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Stochastic models for degradation-based reliability1
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This paper presents a degradation-based procedure for estimating the full and residual lifetime distribution of a single-unit system
subject to Markovian deterioration. The hybrid approach unites real degradation measures with analytical, stochastic failure models
to numerically compute the distributions and their moments. Two distinct models are shown to perform well when compared with
simulated data. Moreover, results obtained from the second model are compared with empirically generated lifetimes of 2024-
T3 aluminum alloy specimens. The numerical experiments indicate that the proposed techniques are useful for remaining lifetime
prognosis in both cases.

1. Introduction

In this paper, we consider the problem of using sensor data
to estimate full and residual lifetime distributions for a
single-unit system subject to a stochastically evolving envi-
ronment. We are particularly motivated by applications in
autonomous prognostic systems whose primary goals are
to assess the current and future health of single- or multi-
unit systems to avoid catastrophic failures and to elimi-
nate superfluous preventive maintenance activities. It is well
known that the difficulty in estimating lifetime probabilities
is the scarcity or absence of actual failure time observations
(failure-based reliability). This stems from the fact that it is
often infeasible to run components to failure, whereas ac-
celerated life tests may not be representative of the true op-
erating environment of components; thus, yielding possibly
unreliable results. Hence, novel techniques that exploit read-
ily available sensor data for lifetime estimation are needed.
Examples of such data may be the current state of the am-
bient environment of the single-unit system or measures of
degradation suffered by the single-unit system up to some
point in time.

Relative to failure-based reliability, degradation-based
reliability has received a modest amount of attention in
the open literature. The use of degradation measures to as-
sess component lifetimes was addressed in the early work of
Gertsbakh and Kordonsky (1969) who used a sample path
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approach to assess the reliability for a simple linear degra-
dation path with random slope and intercept. Later, Lu and
Meeker (1993) estimated the failure time distribution of a
unit that fails once the cumulative damage exceeds a given
threshold value. Their parametric statistical model allows
for a bootstrap method to generate confidence intervals
around the failure time distribution, but does not necessar-
ily allow for a closed-form expression of the distribution.
More recently, Meeker and Escobar (1998) provide a use-
ful summary of degradation models, emphasizing the use
of linear models with assumed log-normal rates of degra-
dation. In such a case, the full lifetime distribution can be
computed analytically. Other recent models encountered in
the literature deal with the degradation of materials such as
those due to Gillen and Celina (2001). Meeker et al. (2002)
discussed general approaches to estimating lifetime distri-
butions in accelerated life tests for highly variable environ-
ments. The models presented therein focus on the specifi-
cation of the degradation path as it depends explicitly on
the operating environment. In that paper, the authors note
the need for a formal stochastic process model of the am-
bient environment and for expedient numerical techniques
for the evaluation of these measures. This work provides a
first step in addressing both of these issues.

Analytical lifetime distribution models for single-unit
systems have been studied extensively and exist primarily in
the form of stochastic shock and wear models. Bogdanoff
and Kozin (1985) provide a good summary of probabilistic
models of cumulative damage focusing on discrete-time ver-
sions of shock models. Such models assume that the unit
sustains a random amount of damage each time a shock
occurs at either fixed or random time intervals. Wear pro-
cesses differ from shock models in that they assume that
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damage accumulates continuously over time. Some prop-
erties of the failure time distribution have been examined
for such processes when the degradation path is assumed
to be a Lévy process (Esary et al., 1973; Abdel-Hameed,
1984). Singpurwalla (1995) gave an excellent summary of
a variety of stochastic failure time models for systems in a
random environment and particularly noted the difficulty
of implementing many of these in a practical setting. Re-
cently, Kharoufeh (2003) provided explicit transform re-
sults for the full lifetime distribution and moments for a
single-unit system in a time-homogeneous Markovian en-
vironment. The main results of that work provide the basis
for our procedures here.

In the spirit of other degradation-based approaches, we
assume that a single-unit system resides in a random oper-
ating environment so that its rate of degradation depends
explicitly on the influence of external factors. The evolution
of the random environment is characterized as a stationary
Continuous-Time Markov Chain (CTMC). The key inno-
vation of our approach is the union of analytical models
(specifically Markovian wear processes) with the use of real
sensor data to estimate full and residual lifetime distribu-
tions. We present two models. The first one assumes that
the sensor data provide information on the state of the ran-
dom environment. The second one provides information on
the cumulative degradation up to some fixed point in time.
Our aim is to provide a novel, hybrid approach that will ul-
timately lead to a feasible, and implementable, prognostic
system.

The remainder of the paper is organized as follows. The
next section reviews the mathematical model describing
unit lifetime distributions. In Section 3 we demonstrate the
means by which real sensor data may be used to estimate
the model parameters when the operating environment is
observable. Section 4 presents a model for the case when
only the cumulative degradation level is observable. Several
illustrative examples are provided in Section 5, and our con-
cluding remarks and future research directions are given in
Section 6.

2. Mathematical model description

This section provides the general mathematical framework
upon which we build our estimation technique using real
degradation data. It briefly summarizes the main results
of Kharoufeh (2003) for a single-unit system subject to a
random environment modelled as a CTMC and extends the
results to the residual lifetime of the unit.

The rate of degradation of the system at time t > 0 is
governed by a random environment that is modelled as
a finite state CTMC, {Z(t) : t ≥ 0}. Let Z(t) denote the
state of the random environment process at time t ∈ R+,
where R+ denotes the non-negative real line, and define
the state space of Z by the set S ⊆ N, the set of natural
numbers. We specifically assume that Z has a finite state

space S = {1, . . . , K} with K ≥ 2. Let R(t) be defined as
the degradation rate of the system at time t ∈ R+ and de-
fine a positive function r : S → (0, ∞). The properties of
the function r (·) are dictated by the type of system under
consideration and its surrounding environment. Since the
degradation rate of the system is explicitly dependent on the
environment process, the degradation rate assumes values
in the space D = {r (1), . . . , r (K)}.

Next, we describe the stochastic evolution of the sys-
tem. If Z(t) = i ∈ S, then (i) R(t) := r (Z(t)) = r (i) ∈ D;
and (ii) the environment transitions from state i ∈ S to
state j ∈ S at time t according to a Markov transition func-
tion P(t) := [pi,j(t)] where pi,j(t) := P{Z(t) = j|Z(0) = i}.
The environment process Z is assumed to be a temporally
homogeneous, finite-state Markov process so that pi,j(t)
does not depend on t for all i, j ∈ S. Denote by X(t),
the cumulative degradation of the single-unit system up to
time t ∈ R+. The continuous-time, continuous-state degra-
dation process {X(t) : t ≥ 0} assumes values on the non-
negative real line. Moreover, this monotonically increasing
process is a continuous, additive functional of Z, and thus,
(X, Z) constitutes a special case of a Markov additive pro-
cess (Çinlar, 1977). The main contribution of Kharoufeh
(2003) was a closed-form expression for the cumulative
distribution function (cdf) and moments of the system
lifetime via an analysis of the bivariate Markov process
{(X(t), Z(t)) : t ≥ 0}. Next, we briefly review those results
without proof. For specific details and proofs, the reader is
referred to Kharoufeh (2003).

The cumulative degradation of the single-unit system
up to time t ∈ R+ is defined by the cumulative stochastic
process:

X(t) =
∫ t

0
r (Z(u))du, (1)

when X(0) ≡ 0. The system fails as soon as the magnitude
of its accumulated degradation exceeds a fixed threshold
value x (i.e., a soft failure). The lifetime of the system is
given by the random variable:

T(x) = inf{t : X(t) > x}, (2)

or the first time the X process exceeds the threshold value
x. Define the probability distributions:

Vi,j(x, t) = P{X(t) ≤ x, Z(t) = j|Z(0) = i}, i, j ∈ S,

(3)

where Vi,j(x, t) is the joint probability that, at time t , the
degradation of the system has not exceeded the value x
and the environment process is in state j ∈ S given that the
environment was initially in state i ∈ S. The distribution
matrix of X(t) is defined as:

V(x, t) = [Vi,j(x, t)]. (4)

Due to the dual relationship of Equation (2), the cdf of
T(x), the unit’s full lifetime, is obtained as:

F(x, t) := P{T(x) ≤ t} = 1 − αV(x, t)e, (5)
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where α: = [αi] with αi: = P{Z(0) = i} and e is a K-
dimensional column vector of ones.

Of particular importance to the problem of lifetime prog-
nosis is evaluation of the unit’s residual lifetime distribution
given that it has not failed by time ξ0 > 0. We may write this
distribution directly as:

S(x, t | ξ0) := P{T(x) ≥ t + ξ0 | T(x) > ξ0},
= (1 − F(x, t + ξ0))/(1 − F(x, ξ0)),
= αV(x, t + ξ0)e/(αV(x, ξ0)e). (6)

By integrating the tail, the nth moment of the unit lifetime,
for n ≥ 1, is given by:

m(n)(x) := E[Tn(x)] =
∫

R+
ntn−1P{T(x) > t}dt

=
∫

R+
ntn−1(αV(x, t)e)dt, (7)

and the nth moment of the unit’s residual lifetime, for n ≥ 1,
is given by:

m(n)(x | ξ0) := E[Tn(x) | T(x) > ξ0],

=
∫

R+
ntn−1S(x, t | ξ0)dt,

= 1
αV(x, ξ0)e

∫ ∞

ξ0

ntn−1(αV(x, t)e)dt. (8)

Equations (6) and (8) indicate that the residual lifetime dis-
tribution and moments may be computed via the full life-
time distribution. For this reason, we need only concern
ourselves with the numerical evaluation of Equation (5).
Kharoufeh (2003) showed that the matrix, V(x, t), satisfies
the partial differential equation:

Vt (x, t) + Vx(x, t)RD = V(x, t)Q, (9)

where Vt (x, t) and Vx(x, t) denote the partial derivatives
of V(x, t) with respect to t and x, respectively, RD =
diag(r (1), . . . , r (K)), and Q is the infinitesimal generator
matrix for {Z(t) : t ≥ 0}. The solution to the PDE, obtained
in the two-dimensional transform space, is given by:

Ṽ∗(u, s) = (uRD + sI − Q)−1, Re(u) > 0, Re(s) > 0,

(10)
where Ṽ∗(u, s) is obtained by the two matrix transforms.

V∗(x, s) =
∫

R+
e−st V(x, t)dt, (11)

the Laplace transform of V(x, t) with respect to t and

Ṽ∗(u, s) =
∫

R+
e−uxV∗(dx, s), (12)

the Laplace-Stieltjes Transform (LST) of V∗(x, s) with re-
spect to x. Furthermore, we define the following trans-
forms:

F∗(x, s) =
∫

R+
e−st F(x, t)dt,

F̃∗(u, s) =
∫

R+
e−uxF∗(dx, s).

The full lifetime distribution of a single-unit system in a
homogeneous Markovian environment is:

F̃∗(u, s) = s−1 − αṼ∗(u, s)e, Re(u) > 0, Re(s) > 0.

(13)
The two-dimensional transform of Equation (13) can be in-
verted numerically using inversion algorithms such as those
due to Moorthy (1995) and Abate et al. (1998).

Using Equation (13), it was further shown by Kharoufeh
(2003) that the (LST) of the nth moment of the unit lifetime,
for n ≥ 1, is given by:

m̃(n)(u) = n!α(uRD − Q)−ne. (14)

The transform of Equation (14) can be inverted numerically
using the one-dimensional inversion algorithm of Abate
and Whitt (1995). Unfortunately, a closed-form expression
for the LST of the nth residual lifetime moment (n ≥ 2) does
not appear to exist. However, the mean residual lifetime may
be obtained by evaluating (numerically) the integral:

m(1)(x | ξ0) = 1
αV(x, ξ0)e

∫ ∞

ξ0

(αV(x, t)e)dt. (15)

The analytical models of this section provide a viable
means for residual lifetime prognosis. In the sections that
follow, we extend the basic models and apply them to two
distinct scenarios in which real sensor data may be used to
obtain the pertinent measures. Both models require statis-
tical estimation of the parameters of the governing Markov
chain.

3. Model I: Observable environment

In this section, it is assumed that sensor data provide infor-
mation regarding the current state of the ambient environ-
ment in which the single-unit system resides while the degra-
dation status of the unit is unobservable. Similar models,
developed for engineering and medical applications, can be
found in the current lifetime analysis literature (Whitmore
et al., 1998; Lee et al., 2000). Our environment process is
analogous to a “marker” process whereas the degradation
process corresponds to a “latent” process that is assumed
to be unobservable. In those works, the marker and latent
processes were assumed to form a bivariate Brownian mo-
tion process. In this paper, we impose the assumption that
the marker process is a Markov chain that directly influ-
ences the latent (degradation) process; however, we make
no assumptions regarding the probability law of the latter.

Under its prevailing operating conditions, the system
wears continuously (and additively) until its cumulative
degradation exceeds a fixed, deterministic value x at which
time the unit is said to have failed. Optimally-located sen-
sors provide real-time data regarding the conditions of the
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environment (e.g., temperature, pressure, humidity, etc.);
however, the cumulative amount of degradation cannot be
discerned from these readings. It is further assumed that
the environment state space may be partitioned into K dis-
tinct states as S = {1, 2, . . . , K}, K < ∞. Associated with
each distinct environment state is a known degradation rate,
namely r (j), j ∈ S so that when the environment is in state
j ∈ S, the system degrades at rate r (j). Knowledge of the
real-valued function r is assumed to be available through
physical properties of the unit under consideration. Using
this information, it is possible to directly apply the results of
Section 2 to characterize the full and residual lifetime distri-
butions. However, in order to do so, we require a surrogate
(estimated) stochastic process for the true, underlying envi-
ronment process.

Equation (13) requires specification of three key com-
ponents: (i) the initial distribution vector (α) for the en-
vironment process: (ii) the diagonal matrix of degradation
rates (RD); and (iii) the infinitesimal generator matrix (Q)
for the environment process. Since the environment process
is observable and the degradation rates are assumed to be
known for each environmental state, it is necessary only to
approximate the matrix Q. We do so by employing stan-
dard statistical inference techniques for Markov processes
(Basawa and Rao, 1980).

We assume that the environment process {Z(t) : t ≥ 0} is
observable (and homogeneous) over the time interval [0, T ].
The system has not failed by time T , and began its lifetime
in perfect working order at time 0 (i.e., X(0) ≡ 0). The en-
vironment is continuously observed up to time T so that, at
each transition epoch, we record the current and subsequent
states of the random environment. Let q(i, j) denote the rate
at which the environment transitions from state i ∈ S to
state j ∈ S, j 
= i. If the environment process {Z(t) : t ≥ 0}
is a continuous-time Markov chain, then the holding time
in state i, given that the subsequent state is j 
= i, is expo-
nentially distributed with rate parameter q(i, j). Let NT (i, j)
denote the random, integer number of transitions of the
process from i to j in a time interval of length T . Moreover,
let HT (i) denote the total holding time in state i ∈ S during
[0, T ]. It can be shown (Basawa and Rao, 1980) that:

q(i, j) = lim
T→∞

NT (i, j)
HT (i)

. (16)

Therefore, for sufficiently large T , we may approximate
q(i, j), j 
= i by:

q(i, j) ≈ q̂T (i, j) = NT (i, j)
HT (i)

. (17)

The diagonal elements of the generator matrix are obtained
as:

q̂T (i, i) = −
∑
j 
=i

q̂T (i, j), i ∈ S. (18)

We pause here to note that, for a fixed observation in-
terval, it is possible to alternatively estimate the generator

matrix by observing k independent sample paths of the Z
process. Define N(k)(i, j) as the total number of transitions
from state i to j over all k trials and define H(k)(i) as the to-
tal holding time in state i over all k trials. The off-diagonal
elements of the generator matrix are given by:

q(i, j) = lim
k→∞

N(k)(i, j)
H(k)(i)

, (19)

so that for k sufficiently large, the approximation of q(i, j),
j 
= i is:

q(i, j) ≈ q̂ (k)(i, j) = N(k)(i, j)
H(k)(i)

. (20)

We obtain the diagonal elements by:

q̂ (k)(i, i) = −
∑
j 
=i

q̂ (k)(i, j) i ∈ S. (21)

It has been shown in Basawa and Rao (1980) that:

q(i, j) = lim
T→∞

NT (i, j)
HT (i)

= lim
k→∞

N(k)(i, j)
H(k)(i)

. (22)

In model I, we observe a single sample path over a suffi-
ciently long period using Equations (17) and (18), whereas
we utilize Equations (20) and (21) in model II. Let Q̂T :=
[q̂T (i, j)] and let V̂(x, t) denote the matrix solution to Equa-
tion (9) when the generator matrix Q̂T is used as a surro-
gate for Q. The estimated matrix distribution, V̂(x, t), is
obtained through the double Laplace transform inversion:

V̂(x, t) = L−1{u−1(uRD + sI − Q̂T )−1},
where Re(u) > 0, Re(s) > 0, and L−1 denotes the (double)
inverse Laplace operator.

The resulting estimates for the full and residual lifetime
distributions are, respectively.

F̂(x, t) = 1 − αV̂(x, t)e, (23)

and

Ŝ(x, t | ξ0) = αV̂(x, t + ξ0)e

αV̂(x, ξ0)e
. (24)

We illustrate the estimation procedure via numerical exam-
ples in Section 5. In model II, we assume that only degra-
dation measures are observable for the single-unit system.

4. Model II: Observable degradation

The ultimate purpose of a prognostic system is to assess
the current “health” of the unit and to make inferences re-
garding the remaining useful lifetime of the unit. Model II
provides a viable first step towards an analytical approach
to address this problem when the component’s degradation
is governed by a stationary, Markov environment. Assume,
at time t > 0, that the cumulative degradation of the single-
unit system, X(t), is observable. In contrast to model I, the
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environment, its number of distinct states, and its degrada-
tion rates are unknown.

The basis of our procedure can be described as follows.
We approximate the true degradation path using simple,
piecewise linear functions that pass through a finite num-
ber of observations. The slope of each line segment approx-
imates the degradation rate over a given time interval. Once
the slopes have been collected, we perform K-means cluster
analysis wherein the centroid of each cluster corresponds
to the mean degradation rate for a distinct state of the envi-
ronment. However, selection of the integer K is non-trivial.
We describe a means by which to estimate this value in the
next subsection.

4.1. Estimating the number of states

In the absence of environmental state observations, it is
difficult to discern the total number of distinct states that
might be encountered by the unit. In some applications, the
number of states might be obvious. For example, in a man-
ufacturing context, if a cutting tool operates at only three
distinct cutting speeds (e.g., slow, moderate, fast), and the
wear rate of the cutting tool is known for each speed, then
three distinct “environment” states exist. In other applica-
tions, however, it may be necessary to rely on the knowledge
and experience of subject matter experts to determine an
appropriate number of environment states. In this subsec-
tion, we address scenarios in which the appropriate integer
number of states is not obvious, and the engineer has at
his/her disposal only the observed degradation of the unit.
The problem is that of selecting an appropriate partition of
the set of all observed degradation rates over some finite
observation period.

Fraley and Raftery (1998) note that the method of K-
means clustering is the most widely used non-hierarchical
method for partitioning a set of real observations into K
distinct clusters if the value K is known a priori. We now
describe a method to estimate the appropriate value of K
when a total of N degradation rates have been observed.
The technique performs a comparison of K means via a
one-way analysis of variance by computing an appropriate
F-ratio that depends explicitly on K.

Denote by ȳi the mean of cluster i, i = 1, 2, . . . , K, and
let ni denote the number of observations in the ith cluster
such that:

N =
K∑

i=1

ni.

The overall sample average of degradation rates is:

ȳ = 1
K

K∑
i=1

ȳi.

Define by SSB, the sum of squares between clusters which
is:

SSB =
K∑

i=1

ni(ȳi − ȳ)2. (25)

Similarly, the sum of squares within clusters (SSW ) is:

SSW =
K∑

i=1

ni∑
j=1

(yij − ȳi)2, (26)

where yij denotes the jth degradation rate observed in the
ith cluster. The F-ratio for K clusters, 2 ≤ K < N, is:

FK = SSB/(K − 1)
SSW/(N − K)

. (27)

Our objective is to find the “best” value of K via Equa-
tion (27). Calinski and Harabasz (1974) suggest choosing
K such that, over some set K, FK is the absolute maxi-
mum, the first local maximum, or a point at which the
function exhibits a comparatively rapid increase. It is worth
noting that, if FK is monotonically increasing in K, then
the number of clusters (states) should be equal to the total
number of observations (i.e., each observation constitutes
a cluster). Let K ≡ {2, 3, . . . , J} where J is a positive inte-
ger. For the sake of computational expedience, it is ideal
to choose the smallest value of K that leads to an appro-
priate representation of the underlying process. As a first
course of action, we apply the second criterion suggested
in Calinski and Harabasz (1974), and choose a value of K
that corresponds to the first local maximum over K given
by:

K̂ = min{K ∈ K : FK > FK+1}. (28)

However, in the case where FK is strictly increasing in K, we
resort to the remaining two criteria to estimate the small-
est possible value. We illustrate and apply the estimation
procedure in Section 5.

4.2. Description of the estimation procedure

A formal description of the full estimation procedure
(model II) is now provided.

Step 0. Initialization.
At time t0 ≡ 0, observe X̂(t0) ≡ x0.

Step 1. Observe degradation measures.
Observe the degradation at times t1 < · · · < tM ,
M ∈ N and form the set of observation times:

T := {tj : j = 0, 1, 2, . . . , M}. (29)

with observations X̂(tj), j = 0, 1, 2, . . . , M. It is as-
sumed that, at time tM , the single-unit system has
not failed.

Step 2. Approximate the failure path.
After observing the degradation path up to time
epoch tM , approximate the true failure path by
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a simple piecewise-linear approximation that con-
nects the observed degradation measures for each
element of T .

Step 3. Approximate degradation rates via finite difference
methods.
For each observation time tj ∈ T , approximate the
potential degradation rates of the process by the
difference equation:

γj := X̂(tj) − X̂(tj−1)
tj − tj−1

, j = 1, 2, . . . , M. (30)

We assume that the inter-observation times (tj −
tj−1, j = 1, 2, . . . , M) are equal. For the discrete
sampling interval, [t0, tM ], gather the observed rates
in a set:

� = {γj : j = 1, 2, . . . , M}.

Step 4. Compute the K̂ distinct degradation rates.
Select an appropriate value K̂ using the proce-
dure outlined in Section 4.1 applied to observations
in the set �. This may be accomplished by using
any standard statistical software package. Define
C = {C1, C2, . . . , CK̂} as the set of K̂ distinct clus-
ters such that Ci ∩ Cj = ∅, j 
= i, and µi denotes the
centroid of cluster Ci, i = 1, 2, . . . , K̂. Each γj ∈ �

is therefore assigned to exactly one cluster in C such
that the estimated degradation rate of environment
state j ∈ S is r̂ (j) ≡ µj.

Step 5. Construct new degradation path.
Construct a new piecewise linear degradation path
by replacing each γj ∈ � by r̂ (j) ≡ µj. (Note: if
r̂ (j) = r̂ (j + 1) for some j, then the two adjacent
line segments are replaced by a single line segment
with slope equal to r̂ (j).)

Step 6. Approximate generator matrix.
Using the piecewise linear estimate of the degra-
dation path of Step 5, estimate the K̂-dimensional
generator matrix Q by Q̂tM using Equations (17)
and (18).

Remark 1. Three important assumptions are employed
here: (i) degradation of the unit is perfectly observable;
(ii) at time tM , the single-unit system has not failed; and
(iii) the degradation paths are monotonically increasing.

5. Numerical examples

This section provides illustrative examples of the failure
time models (I and II) of the two preceding sections. We
validate our technique by comparing the full and residual
lifetime probability values with simulated values. Moreover,
we test model II by comparing results with empirical ob-
servations of unit lifetimes.

5.1. Model I examples

For each j ∈ S, there exists a known degradation rate for the
single-unit system, namely r (j). The environment evolves
over time and is observed over the interval [0, T ]. We pro-
vide three test cases, namely when the environment process
(Z) assumes values on a state space with |S| = 2, 5 and 10,
respectively. For each test case, the elements of the generator
matrix Q were drawn from a continuous uniform popula-
tion on (20, 40) such that, for j 
= i, q(i, j) ∼ U(20, 40). In
the usual way, the diagonal elements of the generator matrix
are:

q(i, i) = −
∑
j 
=i

q(i, j), i ∈ S.

Moreover, the true generator matrix Q is estimated by
the matrix Q̂T with T = 100, 500, 5000 using Equations
(17) and (18). The associated degradation rates (r (j), j =
1, 2, . . . , K) were drawn from continuous uniform popula-
tions on the interval (20, 80). In all test cases, the failure
threshold value was fixed at x = 1.0 units. Full and resid-
ual probability values were computed via Equations (5) and
(6), respectively, using a variant of the inversion algorithm
in Moorthy (1995).

We compare, at m fixed points, τ1, τ2, . . . , τm, distribu-
tion function values generated by the true and estimated
processes. Goodness-of-fit tests were conducted (at the 0.05
level) using the Cramér-von Mises test statistic to compare
full and residual lifetime distributions. The appropriate test
statistic, denoted by κ2, is given by:

κ2 = 1
2

m∑
i=1

(G1(τi) − G2(τi))
2
, (31)

where G1 denotes the distribution function obtained from
the estimated environment process and G2 is the cdf gen-
erated using the true environment process. We denote the
critical value by κ∗. If κ2 < κ∗, then we fail to reject the null
hypothesis that G1 ≡ G2. Table 1 provides a summary of
the Cramér-von Mises test statistics when comparing cu-
mulative probability values obtained by simulating the true
process with generator Q with those of numerical Laplace
transform inversion obtained using Q̂T . Three observation
periods were considered in this experiment. For the residual
life tests, we fixed ξ0 = E[T(x)].

It is noted that, in all 18 experiments, we fail to reject
the null hypothesis that the estimated and true distribution
functions are equivalent. Some additional remarks are war-
ranted regarding these results.

1. If the environment process can be partitioned into K
distinct and observable states, our approach provides a
viable approximation procedure that does not require
failure time observations; it requires only a count of en-
vironment transitions.

2. In the case where the environmental state holding
times are non-exponentially distributed, the procedure
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Table 1. Cramér-von Mises test statistics for model I experiments (κ∗ = 0.461, α = 0.05)

Distribution Run length K = 2 K = 5 K = 10

F̂(x, t) T = 100 7.013 × 10−3 4.233 × 10−2 9.477 × 10−3

(m = 48) T = 500 1.649 × 10−3 7.895 × 10−3 2.130 × 10−3

T = 5000 9.941 × 10−5 9.019 × 10−5 1.986 × 10−6

1 − Ŝ(x, t |ξ0) T = 100 5.511 × 10−3 3.821 × 10−2 7.455 × 10−3

(m = 50) T = 500 1.223 × 10−3 6.553 × 10−3 2.113 × 10−3

T = 5000 5.544 × 10−5 8.092 × 10−5 2.576 × 10−6

remains feasible since the holding time distributions may
be approximated by phase-type distributions (e.g., gen-
eralized Erlang distributions) that retain the memoryless
property. We shall elaborate further on this point in Sec-
tion 6.

5.2. Model II examples

In this subsection, we first illustrate model II using simu-
lated, linear degradation paths before testing the procedure
on a set of non-linear degradation data. For the simulation
experiment, sample paths were generated via a known en-
vironment process with K distinct states and known degra-
dation rates {r (1), r (2), . . . , r (K)}. Initially, we fix K = 3.
Five hundred degradation sample paths, similar to the five
shown in Fig. 1, were generated for the experiment.

Setting t0 ≡ 0, we observe the level of degradation at M
equally spaced points in time such that tM = 20. That is,
the degradation process is observed up to time 20. Figure 2
depicts a sample of observations (M = 10) obtained from
the five degradation sample paths of Fig. 1 that were used
to approximate a piecewise, linear degradation sample path
by the procedure of Section 4.

Next, we utilize the approximation to obtain the full and
residual lifetime distributions. In each case, we observe the
system up to time tM = 20 except that we vary the inter-

Fig. 1. A sample of five linear degradation paths.

observation time. In particular, we consider M = 20, 100
and 200 observations on [0, 20], respectively. The assumed
unit failure threshold was fixed at x = 152.6 units. The same
500 simulated degradation sample paths were used for each
value of M to estimate a new generator matrix and new
degradation rates at times 4.0, 8.0 and 12.0 respectively.

As before, we compare the estimated versus “true” full
lifetime cdfs via the Cramér-von Mises goodness-of-fit test.
Additionally, we compare the estimated versus true resid-
ual lifetime distribution. It should be noted that, in order to
test the null hypothesis, we use the cdf of the residual life-
time distribution (1 − Ŝ(x, t |ξ0)). The summarized results
of Table 2 indicate that none of the tests are significant at
the 0.05 level; thus, we are able to adequately estimate the
full and residual lifetime distributions for these simulated
degradation paths.

To illustrate our method to select an appropriate number
of states (K̂), we simulated multiple degradation sample
paths of environment processes having five and 10 states,
respectively. The F-ratios for each case are displayed in
Table 3. Applying the first local maximum rule, the F-ratios
suggest K̂ = 4 for the five-state environment and K̂ = 8 for
the 10-state environment.

Consequently, we compared the full and residual lifetime
distributions using K̂ and K̂ + 1 states in each scenario.
Table 4 indicates that we fail to reject the null hypotheses

Fig. 2. Piecewise-linear approximation of the degradation paths.
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Table 2. Cramér-von Mises test statistics for simulated data (κ∗ =
0.461 at α = 0.05)

M Interval F̂(x, t) ξ0 1 − Ŝ(x, t | ξ0)

20 [0.0,4.0] 0.0157 4.0 0.0189
[0.0,8.0] 0.0210 8.0 0.1213
[0.0,12.0] 0.0247 12.0 0.1633

100 [0.0,4.0] 0.0095 4.0 0.0197
[0.0,8.0] 0.0088 8.0 0.0476
[0.0,12.0] 0.0087 12.0 0.0639

200 [0.0,4.0] 0.0053 4.0 0.0149
[0.0,8.0] 0.0051 8.0 0.0336
[0.0,12.0] 0.0052 12.0 0.0266

that the full and residual lifetime distributions are equiva-
lent at the 0.05 level.

Finally, we illustrate model II using real degradation data
which correspond to the propagation of a fatigue crack in
metallic materials. The data were originally analyzed by
Virkler et al. (1979) who measured crack length propaga-
tion in 68 test specimens of a 2024-T3 aluminum alloy. The
crack length of each sample was measured over time (in
number of load cycles). Figure 3 depicts a representative
sample of five degradation paths from the original data set.
For a more thorough treatment of fatigue crack dynam-
ics, the reader is referred to Ray and Tangirala (1997) and
references contained therein.

To illustrate our procedure, let X(t) denote the length
of the crack at time t and assume the rate at which the
crack grows is subject to its random environment (ap-
plied stress, ambient conditions, and other factors). It is
assumed that these environmental factors can be charac-
terized by {Z(t) : t ≥ 0}, a temporally homogeneous (time-
stationary) Markov process on a finite-state sample space.
Although the underlying data may, in fact, exhibit non-
stationary behavior, we shall observe all 68 sample paths
to estimate the generator matrix (Q) for the Z process. In
the experiment that follows, the component is said to fail

Table 3. F-ratio values for five- and 10-state environments (×105)

K Five-state 10-state

2 1.654 973 0.285 050
3 3.090 848 0.400 770
4 4.067 369 0.421 102
5 3.820 857 0.660 245
6 3.249 939 0.698 204
7 6.678 639 0.955 170
8 7.278 563 1.144 632
9 10.76 289 1.047 932

10 7.383 198 0.697 347
11 5.876 550 1.306 396
12 9.920 737 1.805 007
13 8.558 721 0.857 228
14 15.161 074 0.858 865
15 12.455 254 1.386 817

Table 4. Cramér-von Mises test statistics with K̂ states (κ∗ =
0.461, α = 0.05, m = 100)

K K̂ F̂(x, t) ξ0 1 − Ŝ(x, t |ξ0)

5 4 2.3056 × 10−2 17.5311 1.0179 × 10−1

5 5 3.2317 × 10−2 17.5311 1.0733 × 10−1

10 8 3.5704 × 10−2 13.4249 1.6783 × 10−1

10 9 3.5397 × 10−2 13.4249 1.4709 × 10−1

whenever the crack length first exceeds a critical value of
x = 45 mm. We estimate the off-diagonal generator matrix
values by:

q(i, j) ≈ q̂ (68) = N(68)(i, j)
H(68)(i)

, (32)

as defined in Equation (20). It should be noted, however,
that the empirical cumulative probabilities for the data were
computed with a sample of only 68 observations. Never-
theless, we take this empirical distribution to be the “true”
distribution.

The F-ratio test for selecting K̂ was applied to the data
by observing 55, 77 and 91% of the lifetime, respectively.
We select two clusters at 55% of the lifetime, nine clusters
at 77% of the lifetime (due to the sharp increase), and 12
clusters at 91% of the lifetime as seen in Table 5.

Estimates of the generator matrix and degradation rates
were constructed for K̂ = 2, 3, 4, 9 and 12 when observing
up to 91% of the lifetime of each specimen. The resulting
cdfs (full and residual lifetime) for each case were compared
to the empirical distribution at a fixed number of points
(m = 65) using the Cramér-von Mises test. The results of
the numerical tests are summarized in Table 6.

The results for the full lifetime distributions suggest that
for K̂ = 2, 3 and 4, we fail to reject the null hypothesis that

Fig. 3. The propagation of the fatigue crack length for five test
specimens.
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Table 5. F-ratio comparison (×104)

Percentage of lifetime

K 55% 77% 91%

2 0.845 912 1.716 694 1.934 667
3 0.770 946 2.045 060 2.448 228
4 0.700 849 2.267 842 2.866 000
5 0.637 918 2.412 888 3.248 069
6 1.789 474 2.506 080 3.620 849
7 1.984 733 2.627 177 3.934 574
8 2.230 180 2.658 314 4.208 318
9 2.570 793 2.669 967 4.374 201

10 2.785 035 4.566 412 4.448 147
11 3.017 830 4.974 103 4.744 162
12 2.993 362 5.272 737 4.830 633
13 3.714 449 5.683 212 4.796 518
14 4.167 025 5.850 034 4.800 008
15 4.292 031 6.608 150 4.745 232

the distributions are equal. For the residual lifetime dis-
tributions with K̂ = 3 and 4, we fail to reject the null hy-
pothesis that the distributions are equal. The F-ratio test of
Table 5 indicates an estimate of K̂ = 12. However, using an
estimated 12-state generator matrix, the resulting full and
residual lifetime cdfs fail to pass the goodness-of-fit tests.

Although it is apparent that there may exist greater than
three or four environmental states, we surmise that the 12-
state estimate is poor for a few reasons. First, to adequately
estimate a 12-state generator matrix, a fairly large number
of environmental transitions must occur during a finite ob-
servation period. It is obvious, by inspection of Fig. 3, that
few significant transitions take place early on. Second, it
is likely that transitions occur primarily between a subset
of the overall environment sample space at different times.
That is, some state transitions appear to dominate early
in the specimen lifetimes whereas others dominate as the
specimens age (i.e., as the crack grows). Consequently, we
surmise that an age- or degradation-state-dependent model
may be more appropriate for this data set, as it appears
to violate the time-stationarity assumptions of our model.
However, it is important to note that the estimation proce-
dure indicated that only a few states could be used within
our framework to provide adequate cumulative probability
estimates. We surmise that there may exist a minimal rep-

Table 6. Cramér-von Mises test statistic (κ∗ = 0.461 at α = 0.05,
m = 65)

K̂ F̂(x, t) ξ0 1 − Ŝ(x, t |ξ0)

2 1.398 488 × 10−1 2.534 6.124 815 × 10−1

3 8.671 149 × 10−2 2.534 1.395 285 × 10−1

4 4.525 246 × 10−1 2.534 4.383 202 × 10−1

9 7.657 227 × 10−1 2.534 2.235 864
12 8.723 972 × 10−1 2.534 1.667 689

Table 7. Mean full and residual lifetimes (×105 load cycles), ξ0 =
actual m(1)(x)

m(1)(x) m(1)(x | ξ0)

x (mm) Actual Model Actual Model

10 0.318 574 0.325 974 0.349 943 0.347 018
15 1.183 405 1.150 109 1.268 688 1.293 640
20 1.638 693 1.530 864 1.738 733 1.771 963
25 1.938 014 1.800 568 2.042 441 2.113 597
30 2.158 575 2.021 006 2.286 812 2.368 369
35 2.326 253 2.116 553 2.458 462 2.508 772
41 2.464 467 2.298 747 2.611 653 2.633 815

resentation for the underlying process that includes only
the “most important” states. In the current framework, our
model does not dynamically dictate which states are most
important.

Although the distribution results were comparatively dis-
appointing for the empirical data, we conducted an experi-
ment to compare the actual mean lifetime and mean resid-
ual lifetime with the results of our models for various failure
threshold levels. We computed the mean residual lifetimes
by conditioning on the event that a specimen survives be-
yond the observed, unconditional mean lifetime. For each
threshold value, a new generator matrix and degradation
rates were estimated using K = 3 environmental states. The
mean lifetimes over the 68 degradation paths were com-
pared to those computed by Equation (14). The mean resid-
ual lifetimes were computed by Equation (15). The initial
measured crack length was approximately 9.0 mm (i.e.,
X(0) ≈ 9.00 mm). Table 7 summarizes the results of this
experiment.

The results of this experiment indicate that the procedure
adequately estimates the mean lifetimes and the mean resid-
ual lifetimes. Although not as informative as the residual
life distribution, the lower moment approximations may be
useful for constructing surrogate parametric distributions.

6. Conclusions

In this paper, we have presented a novel approach for the
estimation of full and residual lifetime distributions (and
moments) for single-unit systems subject to a Markov en-
vironment. The approach provides a necessary first step
toward a formal, analytical technique for remaining life-
time prognosis via real degradation measures. Knowledge
of the residual lifetime distribution is especially useful for
prescribing policies that may reduce the risk of catastrophic
failures while eliminating superfluous preventive mainte-
nance activities.

Our approach is novel in that we combine analytical
stochastic modelling techniques with real sensor data in two
distinct cases. First, we considered the case when the sensor
data provide real-time information regarding the current
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state of the environment in which the single-unit system re-
sides. Second, we considered the case in which the sensors
provide the current level of degradation of the component.
In the first case, our numerical results show great promise
for a fully-automated technique for the estimation of life-
time distributions under our problem assumptions. In the
second case, we demonstrated that our technique could be
used to compute the distributions given nothing more than
degradation measures (assumed to be perfectly observable).
Although our procedure for estimating residual lifetime dis-
tributions performed only moderately well on the empirical
data of Virkler et al. (1979), the comparison of mean resid-
ual lifetimes is very promising.

The techniques presented in this research have raised a
few important questions that require further study. First, it
may be possible that the time between environment tran-
sitions is distinctly non-exponential. In such a case, the
engineer should resort to phase-type approximations for
the state holding time distributions as outlined by Altiok
(1985). This approach has the benefit of retaining the
Markov property of the environmental process so that the
main results of this paper (i.e., Equations (5) and (6)) may
still be applied. The disadvantage of this approach is that
it requires an expansion of the environment state space.
Second, there is the issue of non-stationarity of the envi-
ronment process. It will be instructive to consider the prob-
lem of estimating the parameters of an age-dependent en-
vironment process model. Due to extensive data require-
ments, it appears that this extension may only be feasible
if the failure dynamics of the material under consideration
are known. Finally, in order to facilitate a fully-automated
prognostic system, it will be necessary to develop more ro-
bust techniques for evaluating the degradation rates. Such
techniques may need to account explicitly for the effects of
external covariates as noted in Meeker et al. (2002).

Acknowledgements

The authors acknowledge, with gratitude, the helpful com-
ments of three anonymous referees and the Associate Edi-
tor. This research was supported by the Air Force Office of
Scientific Research under agreement QAF185045200004.

References

Abate, J., Choudhury, G. and Whitt, W. (1998) Numerical inversion of
multidimensional Laplace transforms by the Laguerre method. Per-
formance Evaluation, 31, 229–243.

Abate, J. and Whitt, W. (1995) Numerical inversion of Laplace transforms
of probability distributions. ORSA Journal on Computing, 7, 36–43.

Abdel-Hameed, M. (1984) Life distribution properties of devices subject
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