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Endowing conventional microcrystalline materials with nanometer-scale grains at the surfaces can offer enhanced mechanical prop-
erties, including improved wear, fatigue, and friction properties, while simultaneously enabling useful functionalizations with regard
to biocompatibility, osseointegration, electrochemical performance, etc. To inherit such multifunctional properties from the surface
nanograined state, existing approaches often use coatings that are created through an array of secondary processing techniques (e.g.,
physical or chemical vapor deposition, surface mechanical attrition treatment, etc.). Obviating the need for such surface processing,
recent empirical evidence has demonstrated the introduction of integral surface nanograin structures on bulk materials as a result of
severe plastic deformation during machining-based processes. Building on these observations, if empirically driven, process–structure
mappings can be developed, it may be possible to engineer enhanced nanoscale surface microstructures directly using machining
processes while simultaneously incorporating them within existing computer-numeric-controlled manufacturing systems. Toward this
end, this article provides a statistical characterization of nanograined metals created by severe plastic deformation in machining-
based processes that maps machining conditions to the resulting microstructure, namely, the mean grain size. A specialized designed
experiments approach is used to hypothesize and test a linear mixed-effects model of two important machining parameters. Unlike
standard analysis approaches, the statistical dependence between subsets of experimental grain size observations is accounted for and
it is shown that ignoring this inherent dependence can yield misleading results for the mean response function. The statistical model
is applied to pure copper specimens to identify the factors that most significantly contribute to variability in the mean grain size and
is shown to accurately predict the mean grain size under a few scenarios.

Keywords: Nanostructured materials, mean grain size, mixed-effects model

1. Introduction

Manufacturing processes have always sought to endow
accurate geometric and topographical attributes while
simultaneously controlling performance attributes such as
strength, fatigue life, wear behavior, biological response,
corrosion resistance, and others. It is well known that
controlling the manufacturing process via a science-based
understanding of the process–structure–performance triad
can significantly expand the product design space and
lead to state-of-the-art manufacturing processes that yield
products with superior performance properties. Emerging
thrusts in nanomanufacturing and nanomaterials have
sought to manipulate the organization of crystal structure
at nanometer length scales to favorably modulate the
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property combinations. Nanocrystallinity on surfaces
demonstrably enhances mechanical, biological, and
corrosion properties as compared to the conventional
microcrystalline state (Di Schino et al., 2003; Mishra and
Balasubramaniam, 2004; Misra et al., 2009b). As a result,
some of the broadest efforts in the area of nanomaterials
have focused on creating controlled nanoscale microstruc-
tures at the surfaces, often using an array of secondary
processing approaches, including chemical and physical
deposition techniques, mechanical surface modification,
etc. Much of this nanoprocessing often seeks to enhance
the underlying microscale crystalline structure that typ-
ically results from several conventional metal-forming
operations such as rolling, forging, and others, where the
process–structure mappings are generally well established.

In contrast to conventional metal forming, an un-
derstanding of the evolution of microstructures from
machining-based metal cutting processes is complex and

0740-817X C© 2012 “IIE”

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 0

4:
24

 0
2 

Se
pt

em
be

r 
20

12
 



Characterization of nanostructured materials 535

still incomplete. However, emerging evidence suggests that
peculiarities of the metal cutting process might, in fact,
offer opportunities for controlling nanoscale surface grain
structures (Calistes et al., 2009) to obviate the need for
secondary nanomanufacturing steps aimed at engineer-
ing multifunctional properties. To date, manufacturing
engineers and scientists have predominantly remained
focused on the metrology and modeling of the surface
geometry, roughness, mechanics of material removal,
and dynamics of the cutting forces, despite the fact that
it is known that material removal by metal cutting is a
Severe Plastic Deformation (SPD) process that imposes
very large strains (�1) at high rates (up to 105/s) and
coupled dynamic temperature rise in the deformation
zone. Even a cursory application of the principles of
physical metallurgy indicates that such deformation must
entail dramatic microstructure transformations involving
the accumulation of abnormally high defect densities in
the deformation zone. When high defect densities are
accumulated, the chip and the machined surface will
inherit a severely transformed nanoscale structure that
differs dramatically from the bulk material. Nanoscale
transformations involving the accumulation, dynamic
rearrangement, and recovery of high-density crystal
defects under SPD conditions can bequeath an integral
nanograined microstructure at the freshly generated
surfaces. Such nanograined surface microstructures can
play a central role in determining performance attributes
such as fatigue life, wear behavior, or corrosion resistance
that determine the life cycle of machined components in an
array of critical engineering applications. However, despite
the prevalence of machining operations in the manufacture
of critical components, the manufacturing community does
not currently possess a holistic data or knowledge base of
the surface microstructures and crystallography inherited
by components subsequent to machining operations.

From a technological standpoint, the ability to introduce
surface nanograin structures on bulk materials directly
through machining-based processes can offer a scalable
manufacturing framework for engineering novel surfaces.
Currently, approaches for enhancing surface mechanical
properties utilize coatings that are created through an ar-
ray of secondary processing techniques such as physical or
chemical vapor deposition or mechanical treatments such
as surface mechanical attrition treatment (Roland et al.,
2006). If empirically derived process–structure mappings
can be developed using the approaches delineated herein,
it may be possible to engineer enhanced ultra-fine surface
microstructures directly using machining processes while
simultaneously incorporating them within existing man-
ufacturing systems. From a materials processing science
perspective, these mappings can help elucidate the evolu-
tion of grain structure under the simultaneous application
of high strains, strain rates, and dynamic temperature, a
regime that is currently characterized by remarkably sparse
empirical data sets.

It has been recently demonstrated that the SPD during
chip formation by machining leads to both a nanostruc-
tured chip and a nanostructured machined surface, even
when the bulk material is a conventional microcrystalline
system (Shankar et al., 2005, 2006, 2007; Sevier et al.,
2006; Calistes et al., 2009). This discovery has crucial
implications for the machining and broader manufacturing
communities. It is well known that the nanostructured
state involves strength, wear, fretting, fatigue, biological,
and electro-chemical properties that are substantially
different than those of the conventional microcrystalline
state (Valiev et al., 2000; Di Schino et al., 2003; Mishra
and Balasubramaniam, 2004; Zhang et al., 2005; Iglesias
et al., 2007). Therefore, it is crucial to consider the
nanostructural nature of the machined component’s
surface during the design, manufacture, and life cycle
analysis of the product, particularly for applications in
which the surface properties and structure are critical.
To this end, it is imperative to (i) develop a metrological
framework for characterizing the nanostructural nature of
machined surfaces and (ii) create process–microstructure
mappings that relate surface microstructures to machin-
ing parameters. Neither of these frameworks currently
exists.

The main objective of this article is to take a first
step toward addressing the latter need by developing
and analyzing a statistical model of surface microstruc-
ture via a designed experiments approach that can be
used to map a few machining parameters to the result-
ing transformed microstructure. The implications of de-
veloping such a framework are potentially enormous. If
these process–microstructure mappings can be harnessed
to custom design surface nanostructures, it will be pos-
sible to directly utilize machining-based processes to cre-
ate refined nanograins on surfaces to exploit the unique
phenomena operative at the nanoscale and endow multi-
functional property combinations. Furthermore, if the po-
tential for significant technological breakthroughs wrought
by recent research on nanostructured/nanocrystalline ma-
terials is any indication (Valiev et al., 2000, 2007), the
implications of a simple machining-based approach for
creating nanograined surfaces can be expected to stimu-
late innovative product and manufacturing process design
opportunities.

Currently, there is a significant gap in empirical data and
a gap in what is known about the microstructures resulting
from SPD in machining. Addressing the data gap is espe-
cially urgent because there have been no comprehensive,
quantitative, modern electron microscopic studies of the
nanostructures generated by machining operations. How-
ever, even if empirical data are made available, a formalized
statistical framework for relating microstructural char-
acteristics to the machining parameters has not yet been
established. Our aim here is to lay a foundation for address-
ing the second point. To this end, we present non-standard
statistical techniques that can be used to relate common

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 0

4:
24

 0
2 

Se
pt

em
be

r 
20

12
 



536 Perry et al.

machining parameters to the resulting refined grain struc-
tures from SPD. Although the resulting microstructure can
be described by an estimated grain size distribution, our
focus here is the characterization of the mean grain size.

The remainder of the article is organized as follows. Sec-
tion 2 reviews literature pertaining to the analysis of mi-
crostructure that is relevant to our work. Section 3 describes
the experimental test bed we will use to develop and ana-
lyze our statistical model. In Section 4, we formally describe
the statistical model for characterizing the microstructure
of chips obtained from machining processes (namely the
mean grain size). Variants of the general model can be used
to account for different model assumptions. Section 5 il-
lustrates the use of the model, describes important analysis
pitfalls, and summarizes the results of the statistical experi-
ments. Finally, Section 6 provides some concluding remarks
and discusses future potential applications of this work.

2. Relevant literature

Machining processes impart SPD to the chip and the newly
formed surface that results in a microstructure that dif-
fers significantly from that of the bulk material. More-
over, machining induces large strains at high strain rates
along with a dynamic in situ temperature rise, which engen-
ders nanograined or ultra-fine grained microstructure in
the chip as well as on the freshly machined surface (Shaw,
1984; Shankar et al., 2005, 2006, 2008; Huang et al., 2008;
Cai et al., 2009; Calistes et al., 2009). As noted in Section
1, microstructure is the central element that determines
the mechanical and other characteristic responses of the
material.

Nanostructured materials have been shown to exhibit su-
perior mechanical properties (e.g., increased yield strength
up to an order of magnitude higher than their coarse-
grained counterparts) and mass transport properties (e.g.,
enhanced diffusion, which can be several orders of mag-
nitude higher). Some important studies verifying the
superior properties of nanostructured surfaces include
Horvath (1990), Hofler et al. (1993), Youngdahl et al.
(2001), Valiev et al. (2002), and Tao et al. (2007). Mate-
rials with a nanostructured surface layer have also been
shown to be endowed with improved mechanical and other
microstructure-dependent multifunctional characteristics
like corrosion and electrochemical and biological responses
(Hofler et al., 1993; Tao et al., 2003; Roland et al., 2006;
Op’t Hoog et al., 2008; Shi and Han, 2008; Misra et al.,
2009a, 2009b; Raman and Gupta, 2009). For example, it
was shown in Tao et al. (2003) that nanostructured surfaces
of thickness as small as 50 µm can enhance the wear proper-
ties in iron, while Roland et al. (2006) have shown improved
fatigue life for steel with a nanograined layer smaller than
100 µm in thickness. In addition to improved wear proper-
ties, improved oxidation resistance and corrosion resistance
properties have been demonstrated as a result of finer grain

size (Op’t Hoog et al., 2008; Raman and Gupta, 2009). An-
other intriguing characteristic displayed by nanostructured
surfaces is their biological responses, such as the enhanced
cell–substrate interaction for preosteoblasts on nanostruc-
tured and ultra-fine-grained stainless steel (Misra et al.,
2009a, 2009b). In those works, the authors demonstrated
that materials with nano- and ultra-fine-grained surfaces
amplify cell adhesion, viability, and interconnectivity of
preosteoblasts in cell cultures as compared to that in coarse-
grained surfaces. All of these properties and phenomena are
a direct function of the microstructure of the surface that
can be quantitatively characterized using two important at-
tributes: the grain size distribution and the distribution of
grain and sub-grain misorintations.

Statistical methods have been employed to extract in-
formation from microstructures and to determine material
properties and the cause-and-effect relationship with
initial processing parameters (Torquato, 2002; Al-Ostaz et
al., 2007; Grosselle et al., 2010). Some of these works have
focused on using statistical methods, like correlation tech-
niques, to reconstruct the complete microstructure in order
to determine material properties of disordered materials
(Torquato, 2002). While this may be a very useful method, it
is very resource intensive and not easy to implement for all
conditions. Moreover, it does not establish a direct relation
between the initial parameters and the microstructure.

Other researchers have attempted to quantify mi-
crostructural information and relate it to material
properties (Al-Ostaz et al., 2007; Grosselle et al., 2010).
Al-Ostaz et al. (2007) have statistically characterized the
randomness in morphology in terms of spatial dispersion
of inclusions in composites with the aim of classifying mi-
crostructural arrangements and relating them to the local
stress fields. Grosselle et al. (2010) have used traditional
Design-Of-Experiment (DOE) techniques and Analysis Of
Variance (ANOVA) to determine the significance of factors
(e.g., casting speed, copper content, titanium content, heat
treatment) on mechanical properties (e.g., yield strength
and ductility). While initial processing parameters indeed
affect the material properties, these changes in properties
are mediated through changes in microstructure, and the
complex interplay of the initial conditions can result in
unexpected changes in properties that may not be captured
directly. For example, in the case of machining, strain and
strain rate lead to an in situ temperature rise in the material
and can result in recovery and recrystallization. Thus,
while it is expected that an increase in strain and strain-rate
leads to finer grain size (and, hence, higher strength), at
very high strain and strain rate, the ensuing temperature
rise can result in bimodal grain size distributions that
yield appealing property combinations such as high
ductility and high yield strength (Shekhar et al., 2009,
2011). These transformations are best captured in terms
of microstructural changes, rather than directly relating to
property changes, which are an outcome of the complex in-
terplay of these transformations in conjunction with other
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Characterization of nanostructured materials 537

parameters. Moreover, once the microstructure can be
characterized based on these initial conditions, it can
be used to predict various microstructure-dependent
characteristics and phenomenon exhibited by the material,
and its usefulness will not be limited to any one specific
property. Grosselle et al. (2010) have also employed
standard DOE techniques to relate initial parameters to
some of the microstructural features like precipitate size
and texture. However, they look into specific properties by
simple correlation techniques.

The primary aim of this research is to create a predic-
tive statistical model of ultra-fine-grained structures as a
function of important machining parameters, which, in
turn, can be used to determine the mechanical and other
microstructure-controlled properties. We consider as the
main response the grain size that results from a cutting
operation. A specialized designed experiments approach is
proposed that is capable of handling the non-normality of
the grain size distribution and the inherent dependence of
grain size observations. This framework can be extended to
microstructures created by other processes. Before present-
ing our statistical model, we first describe the experimental
setup and the means by which samples were created and
analyzed.

3. Description of experiments

As a test bed for our proposed approach, we considered
the process of machining copper bars and subsequently
using electron microscopy to statistically examine the re-
sulting microstructure, namely, the distribution of grain
sizes. In this study, we examine the grain structure in a chip
that has undergone SPD by machining. Prior research has
demonstrated that chip formation in machining occurs in a
fan-shaped deformation zone ahead of the cutting tool that
is the progenitor of similar levels of extreme deformation
in both the chip and the freshly created, machined surface
(Huang et al., 2008). This has often been shown to result
in a nanostructured chip that closely resembles the ultra-
fine-grain structure of the machined surface (Calistes et al.,
2009). Therefore, it is reasonable to treat the chip as a com-
mon archetype of the transformed grain structure resulting
from SPD in machining for a given strain and strain rate.

The two primary parameters that determine the final mi-
crostructure during machining are strain and deformation
rate for a given material system. The initial microstruc-
ture of the material (before machining) is also important;
however, one can control for initial microstructure by start-
ing with a fully annealed material in each experiment. The
configuration of a typical machining process is illustrated
in Fig. 1, which depicts the workpiece and the cutting tool.
In machining, strain is directly related to the rake angle of
the cutting tool, measured away from the normal of the
cutting surface (see Fig. 1), and the deformation rate is di-
rectly correlated with the relative velocity V between the
cutting tool and the workpiece (Shaw, 1984); thus, the final

Fig. 1. Configuration of a typical machining process.

microstructure is primarily a function of two machining
parameters, the rake angle and V.

For the experiments performed in this research, we used
2-inch-diameter commercially pure copper bars as our
starting material and annealed the bars at 700◦C for 2 h
in order to ensure a fully coarsened initial microstructure.
The annealed copper rod was then machined using two
different rake angles, 0◦ and 20◦, at two different cutting
speeds: low (50 mm/s) and high (1250 mm/s). The de-
formation parameters were set to ensure a predominantly
plane-strain configuration while ensuring that the unde-
formed chip thickness (0.17 mm) is much smaller than the
width of the deformed chip (3 mm; Shaw, 1984). There-
fore, the designed experiment considers two factors with
two levels each and four treatments labeled as follows: 0L,
0H, 20L, and 20H. Two independent replications of each
treatment combination were performed.

All of the different sample conditions were placed in a
scanning electron microscope for EBSD-based orientation
imaging microscopy (OIM). OIM was carried out using the
Phillips XL-30 system equipped with the EDAX-Ametek
EBSD detector featuring a Hikari Camera and TSL OIM
software for data acquisition and analysis. All scans were
taken using a step size of 0.1 µm, and a minimum scan size
of 15 µm × 15 µm was used. A 15◦ grain tolerance was
used to obtain an estimated grain size distribution for each
scan using the TSL OIM analysis software. At least two
scans were completed for each treatment in order to obtain
independent replications. Figures 2 and 3 provide grain
maps showing the grain size variation under two different
processing conditions. In these figures, the different shades
depict different grains on the chip.

In Fig. 2, we note that the grain size distribution using
the low rake angle and the low cutting speed has a form
that differs significantly from that of the case when the
rake angle is 20◦ and the cutting speed is high (see Fig. 3).
The probability density estimates were created using kernel
density estimators with Gaussian kernel functions (see
Silverman (1986)). These figures demonstrate the wide
variety of grain size distributions that can be observed,
depending on the machining conditions. Ideally, one would
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538 Perry et al.

Fig. 2. Estimated grain size distribution (0L). Different shades
correspond to different grains.

like to predict the resulting grain size distribution for a
fixed set of conditions; however, the lack of empirical data
to support a wide range of conditions and/or material
systems does not currently exist.

The traditional way to determine the statistical signifi-
cance of factor effects on a response (e.g., grain size) is to
employ standard DOE techniques that examine a few fac-
tors at a few levels. Unfortunately, the problem of designing
and analyzing experiments of the kind considered in this ar-
ticle is hardly standard due to the hierarchical nature of the
experiments. These experiments employ three different ran-
domization procedures in collecting the data, implying that
the experiments are not conducted in a completely random-
ized fashion. The first procedure corresponds to randomly

Fig. 3. Estimated grain size distribution (20H). Different shades
correspond to different grains.

sampling a test specimen (e.g., a copper bar stock) from
a larger population of available material. The specimen is
then machined with factors set in accordance with the as-
signed treatment combination (e.g., high rake angle and
low cutting speed), resulting in a population of severely
deformed machined surface samples (chips). The second
randomization procedure randomly selects one (or more)
samples from this population for electron microscopy to
measure the sizes and misorientation angles of the grains
produced by machining. The third randomization proce-
dure randomly selects a subset of grains for observation
from the overall population of measured grains. Completely
randomized experiments are not feasible since the popu-
lation of grains is unavailable until after the machining
process is complete (i.e., treatments cannot be applied di-
rectly to the grains). Therefore, the units of observation (the
grains) are nested observations; that is, grains are nested
within machined surface samples, and samples are nested
within each specimen. Following an experiment conducted
at a given treatment combination, several repeated measures
of grain size are collected for analysis. As a result, observa-
tions drawn from a single experimental unit are correlated.
This correlation between observations complicates the re-
sulting analysis of the experimental data, relative to stan-
dard DOE analysis techniques. In this article, we take a first
step toward predicting grain size for a fixed set of process-
ing conditions by introducing a linear mixed-effects model
of the mean grain size that accounts for the non-normality
of, and correlation between, the grain size observations.

4. Statistical model description

This section provides our statistical model to describe
the machined surface microstructure by examining the
response of grain size using a DOE approach. Before we
present the model, it is important to note two important
issues. First, to employ standard DOE techniques, the
response observations need to be independent normal
random variables. Using grain size as the response, Figs. 2
and 3 demonstrate that the grain size distribution is, in
general, non-normal; i.e., the observed grain sizes appear
to be highly right-skewed. Moreover, due to the restriction
in randomization of the experiments, grain sizes measured
from the same microscopy scan are generally correlated.
Second, the designed experiments considered in this article
are complicated because each scan results in a (random)
number of grain size observations; i.e., the experiment
is a repeated measures experiment wherein the number
of observations taken at each experimental design point
is random. This significantly complicates the analysis of
these data and suggests the need for a transformation
of the data and specialized techniques for identifying
and analyzing the main contributors to variance in the
resulting microstructure.
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Characterization of nanostructured materials 539

We pause here to state a few important assumptions
before presenting a general statistical model that can be
tailored to our problem.

A1: The samples have identical initial microstructure (be-
fore machining).

A2: Exactly one chip is sampled for scanning in the elec-
tron microscope, and all chips are representative of
the true microstructure.

A3: There are no statistical differences between different
bar stock samples originating from the same producer.

In what follows, we introduce a generic model that allows
for relaxation of the above assumptions. As we shall see,
the model simplifies as these assumptions are imposed.

The primary response of interest is the grain size that
results in the chip (and machined surface) after machining.
For the response of grain size, we propose a linear statistical
model of the form

yi jk = z
′
iβ + δi + νi j + εi jk, (1)

where yi jk denotes the kth grain size sampled from the j th
chip of bar stock i for i = 1, . . . , N, j = 1, . . . , mi and
k = 1, . . . , ni j , where N denotes the number of bars used in
the experiment, mi is the number of chips sampled from bar
stock i , and ni j denotes the number of grain sizes sampled
from the j th chip of bar stock i . Let p denote the number
of fixed effects in the model (including an intercept term).
The remaining model parameters are defined as follows:

zi : a p × 1 vector corresponding to the treatment combi-
nation applied to bar stock i ;

β: a p × 1 vector of unknown fixed effects;
δi ∼ N(0, σ 2

δ ): a random component due to sampling bar
stock i ;

νi j ∼ N(0, σ 2
ν ): a random component due to sampling chip

j from bar stock i ;
εi jk ∼ N(0, σ 2

ε ): a random component due to sampling kth
grain on j th chip of bar stock i ,

where N(0, x2) denotes a zero-mean normal random vari-
able with variance x2. The model assumes that δi , νi j , and
εi jk are mutually independent for all i, j, k. Therefore,

E(yi jk) = z
′
iβ,

for each i, j, k, and the covariance structure for the obser-
vations yi jk is given by

Cov(yi jk, yi ′ j ′k′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 2
δ + σ 2

ν + σ 2
ε , i = i ′, j = j ′, k = k′,

σ 2
δ + σ 2

ν , i = i ′, j = j ′, k �= k′,

σ 2
δ , i = i ′, j �= j ′,

0, i �= i ′.

Let yi = [y′
i1, y′

i2, . . . , y′
imi

]′, where A′ denotes the trans-
pose of the matrix A:

yi j = 1ni j z
′
iβ + 1ni j δi + 1ni j νi j + εi j ,

denotes the vector of observations taken from the j th chip
of bar stock i , and 1ni j is an ni j × 1 vector of ones. Then

E(yi ) = µi = 1ni ·z
′
iβ,

where ni · = ∑mi
j=1 ni j , and

Var(yi )=Vi =

⎡
⎢⎢⎢⎢⎢⎣

Vi1 σ 2
δ 1ni1 1

′
ni2

· · · σ 2
δ 1ni1 1

′
nimi

σ 2
δ 1ni2 1

′
ni1

Vi2 · · · σ 2
δ 1ni2 1

′
nimi

...
...

. . .
...

σ 2
δ 1nimi

1
′
ni1

σ 2
δ 1nimi

1
′
ni2

· · · Vimi

⎤
⎥⎥⎥⎥⎥⎦ ,

(2)

whose diagonal elements are given by

Vi j = σ 2
δ 1ni j 1

′
ni j

+ σ 2
ν 1ni j 1

′
ni j

+ σ 2
ε Ini j .

For convenience, let φ ≡ [σ 2
δ , σ 2

ν , σ 2
ε ] be the vector of

variance components.
If we impose Assumption A2 that only a single chip is

sampled from each bar (i.e., mi = 1 for all i ), then

Vi = Vi1 = σ 2
b 1ni1 1

′
ni1

+ σ 2
ε Ini1, (3)

where σ 2
b = σ 2

δ + σ 2
ν denotes a confounded measure of vari-

ability due to bar stock and chip. The term confounded
implies that although we can estimate σ 2

b , we cannot dis-
tinguish between σ 2

δ and σ 2
ν .

Suppose we assume that σ 2
δ = 0; i.e., there is no random

effect due to bar stock as stipulated by Assumption A3.
Then, the variance–covariance matrix of yi in Equation (2)
takes the form:

Vi =

⎡
⎢⎢⎢⎢⎣

Vi1 0 · · · 0
0 Vi2 · · · 0
...

...
. . .

...
0 0 · · · Vimi

⎤
⎥⎥⎥⎥⎦ (4)

where

Vi j = σ 2
ν 1ni j 1

′
ni j

+ σ 2
ε Ini j .

Note that Equation (2) suggests that if σ 2
δ = 0, then chips

sampled from the i th bar stock are true replicates. On the
other hand, if σ 2

δ > 0, then chips sampled from the i th bar
stock are repeated measures. The next subsection is focused
on estimating the unknown parameter vectors β and φ.

4.1. Model estimation

In this subsection we discuss two methods for estimating
the unknown parameters β and φ of Model (1). The first
approach involves maximization of the full likelihood of
the response data, whereas the second approach involves
the maximization of a partial likelihood. The latter ap-
proach, Restricted Maximum Likelihood (REML), is often

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 0

4:
24

 0
2 

Se
pt

em
be

r 
20

12
 



540 Perry et al.

preferred over the former due to its effectiveness in elimi-
nating the bias in the variance component estimates as a re-
sult of estimating the fixed-effects component of the model.
However, arguments such as those given in Harville (1977)
suggest that there may not be a clear “winner” between
the two methods. Therefore, we present both methods for
completeness. The following developments are for the case
where σ 2

δ = 0, as stipulated by Assumption A3.

4.1.1. Method of maximum likelihood
The Maximum Likelihood (ML) approach to parameter
estimation in the general linear mixed-effects model was
first developed by Hartley and Rao (1967). To apply their
approach to our experiments, let y = [y

′
1, y

′
2, . . . , y

′
N]′

denote the a × 1 observed response vector for the exper-
iment, where a = ∑

i
∑

j ni j = ∑
i ni · denotes the total

number of observations. Then, under multivariate normal
model assumptions, the log-likelihood function of β and
φ is given by

�(φ,β|y) = −
N∑

i=1

mi∑
j=1

ln |Vi j | −
N∑

i=1

mi∑
j=1

(yi j − 1ni j z
′
iβ)′V−1

i j

× (yi j − 1ni j z
′
iβ), (5)

where ln = loge and Vi j denotes the variance–covariance
matrix corresponding to the observations obtained from
the j th chip of bar stock i . In what follows, note that Vi j
can be written as

Vi j = φ1Vi j1 + φ2Vi j2, (6)

where Vi j1 = 1ni j 1
′
ni j

, Vi j2 = Ini j , and φ1 and φ2 are
unknown parameters. To derive the stationary equations,
we first differentiate the log-likelihood function (5) with
respect to the unknown parameters φr to obtain

∂�(φ,β|y)
∂φr

= −
N∑

i=1

mi∑
j=1

tr
(
V−1

i j Vi jr
)+

N∑
i=1

mi∑
j=1

ρi jr ,

r = 1, 2,

where tr(A) denotes the trace of matrix A and

ρi jr = (yi j − 1ni j z
′
iβ)′V−1

i j Vi jr V−1
i j (yi j − 1ni j z

′
iβ).

Note that we can write:

tr
(
V−1

i j Vi jr
) = φ1ωi jr1 + φ2ωi jr2,

where

ωi jrs = tr
(
V−1

i j Vi jr V−1
i j Vi j s

)
,

for s = 1, 2. Therefore, if we define the 2 × 2 matrices �i j =
{ωi jrs}, then the stationary equations for any given β are

N∑
i=1

mi∑
j=1

�i jφ =
N∑

i=1

mi∑
j=1

ρi j ,

where

ρi j =
[

(yi j − 1ni j z
′
iβ)′V−1

i j 1ni j 1
′
ni j

V−1
i j (yi j − 1ni j z

′
iβ)

(yi j − 1ni j z
′
iβ)′V−1

i j V−1
i j (yi j − 1ni j z

′
iβ)

]
,

and thus the estimate of φ is obtained iteratively by

φ̃(β) =
⎛
⎝ N∑

i=1

mi∑
j=1

�i j

⎞
⎠

−1⎛
⎝ N∑

i=1

mi∑
j=1

ρi j

⎞
⎠ .

The stationary equations with respect to β are easily
shown to be⎡

⎣ N∑
i=1

mi∑
j=1

(zi 1
′
ni j

V−1
i j 1ni j z

′
i )

⎤
⎦β =

N∑
i=1

mi∑
j=1

zi 1ni j V
−1
i j yi j ,

so that

β̃(φ)=
⎡
⎣ N∑

i=1

mi∑
j=1

(zi 1
′
ni j

V−1
i j 1ni j z

′
i )

⎤
⎦

−1⎡
⎣ N∑

i=1

mi∑
j=1

zi 1
′
ni j

V−1
i j yi j

⎤
⎦ .

This estimation procedure relies on the assumption that
the yi values are mutually independent and multivariate
normal with mean vector µi and variance–covariance ma-
trix Vi . Unfortunately, the grain size distributions tend to
be highly right-skewed (see Figs. 2 and 3) and thus are not
well approximated by the normal distribution. However,
suppose there exists a transformation on yi such that the
transformed data, say yi (θ), follow the prescribed multivari-
ate normal distribution. For our purposes in this research,
we follow Box and Cox (1964) and consider the class of
power transformations:

yi jk(θ) =
{

(yθ
i jk − 1)/θ, θ �= 0,

ln(yi jk), θ = 0,
(7)

for i = 1, . . . , N, j = 1, . . . , mi , and k = 1, . . . , ni j ,
where θ denotes the transformation parameter. The Ja-
cobian determinant of the transformation in Equation (7)
is

J =
N∏

i=1

mi∏
j=1

ni j∏
k=1

yθ−1
i jk ,

and since the yi (θ) values are assumed to be mutually in-
dependent, each following a multivariate normal distribu-
tion, the log-likelihood function of the untransformed data
is then given by

�(β,φ, θ)= (θ − 1)
N∑

i=1

mi∑
j=1

ni j∑
k=1

ln(yi jk)− 1
2

N∑
i=1

mi∑
j=1

ln(|Vi j |)

−
N∑

i=1

mi∑
j=1

(yi j (θ) − 1ni j z
′
iβ)′V−1

i j (yi j (θ)−1ni j z
′
iβ).

(8)
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Characterization of nanostructured materials 541

Our objective is to obtain the values of θ , β, and φ that
maximize �(β,φ, θ).

Note that for a given value of the transformation param-
eter θ , optimal (or near optimal) values of β and φ can
be obtained iteratively by performing the following steps
which, as noted by Hocking (2003), are closely related to
second-order gradient methods:

Step 1. Choose a value for θ and an initial vector for φ,

say φ̃
(0)

;
Step 2. Compute

V(0)
i j = φ̃

(0)
1 1ni j 1

′
ni j

+ φ̃
(0)
2 Ini j

for i = 1, . . . , N and j = 1, . . . , mi , and

β̃
(0)

(θ) =
⎡
⎣ N∑

i=1

mi∑
j=1

(
zi 1

′
ni j

(
V(0)

i j

)−11ni j z
′
i

)⎤⎦
−1

×
⎡
⎣ N∑

i=1

mi∑
j=1

zi 1
′
ni j

(
V(0)

i j

)−1yi j (θ)

⎤
⎦ ; .

Step 3. Use V(0)
i j ’s and β̃

(0)
(θ) to evaluate �i j and ρi j (θ) (for

i = 1, . . . , N and j = 1, . . . , mi ), then compute

φ̃
(1) =

⎛
⎝ N∑

i=1

mi∑
j=1

�i j

⎞
⎠

−1⎛
⎝ N∑

i=1

mi∑
j=1

ρi j (θ)

⎞
⎠ ;

Step 4. Return to Step 2 and iterate until ‖φ̂(c) − φ̂
(c−1)‖ <

ϑ , where c is the iteration index and ϑ (ϑ > 0) is
the convergence threshold.

These steps can be performed for a range of θ values, each
time substituting the resulting estimates of β and φ in
Equation (8) and retaining that value of θ that maximizes
�(β,φ, θ). We suggest using values of θ in the set [−1, 1]
in increments of 0.5. These values include a number of im-
portant transformations such as the inverse, inverse square-
root, natural logarithm, and square-root transformations,
as well as the untransformed case (θ = 1). Values of θ out-
side of this range can be more difficult to interpret in prac-
tice. For each of the experiments that follow in Section 5,
we chose the convergence threshold ϑ = 0.000 001.

4.1.2. REML
The ML method outlined provides (asymptotically) con-
sistent estimators of the variance components (see Hart-
ley and Rao (1967)). However, for finite samples, it is
well known that the ML approach produces estimates of
the variance components that are biased downwards (c.f.
Patterson and Thompson (1971) and Corbeil and Searle
(1976)). This bias stems from the loss in degrees of freedom
as a result of estimating the fixed effects in the model. To il-
lustrate this bias, consider a finite sample, X1, X2, . . . , XN,

drawn randomly from a normal population. If these obser-
vations are independent and identically distributed with
unknown mean µ and variance σ 2

X, then the maximum
likelihood estimator for σ 2

X is

S2
X = 1

N

N∑
i=1

(Xi − X̄)2, (9)

where X̄ = (1/N)
∑N

i=1 Xi . Applying the expectation oper-
ator to Equation (9) we see that:

E
(
S2

X

) =
(

N − 1
N

)
σ 2

X < σ 2
X,

showing that S2
X is biased downward. This bias is a direct

result of not accounting for the single degree of freedom
loss due to estimating the population mean µ.

In order to remove the bias in the ML estimates of the
variance components, we employ REML as proposed by
Corbeil and Searle (1976). The theoretical underpinnings of
the method involve a factorization of the full log-likelihood
function of Equation (5) into two parts, one depending only
on φ. The maximizer of this “partial” likelihood function
is then used to estimate the variance components. Details of
the factorization are described in Corbiel and Searle (1976),
Harville (1977), and Hocking (2003).

To incorporate the class of power transformations de-
fined in Equation (7) for the REML case, we take an ap-
proach similar to that described by Gurka et al. (2006). We
seek values of φ1, φ2, and θ that maximize the following
restricted log-likelihood of the untransformed data:

�R(φ, θ) = (θ − 1)
N∑

i=1

mi∑
j=1

ni j∑
k=1

ln(yi jk)

− ln

∣∣∣∣
N∑

i=1

mi∑
j=1

zi 1
′
i j V

−1
i j 1i j z

′
i

∣∣∣∣−
N∑

i=1

mi∑
j=1

ln |Vi j |

−
N∑

i=1

mi∑
j=1

(yi j (θ) − 1ni j z
′
i β̂)′V−1

i j (yi j (θ)−1ni j z
′
i β̂)

(10)

where yi j (θ) denotes the transformed ni j × 1 observation
vector obtained from the j th chip of bar stock i , and

β̂ = β̂(φ) =
⎡
⎣ N∑

i=1

mi∑
j=1

(
zi 1

′
ni j

V−1
i j 1ni j zi

)⎤⎦
−1

×
⎡
⎣ N∑

i=1

mi∑
j=1

zi 1
′
ni j

V−1
i j yi j

⎤
⎦ .

Obtaining REML estimates of the variance components
for any given value of θ can be accomplished in a way
similar to the ML approach outlined above. Let Wi j =
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542 Perry et al.

1ni j z
′
i and define the stacked design matrix W by

W = [W
′
11, W

′
12, . . . , W

′
1m1

, . . . , W
′
N1, W

′
N2, . . . , W

′
NmN

]′,
(11)

with dimensions a × p, where a and p were defined pre-
viously. Furthermore, define the a × a block diagonal
matrices

V =

⎡
⎢⎢⎢⎢⎣

V11 0 · · · 0
0 V12 · · · 0
...

...
. . .

...
0 0 · · · VNmN

⎤
⎥⎥⎥⎥⎦ , (12)

Ṽ1 =

⎡
⎢⎢⎢⎢⎣

V111 0 · · · 0
0 V121 · · · 0
...

...
. . .

...
0 0 · · · VNmN1

⎤
⎥⎥⎥⎥⎦ ,

and

Ṽ2 =

⎡
⎢⎢⎢⎢⎣

V112 0 · · · 0
0 V122 · · · 0
...

...
. . .

...
0 0 · · · VNmN2

⎤
⎥⎥⎥⎥⎦ ,

where, for each i, j , Vi j , Vi j1, and Vi j2 are defined as in
Equation (6). Finally, define the stacked a × 1 transformed
observation vector y(θ) as

y(θ) = [y
′
11(θ), y

′
12(θ), . . . , y

′
NmN

(θ)]′. (13)

For a given value of the transformation parameter θ ,
the methods developed in the last subsection for the ML
case can be applied to maximize the REML log-likelihood
function, which under the new parameterization can be
written as

�R(φ, θ) = (θ − 1)
N∑

i=1

mi∑
j=1

ni j∑
k=1

ln(yi jk)

−
N∑

i=1

mi∑
j=1

ln |Vi j | − ln |W′V−1W|

− (y(θ) − Wβ̂)′V−1(y(θ) − Wβ̂) (14)

where

β̂ = (W′V−1W)−1W′V−1y(θ). (15)

It can be shown that the REML stationary equations for
φ are given by

�∗φ = ρ∗(θ)

where �∗ is the 2 × 2 matrix with elements:

ω∗
rs = tr(V−1MṼr M′V−1Ṽs)

(r, s ∈ {1, 2}) and ρ∗(θ) is the 2 × 1 vector with elements:

ρ∗
r (θ) = y(θ)′V−1MṼr M′V−1y(θ),

where

M = Ia − W(W′V−1W)−1W′V−1. (16)

As a result, for a given value of θ , REML estimates for φ
are obtained iteratively from:

φ̃ = (�∗)−1 ρ∗(θ),

and the estimate for the fixed effects component β is then
given by (15), where V is evaluated using the REML esti-
mate for φ.

Note that for a given value of the transformation pa-
rameter θ , the value of φ that maximizes the restricted
log-likelihood function of Equation (10) can be obtained
iteratively by performing the following steps:

Step 1. Choose a value for θ and an initial vector for φ,

say φ̃
(0)

;

Step 2. Use φ̃
(0)

to compute V(0) and M(0) using Equations
(12) and (16), respectively.

Step 3. Use V(0) and M(0) to evaluate �∗ and ρ∗(θ), then
compute

φ̃
(1) = (�∗)−1

ρ∗(θ);

Step 4. Return to Step 2 and iterate until ‖φ̃(c) − φ̃
(c−1)‖ <

ϑ .

The REML estimate for φ obtained from the last itera-
tion, say φ̃, is substituted into Equation (15) to obtain β̂.
In the next section, we discuss the means by which to draw
statistical inference on the fixed-effects parameters of the
grain size model given by Equation (1).

4.2. Model inference

In this section, we discuss the approach to drawing statis-
tical inference on the fixed-effects component of the model
in Equation (1). Suppose that, for some fixed effect h, we
are interested in testing the hypothesis:

H0 : βh = 0,

H1 : βh �= 0.

A lack of evidence that βh �= 0 suggests that the factor
corresponding to βh is not a significant source of variability
in the mean grain size. As a result, one can subsequently
preclude the variable from any further analysis.

Asymptotic theory is typically used to develop statistical
tests for the fixed-effects component of the model. If the
variance components are known, it can easily be shown
that:

Var(β̂) ≡ D =
⎡
⎣ N∑

i=1

mi∑
j=1

(
zi 1

′
ni j

V−1
i j 1ni j z

′
i

)⎤⎦
−1

, (17)
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Characterization of nanostructured materials 543

and by substituting estimates of the variance components
(i.e., φ̂) into Vi j , we have the following test statistic:

Z0 = β̂h√
D̂hh

(18)

which converges in distribution to the standard normal
distribution under H0 as the number of design replicates
approaches infinity. Thus, for a given level of significance α

(the Type-I error probability), an approximate test (due to a
finite sample size) involves computing |Z0| and comparing
its value to the upper α/2 quantile of the standard normal
distribution.

The test described here is reasonable when the experi-
menter has a large number of design replicates; however,
the experiments used to obtain grain size observations via
electron microscopy are very expensive and time consum-
ing. Therefore, it is unlikely that a large number of replicates
per treatment combination will be available. Consequently,
Z0, although still approximately normal with zero mean
under H0, will have a variance that exceeds unity. Hence,
the probability of a false alarm is inflated. That is, the test
will more often than expected detect an effect that does not
exist.

Rather than relying on asymptotic theory for the per-
centiles of the null distribution of Z0, one can rely on the
small sample approximations to the null distribution sug-
gested by Satterthwaite (1941) and Kenward and Roger
(1997). However, a simpler alternative is to simulate a large
number of samples of Z0 under H0, given information re-
garding the amount of replication (which is known), and
use these “pseudo-samples” to better approximate the per-
centiles of the null distribution. This is a feasible approach
since the expression in Equation (18) is solely a function
of the data. Moreover, ML or REML estimates of σ 2

ν and
σ 2

ε can be used when generating the pseudo-samples from
the null distribution, and if an orthogonal design is used to
collect the data, the null distribution of Equation (18) will
be independent of the other effect estimates (i.e., the β̂h′

values where h′ �= h). Consequently, critical values against
which to compare the test statistic can be better approxi-
mated, thereby reducing the probability of a false alarm.
We demonstrate this approach to approximating the null
distribution in Section 5 where the experimental analysis
results are presented.

It is important to note that if standard DOE methods are
used to analyze the problem described here (i.e., a problem
with a nested error structure), the effects of treatments ap-
plied at the bar stock level may appear to be statistically
significant when, in fact, they are not. This is due to the fact
that a loss of precision in the estimation of β is incurred
as a result of sampling less frequently at the bar-stock level
relative to the level of chips or grains. When standard DOE
methods are used, the estimated standard errors of the re-
sulting β̂ values will be underestimated in this case, and the
magnitude of Z0 in Equation (18) will more often than not

be falsely inflated. This result has been well documented by
several authors (see, for example, Kempthorne (1952), Nel-
son (1985), and Box and Jones (1992)) and is demonstrated
in Section 5, which presents the results of our analysis.

5. Experimental results

In this section, we implement and validate the model of
Equation (1) to predict mean grain size as a result of two
primary factors. Recall that the goal of the experiments is
to characterize the variability in the mean grain size (y) as a
function of rake angle (factor A) and cutting speed (factor
B), as well as their interaction (factor AB). For analysis
purposes, it is reasonable to assume that, due to the purity
standards of the experimental material, there is no random
effect due to bar stock. Thus, we postulate the following
model:

yi jk = β0 + β1 A+ β2 B + β12 AB + νi j + εi jk, (19)

where β0, β1, β2, and β12 denote the fixed-effect compo-
nents, and νi j and εi jk denote the random components.

An efficient experimental design used to fit the model
of Equation (19) is a two-level, full-factorial design (see
Montgomery (2009)). In such a design, all possible treat-
ment combinations of q factors (each at two levels) are
performed for a total of 2q experiments. For our problem,
q = 2 experimental factors, resulting in a 22 factorial de-
sign. A single replicate of the 22 design is shown in Table 1,
with A and B in coded form (i.e., −1 and +1 for low and
high factor levels, respectively). For example, the first row
in Table 1 represents the experimental run performed with
A and B both at their low levels, the second row represents
the experimental run performed with Aat its high level and
B at its low level, and so forth.

For the experiments analyzed herein, we have at our dis-
posal two replicates of the design in Table 1. Thus, a total
of N = 8 experiments were performed. For each experi-
ment, we randomly selected a single chip for microscopy
scan (i.e., mi = 1 for all i ). Also, for each chip selected, we
sampled 250 grain sizes, thus, ni1 = 250 for all i . There-
fore, the total number of observations in the experiment is
8 × 250 = 2000. It should be noted that the analysis meth-
ods discussed in Section 4 do not impose the requirement
ni j = n for all i, j . However, since a microscopy scan of any
given chip can produce well in excess of 1000 observations,

Table 1. Summary of the full-factorial experimental design

Rake angle (A) Cutting speed (B) Interaction (AB)

−1 −1 +1
+1 −1 −1
−1 +1 −1
+1 +1 +1
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544 Perry et al.

Fig. 4. Normal probability plot of grain size with A and B at their low levels.

we selected an equal number of grain size observations
from each chip in order to facilitate balance in the design
and to ease the computational burden. It is worth noting
that additional observations at the grain level do not add
benefit since the ni j contribute to the estimation of σ 2

ε and
not σ 2

ν .
The grain size distribution is typically highly right-

skewed as indicated by the normal probability plot of Fig.
4 where the response data were taken from the (−1, −1)
treatment combination (i.e., A and B at the low levels). Re-
sponses obtained from the other treatment combinations
yield similar plots and, as a result, a power transformation
on the grain size observations is appropriate. Using the iter-
ative approaches for ML and REML estimation discussed
in Section 4, Fig. 5 shows a plot of the log-likelihood func-
tions using ML and REML methods versus the transforma-
tion parameter θ . Note that θ̂ = −0.5 maximizes both the
full and restricted log-likelihood functions, suggesting that
the appropriate transformation is the inverse square root.
Figure 6 shows normal probability plots of the untrans-
formed response data (θ = 1), as well as the transformed
response (θ = −0.5), both taken when A and B are at their
low levels. Similar results were obtained for the other treat-

ment combinations. Notice that the transformed response
data more closely follow a normal distribution.

Tables 2–4 summarize the results of the analysis using
the standard, ML, and REML approaches, respectively,
including the effect estimates, standard errors of the ef-
fect estimates, and values of the test statistics. Box–Cox
transformations were used to estimate the transformation
parameter for the standard analysis approach, and simi-
lar to the ML and REML methods, the estimate of θ was
θ̂ = −0.5. Notice in Tables 2–4 that the effect estimates are
identical for all three approaches. This is a direct result
of the equivalence of ordinary least squares and general-
ized least squares in estimating β when using a balanced
and orthogonal two-level design (cf. Graybill (1976)); how-
ever, the standard errors of the effect estimates differ. Note
that by using the standard analysis approach, the estimated
standard errors of the effect estimates reported in Table 2
are seriously underestimated, resulting in a false inflation
of the test statistics. As a consequence, factors that are not
truly significant can be falsely deemed as highly significant
contributors to variability.

The results reported for the ML and REML cases in
Tables 3 and 4 suggest that cutting speed (B) is a highly
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Characterization of nanostructured materials 545

Fig. 5. ML and REML log-likelihood functions versus θ . Both methods produce θ̂ = −0.5.

significant factor; however, the effects due to rake angle
(A) and the interaction of rake angle and cutting speed
(AB) may truly be null. If we base our decision on the
standard normal distribution as the null distribution, then
both A and AB are highly significant at the α = 0.05 level
of significance. For example, for the factor rake angle, the
p-values corresponding to the ML and REML approaches
are 0.0002 and 0.0055, respectively. For the interaction, the
p-values corresponding to the ML and REML approaches
are 0.0010 and 0.0148, respectively.

As an alternative, we used a simulation model to generate
a large number of samples of the test statistic Z0 given
by Equation (18) under the null hypothesis H0: βh = 0 for
both the ML and REML cases and then used the estimated
percentiles of these distributions as critical values for the

Table 2. Estimated effects and standard errors using standard
methods

Source of variability Effect Standard error Z0

Rake angle (A) 0.1996 0.0172 11.5742
Cutting speed (B) 0.5226 0.0172 30.3126
Interaction (AB) −0.1705 0.0172 −9.8920

tests. Using two replicates of the design given in Table 1
with ni1 = 250 (for all i ), as well as the ML and REML
estimates for σ 2

ν , σ 2
ε , and β0 obtained from our analysis,

we generated 10 000 samples and obtained the estimated
percentiles displayed in Fig. 7.

The percentiles of the standard normal distribution are
included in Fig. 7 as a frame of reference. Note that al-
though the null distributions for each case have zero mean,
the variances of the null distributions corresponding to the
ML and REML approaches are much larger than that ex-
pected under the standard normal distribution.

In comparing the test statistics of Tables 3 and 4 to their
corresponding null distributions given in Fig. 7, we see that
both the ML and REML methods suggest that the only
significant factor at the α = 0.05 level of significance is

Table 3. Estimated effects and standard errors using ML
method

Source of variability Effect Standard error Z0

Rake angle (A) 0.1996 0.0554 3.6001
Cutting speed (B) 0.5226 0.0554 9.4285
Interaction (AB) −0.1705 0.0554 −3.0768
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546 Perry et al.

Fig. 6. Normal probability plots of grain size for (a) untransformed and (b) transformed data for Case 0L.

factor B, or cutting speed. From these experiments (using
only two replications), there is not enough evidence to sug-
gest that A or AB contribute significantly at the α = 0.05
level. Figure 8 is the normal probability plot of the residuals
obtained from the model of mean grain size in the trans-

Fig. 7. Percentile points of null distributions.

formed domain. Note that the fitted model produces resid-
uals that appear to follow a zero-mean normal distribution.
It was determined that the extreme residuals were due pri-
marily to round-off error on the measured grain sizes.

Consequently, we have the following predictive model
for the mean grain size as a function of factor B, or cutting
speed:

ŷ(B) = −1.08 + 0.5226B, (20)

where ŷ(B) denotes the fitted value (in transformed units)
as a function of cutting speed. Keeping in mind that this
analysis was performed in transformed units, we need to
transform the model back to the original units if it is to be

Table 4. Estimated effects and standard errors using REML
method

Source of variability Effect Standard error Z0

Rake angle (A) 0.1996 0.0784 2.5456
Cutting speed (B) 0.5226 0.0784 6.6670
Interaction (AB) −0.1705 0.0784 −2.1757
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useful for prediction purposes. It follows that:

ỹ(B) = exp

(
ln(1 + θ̂ ŷ(B))

θ̂

)

= exp
(

ln(1.54 − 0.2613B)
−0.5

)
, (21)

where ỹ(B) denotes the fitted value in the original units of
the response (namely, micrometers) as a function of cut-
ting speed. The argument of Equation (21) is the cutting
speed B in coded units. Specifically, B = −1 corresponds
to the low level (50 mm/s), and B = 1 corresponds to the
high level (1250 mm/s). For intermediate cutting speeds be-
tween the factorial points, one can simply perform a linear
interpolation between the two. For example, to predict the
mean grain size when the cutting speed is at the midpoint
650 mm/s, substitute B = 0 in Equation (21). It is impor-
tant to note that model (21) is intended to predict only the
mean of the grain size distribution and does not prescribe
the form of the distribution itself.

To demonstrate the efficacy of the mean grain size model
as a function of only cutting speed, we compared estimates
obtained from the fitted model in Equation (21) to sample
estimates obtained from the empirical data with the cutting
speed set at 50 mm/s (B = −1), 550 mm/s (B = −0.1667),
and 1250 mm/s (B = 1). Figure 9 shows box plots of the
measured grain sizes obtained from the validation runs
taken at the low, medium, and high levels of cutting speed.
Table 5 summarizes point estimates of mean grain size (in
original units of micrometers), along with the actual sample
mean grain size for each case. It is important to note that
the sample statistics of Table 5 and Fig. 9 were obtained
using observed grain sizes that are distinct from those ob-
servations used to create Model (21). For each level of
cutting speed, the predicted value obtained from Equation
(21) lies within the interquartile range of the validation
data. The results suggest that the model is valid as the pre-
dicted and actual values in Table 5 are reasonably close. It
is not surprising that there is greater discrepancy between
the observed and predicted mean values at the high level of
cutting speed. This discrepancy can possibly be attributed

Fig. 8. Normal probability plot of the model residuals (transform domain).
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548 Perry et al.

Fig. 9. Box plots of sampled grain sizes at various cutting speeds.

to an observed increase in the variance of the grain size
distribution at the high cutting speed (see Fig. 9). That is,
in addition to a significant location effect, cutting speed
appears to have a significant dispersion effect that should
not be ignored. These results may also indicate the need to
include a second-order term for cutting speed in the model.

For the experiments detailed herein, our primary aim was
to detect and estimate the main effects (A and B) and the
two-factor interaction (AB); thus, the two-level factorial
experiment is sufficient to fit the postulated model.
However, in future experiments, we anticipate the need
to estimate quadratic effects and, therefore, the analysis
of second-order response surface designs will be required
to establish the empirical mappings between experimental
factors and surface microstructure. Fortunately, the model

Table 5. Point estimates for mean grain size using validation
data and associated percentiles

Sample percentiles
Cutting Sample Predicted
speed mean mean
(mm/s) (µm) 25th 50th 75th (µm)

50 0.2819 0.1819 0.2348 0.3150 0.3082
550 0.3836 0.2100 0.2778 0.4329 0.3988
1250 0.8265 0.4201 0.6301 1.0072 0.6116

estimation methods outlined in this article are appropriate
for estimating second and higher-order response surface
models.

6. Conclusions and future work

Emerging trajectories in engineering multifunctional sur-
faces have focused on utilizing nanoscale microstructures
to achieve novel combinations of mechanical, biological,
and electrochemical property responses. Recently, it was
discovered that the SPD associated with machining-based
processes can engender a novel interplay of thermome-
chanical phenomena to result in highly refined nanograined
surfaces. However, to date, the detailed mappings between
the parameters of machining and the resulting surface
microstructures have remained obscured. This article has
taken a first step toward the development of an empirically
driven approach for the identification of significant
machining factors and the estimation of important surface
characteristics such as the mean size of nanostructured
grains. Our numerical illustrations showed that significant
variability stems from the cutting speed, and this variability
has a significant impact on the measured average grain size.
A more detailed model that incorporates second-order
effects is likely needed; however, our aim here was to
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Characterization of nanostructured materials 549

emphasize the need for appropriate statistical techniques
when analyzing these complex processes. The ability to
introduce nanograin surfaces on bulk materials directly via
machining-based processes, apart from physical, chemical,
or mechanical treatments, has the potential to offer a
scalable manufacturing framework for engineering novel
surfaces within existing manufacturing paradigms.

Before such an approach can be realized, manufac-
turing engineers must first contend with the costly and
time-consuming process of collecting and analyzing data
originating from microscopy scans. In these experiments,
non-normality and correlation of the grain size obser-
vations are prevalent due to the inherent nested error
structure of experiments of this kind. Unfortunately, it
is still common in practice to apply standard analysis
methods (e.g., ANOVA or standard regression techniques)
to analyze experimental data with nested error structures.
By ignoring the inherent dependence of the grain size
observations, the impact of the fixed effects on the mean
grain size can be grossly misrepresented. The model we
have presented here provides an appropriate way to analyze
data originating from experiments of this type. Moreover,
it lays a foundation for a framework to establish empirical
mappings between important machining conditions and
multiple response characteristics (e.g., the mean, disper-
sion, and skewness of the grain size distribution) that can
be used to elucidate the effects of important machining
parameters on the resulting surface microstructure.

Our statistical characterization framework may be appli-
cable to an array of other materials science problems where
the distribution of microstructural characteristics modify,
adversely or favorably, the overall material response. One
example is the characterization of second phases in metal
matrix composites where the “clumping” of reinforcing
particles surrounded by the metallic phase is known to
unexpectedly modify the resulting mechanical behavior.
A second example is in the characterization of metallic
nanoparticles that are manufactured using chemical
methods or gas-phase condensation techniques wherein
their coarsening behavior and thermodynamic stability is
a function of their size distributions. For such problems,
a designed experiments approach can offer a powerful
solution for capturing critical divergences that may not
be otherwise resolved using conventional characterizations.
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