is optimal for the system only

if it has been repaired three times or less. Interestingly, it is worth noting that the decision maker

does not exhaust all repair options and uses, at most, seven of nine allowed repairs. Therefore, a

portion of the optimal policy region is useless for a system that has been repaired seven times or

less. In other words, for a system starting operation with a current history of no more than seven

repairs, given the decision maker behaves optimally, because the system is either left in operation

or replaced at seven repairs, the region beyond this threshold number of repairs is not expected to

be in use. In Figure 2, the gray-colored region depicts this portion of the optimal policy.
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Figure 2: The optimal maintenance and replacement policy for Example 1.

Example 2: In our second example, we illustrate the sensitivity of the optimal policy to a change

in the replacement cost. As in Example 1, we assume M = 800 but change the cost of replacement

to R = 3000. Figure 3 depicts the corresponding optimal policy.

Figure 3: The optimal maintenance and replacement policy for Example 2.

As consistent with Proposition 6, here, the region in which it is optimal to replace the system is at
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least as large as that of the optimal policy of Example 1.

Example 3: In our third example, we illustrate the sensitivity of the optimal policy to simultaneous

changes in maintenance and replacement costs. We change the cost of maintenance and replacement

to M = 600 and R = 3000, respectively. Figure 4 depicts the resulting optimal policy. As expected

by Propositions 5 and 6, here, it is optimal to wait in a region which is at most as wide as that of

the optimal policy of Example 1.

Figure 4: The optimal maintenance and replacement policy for Example 3.

Example 4: In our last example, we illustrate the fact that the switching curve separating the wait

region from those of repair and replacement may not be monotone if condition (8) is not satisfied.

For maintenance and replacement costs, we assume M = 500 and R = 2000, respectively. We also

assume a periodic discount factor β = 0.9. It can be easily verified manually that these parameter

values do not satisfy condition (8). Figure 5 depicts the resulting optimal policy.

From Figure 5, it is optimal to replace the system only when it fails and the repair action is no

longer feasible. It is also clear that the repair region is convex but not monotone, which we can

explain as follows: For any particular level of deterioration, higher rates of deterioration induce

earlier repairs only up to a particular repair history after which the decision maker’s willingness to

pay for a further repair decreases.
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Figure 5: The optimal maintenance and replacement policy for Example 4.
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