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Abstract

Recently, Sherman et al. [14] analyzed an M/G/1 retrial queueing model in which customers
are forced to retry their service if interrupted by a server failure. Using classical techniques,
they provided a stability analysis, queue length distributions, key performance parameters, and
stochastic decomposition results. We analyze the system under a static Bernoulli routing policy
that routes a proportion of arriving customers directly to the orbit when the server is busy
or failed. In addition to providing the key performance parameters, we show that this system
exhibits a dual stability structure, and we characterize the optimal Bernoulli routing policy that
minimizes the total expected holding costs per unit time.
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1 Introduction

As a model for streaming multimedia applications, Sherman, et al. [14] recently analyzed an

M/G/1 retrial queueing system with an unreliable server, infinite-capacity retrial queue (or orbit),

and an infinite-capacity primary queue. In that model, a customer in service is forced to join

the orbit if the server fails during his/her service cycle. Customers sent to the orbit persistently

and independently retry the server at random intervals until their service is complete, but they

can only regain access to the server if it is up and idle at the time of a retrial attempt. Primary

customer arrivals who find the server busy or failed always join the FIFO primary queue, whereas

those who find the server up and idle are served to completion if their service is not interrupted

by a server failure. Using the method of supplementary variables, they established the existence

of dual stability conditions, one for the orbit and one for the primary queue, and derived the

probability generating functions of the primary queue length and orbit size, as well as the mean

performance parameters. They also demonstrated that the orbit size and system size exhibit a

stochastic decomposition property. Their model assumes that arriving customers join the primary

queue by default if the server is found busy or failed. However, in many engineering applications,

it is possible to mitigate congestion in the primary queue by statically or dynamically routing

some arriving customers directly to the orbit to retry their service later. The primary aim of this

extended note is to analyze the unreliable retrial model of [14] when a controller uses a Bernoulli

routing policy to manage congestion in the primary queue.

Our model here is motivated by a particular type of internet protocol for streaming media

applications known as IP multicast, or simply multicast. Multicast provides a way to deliver a

single media stream to a group of users linked via a local area network (LAN). For example, a

training seminar being conducted at a particular location can be streamed to groups of individuals

on a LAN at a separate, remote location. A digitized camera feed uploads the live video to the

internet, and recipients participate in the seminar (though not interactively) through the streamed

video at individual computer network terminals. To ensure wider dissemination of the seminar, it is

often desirable to save a complete copy of the streamed content on a hard disk at the remote location

for future playback. Because the seminar is live, there is a need to ensure timely transmission of

real-time packets, even at the expense of some packet losses. Packets may be dropped by the

network administrator to relieve congestion in the primary packet transmission queue, or they

can be dropped if their transmission fails due to packet corruption, hardware failures, software

errors, or congestion in the local network or the internet itself. However, dropped packets can be

retransmitted later (when the transmission medium becomes free) so that the complete seminar

can be “patched-up” in the stored copy for future playback. Consequently, dropped packets are not

lost but are necessary to ensure a high-quality stored copy. The primary packet transmission queue

mimics a 1-persistent carrier-sense multiple-access (CSMA) system. When the oldest packet in the

primary queue detects that the transmission medium is free, transmission begins immediately. If

the communication medium fails during transmission, the packet is sent to a retrial queue which is
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analogous to a non-persistent CSMA system. In a non-persistent system, packets do not persist to

wait for a free transmission medium but rather retry the transmission medium at random intervals

until it is found up and idle. Therefore, those packets that are dropped, either upon arrival by the

network administrator or due to a server failure, are assigned a lower priority than the real-time

packets that enter the primary queue and are time-sensitive. The latter type corresponds to the

primary (or priority) customers. Because dropped or interrupted packets can be retransmitted

for inclusion in the stored copy, their transmission time is no longer important. These packets

correspond to the retrial customers who enter the orbit and retry the server until it is found up

and idle. The administrator seeks to determine the optimal (static) proportion of arriving packets

to admit to the primary queue with the objective of minimizing the total expected holding costs

per unit time in the primary queue and the orbit.

While it is well known that dynamic routing policies are well-suited for non-stationary regimes

and generally outperform static policies, dynamic routing requires a great deal of information

gathering, storage, updating, and exchange. By contrast, static routing can be much faster, easier

to implement, and require far less overhead. Applications in computer/communications networks

and service systems abound. For example, Combeé and Boxma [7] considered the allocation of

tasks to a finite number of distributed processors. In ATM networks, static routing algorithms are

often employed to balance the load across computer network links (cf. Casseti et al. [4]). In service

systems, Servi and Humair [12] optimized Bernoulli routing probabilities at discrete time points to

balance the load in large-scale call centers by estimating arrival rates. Besides their relatively low

overhead requirements, static policies can also be used to aid engineers in designing communications

or computer networks by providing performance bounds that can be easily computed and evaluated.

More generally, Bernoulli routing of arriving customers to a finite group of ordinary (non-

retrial), homogeneous queueing systems has been studied extensively in the queueing literature (cf.

[5, 10] and references therein). Under certain conditions, it can be shown that the optimal Bernoulli

routing policy is to assign an arriving customer to any one of a finite number of available servers

with equal probability. Relatively few researchers have considered routing policies for arriving

customers in retrial systems. Choi and Park [6] analyzed a Bernoulli routing policy for a system

that is similar to the model in [14] except that it does not consider server failures. Atencia and

Moreno [3] examined Bernoulli routing in a model with general (as opposed to exponential) retrial

times. Their model permits only the retrial customer at the head of the line to retry the server

which is assumed to be reliable. Liang and Kulkarni [11] studied optimal dynamic routing in a

retrial system in which both retrial customers and primary arrivals are routed either to the primary

queue or to the orbit. They proved the existence of a threshold-type policy that routes all customers

to the primary queue up to a threshold after which all arrivals are routed to the orbit. Their model,

however, does not consider unreliability of the server which significantly complicates the analysis.

In this extended note, we revisit the queueing system analyzed in [14] and include static

Bernoulli routing of arriving customers who find the server busy or failed. Specifically, a con-
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troller routes an arriving customer to the primary queue with (fixed) probability q and to the

orbit with complementary probability 1− q, independently of everything else, during busy or failed

periods. Our main objective is to provide the primary performance parameters of this system

and to determine the optimal Bernoulli routing policy that minimizes the total expected holding

costs per unit time. Following an analysis similar to the one in [14], we (i) provide the necessary

and sufficient overall stability condition, (ii) derive the generating functions of the primary queue

length and the orbit size distributions, (iii) provide the mean congestion performance parameters,

and (iv) determine the optimal Bernoulli routing policy. It is shown that the stability condition

of the overall system and the steady state distribution of the server’s status are insensitive to the

Bernoulli routing parameter; however, the routing parameter plays a crucial role in establishing

the stability region of the primary queue. Moreover, we provide sufficient conditions to ensure

the existence of a unique, optimal Bernoulli routing policy that minimizes the expected total cost

per unit time of holding customers in the primary queue and the orbit. The structure of the cost

function is characterized explicitly by the holding cost coefficients, the service time distribution

and the arrival, failure, retrial, and repair rates.

The remainder of the paper is organized as follows. Section 2 provides a complete model

description and defines the key generating functions. In section 3, we state the necessary and

sufficient condition for overall system stability and provide the generating functions of queue lengths

when the server is idle, busy, or failed. We also provide expressions for the mean queue lengths

needed for the cost function. Section 4 shows how our model generalizes a few other M/G/1 retrial

models in the literature. Section 5 provides structural results for the cost function and characterizes

the optimal Bernoulli routing policy, while section 6 provides a few illustrative examples.

2 Model Description

Primary customers arrive to the queueing system in accordance with a homogeneous Poisson

process with rate λ. A primary customer who finds the server idle (and not under repair) seizes the

server and is completed if no server failures occur during its service cycle. Should the server fail

during service, the interrupted customer joins a retrial queue (or orbit) from which it persistently

retries the server at random intervals until access is regained. Customers who are interrupted must

repeat their service cycle (i.e., a preemptive repeat discipline is employed). In contrast to the model

of [14], the system uses a controller who diverts a proportion of arriving primary customers directly

to the retrial orbit when the server is busy or failed to manage the congestion level of the primary

queue. If a primary arrival finds the server busy or under repair, the controller routes the customer

to the primary queue with probability q (0 ≤ q ≤ 1), and to the retrial orbit with complementary

probability p = 1−q, independently of everything else (i.e., a Bernoulli routing policy is used). The

uninterrupted service times, {Sn : n ≥ 1}, are independent and identically distributed (i.i.d.) with

absolutely continuous cumulative distribution function (c.d.f.) B and probability density function

3



(p.d.f.) b. For s ≥ 0, let

b∗(s) =
∫ ∞

0
e−sxb(x)dx

denote the Laplace transform of b. We consider here both active and idle failures of the server.

That is, server failures occur according to a Poisson process with rate ξ whenever the server is idle

or busy; however, the server cannot fail when it is under repair. The repair time is assumed to be

exponentially distributed with mean 1/α. We pause here to note that, while it may be possible to

analyze the model with general repair times (by adding a supplementary variable or by embedding a

Markov chain at appropriate epochs), we assume exponential repair times to maintain transparency

of the analysis and consistency with the model analyzed in [14]. Customers who enter the retrial

orbit (either by virtue of a server failure or by being routed to the orbit by the controller) retry the

server directly at exponentially-distributed time intervals with mean 1/θ. The inter-retrial times

are independent and identically distributed for each customer in the retrial group. Moreover, retrial

customers behave independently of one another, of customers in the primary queue, and of external

arrivals to the system. Finally, customers in the retrial group can gain access to the server only if

it is up and idle at the time of a retrial attempt. The arrival, service, failure, repair, and retrial

processes are assumed to be mutually independent.

As in Sherman et al. [14], we analyze this model using classical techniques, namely the method

of supplementary variables and probability generating functions. Adopting their notation, let Qt

denote the number of customers in the primary queue at time t, excluding any customer that might

be in service, and let Rt denote the number of customers in the retrial group at time t. The random

variable Ut is the occupation status of the server given by

Ut =





1, if the server is occupied at time t,

0, if the server is not occupied at time t,

while St describes the operational status of the server at time t defined by

St =





1, if the server is not failed at time t,

0, if the server is failed at time t.

Let Xt denote the elapsed service time of the customer in service at time t so that the continuous-

time stochastic process, {(Qt, Ut, Rt, St, Xt) : t ≥ 0} is a Markov process describing the state of the

system. Further define Nt as the total number of customers in the system at time t (i.e., in orbit,

in the primary queue, and in service). Our primary aim is to study the steady state versions of Qt,

Rt and Nt which we denote by Q, R, and N , respectively. Using these quantities, we will establish

conditions under which a unique optimal Bernoulli routing parameter exists. However, before doing

so, it is of interest to examine the influence of Bernoulli routing on the stability condition, queue

length distributions, and performance parameters of the queueing system. To this end, define for
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j ≥ 0, k ≥ 0, and x ≥ 0,

π0,0,j,1 = lim
t→∞P(Qt = 0, Ut = 0, Rt = j, St = 1),

πk,0,j,0 = lim
t→∞P(Qt = k, Ut = 0, Rt = j, St = 0),

πk,1,j,1(x) = lim
t→∞P(Qt = k, Ut = 1, Rt = j, St = 1, Xt ≤ x),

the limiting probabilities that the server is idle, failed, or busy, respectively, when there are j

customers in the retrial group and k customers in the primary queue. Next, define the generating

functions

φ0,0,1(z1) =
∞∑

j=0

zj
1π0,0,j,1, |z1| ≤ 1,

φk,0,0(z1) =
∞∑

j=0

zj
1πk,0,j,0, |z1| ≤ 1,

φk,1,1(x, z1) =
∞∑

j=0

zj
1πk,1,j,1(x), |z1| ≤ 1, x ≥ 0.

Here, φ0,0,1(z1) is the generating function of R when the server is idle, φk,0,0(z1) is the generating

function of R when the server is failed and k customers are awaiting service in the primary queue,

and φk,1,1(x, z1) is the generating function of R when the server is busy, k customers are in the

primary queue, and the elapsed service time of the customer in service has not exceeded x. Further

define, respectively,

ψ0,0(z1, z2) =
∞∑

k=0

zk
2φk,0,0(z1), |z1| ≤ 1, |z2| ≤ 1,

ψ1,1(x, z1, z2) =
∞∑

k=0

zk
2φk,1,1(x, z1), |z1| ≤ 1, |z2| ≤ 1,

the generating functions of φk,0,0(z1) and φk,1,1(x, z1) with respect to the primary queue size. The

joint generating function of the orbit and primary queue size when the server is busy is given by

ψ1,1(z1, z2) =
∫ ∞

0
ψ1,1(x, z1, z2)dx.

The joint generating function of (R, Q) will be denoted by

G(z1, z2) ≡ E
(
zR
1 , zQ

2

)
=

∞∑

k=0

∞∑

j=0

P(R = j,Q = k) zj
1 zk

2 , |z1| ≤ 1, |z2| ≤ 1,

and the generating function of the steady state system size N is given by

H(z) ≡ E (
zN

)
=

∞∑

j=0

P(N = j) zj , |z| ≤ 1.

In section 3, we provide the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) when

a Bernoulli routing policy is used. The relevant performance parameters are derived from these

results.
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3 Main Results

In this section, we state the necessary and sufficient condition for stability of the overall queueing

system and also provide the generating functions of (R, Q) and N . Central to the analysis is the

notion of the fundamental server period introduced by Aissani and Artalejo [1]. The fundamental

server period is the time from which the server initiates a new service cycle until the next time it

commences a new service cycle. Let Nr and Nq respectively denote the number of customers entering

the orbit and primary queue during a fundamental server period, and let a(i, j) = P(Nr = i,Nq = j),

i, j ≥ 0. As before, we let

Q(z1, z2) =
∞∑

i=0

∞∑

j=0

a(i, j)zi
1z

j
2, |z1| ≤ 1, |z2| ≤ 1.

Following along the lines of the proof of Theorem 2.1 of [1], it can be verified that the joint generating

function of (Nr, Nq) is given by

Q(z1, z2) = B̂(z1, z2) +
αz1ξ(1− B̂(z1, z2))

(α + λ(1− pz1 − qz2))(ξ + λ(1− pz1 − qz2))

where B̂(z1, z2) ≡ b∗(ξ + λ(1− pz1 − qz2)) and b∗(x) is the Laplace transform of b evaluated at x.

The first term on the right-hand side of Q(z1, z2) is the generating function of the total number

of arrivals to the system when there is no server failure during the service cycle that begins the

fundamental server period, while the second term is the generating function of the same quantity

when the service is interrupted by a failure and the server undergoes a repair. When q = 1 (p = 0),

Q(z1, z2) reduces to the generating function of (Nr, Nq) of [14]. Using standard methods, the

expected number of arrivals to the primary queue during a fundamental server period is given by

ρ1 = Q′
z2

(1, 1) =
λq(1− b∗(ξ))(α + ξ)

αξ
,

where Q′
z2

(z1, z2) ≡ ∂Q(z1, z2)/∂z2. In what follows, it will be shown that ρ1 plays an important

role in determining the stability condition of the primary queue. Moreover, it can be shown (see

Lemma 1 in [14]) that the equation

z2 −Q(z1, z2) = 0

has a unique solution, call it g(z1), inside the region |z2| < 1 whenever |z1| < 1 or |z1| ≤ 1 and

ρ1 > 1. Whenever z1 = 1, g(1) is the smallest positive real zero with g(1) < 1 if ρ1 > 1, and

g(1) = 1 if ρ1 ≤ 1.

Next, we state the necessary and sufficient condition for stability of the overall system (and

the orbit) and simultaneously state the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2).

These results generalize those reported in [9, 14].

Theorem 1 The queueing system is stable if and only if

ρ ≡ λ(1− b∗(ξ))(α + ξ)
αb∗(ξ)ξ

< 1. (1)
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When ρ < 1, the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) are given by

φ0,0,1(z1) = (1− ρ)
(

α

α + ξ

)
exp



−

1
θ

∫ 1

z1

λ(1− g(u)) + ξ
(
1− α

α+λ(1−pu−qg(u))

)

g(u)− u
du



 , (2)

ψ0,0(z1, z2) = ξ
Λ0,0(z1, z2)
Λ(z1, z2)

φ0,0,1(z1), (3)

and

ψ1,1(z1, z2) = λ
Λ1,1(z1, z2)
Λ(z1, z2)

φ0,0,1(z1) (4)

where

Λ0,0(z1, z2) = (g(z1)−z1)[α+λ(1−pz1−qg(z1))][ξ+λ(1−pz1−qz2)][z2−B̂(z1, z2)−z1(1−B̂(z1, z2))]

+ λz1(1− B̂(z1, z2))(z2 − z1)(1− pz1 − qg(z1))[α + ξ + λ(1− pz1 − qg(z1))],

Λ1,1(z1, z2) = (1− B̂(z1, z2))(z2 − g(z1))

× [(1− z1){αξ + [α + λ(1− pz1 − qz2)][α + ξ + λ(1− pz1 − qg(z1))]}
+λξ(1− pz1 − qg(z1))(1− pz1 − qz2)] ,

Λ(z1, z2) = (g(z1)− z1)[α + λ(1− pz1 − qg(z1))]

×
[
(z2 − B̂(z1, z2)) [α + λ(1− pz1 − qz2)] [ξ + λ(1− pz1 − qz2)]− αξ(1− B̂(z1, z2))z1

]
,

and for z1 ∈ [0, 1], g(z1) verifies

g(z1) = b∗(ξ + λ(1− pz1 − qg(z1))) +
αξz1[1− b∗(ξ + λ(1− pz1 − qg(z1)))]

[α + λ(1− pz1 − qg(z1))][ξ + λ(1− pz1 − qg(z1))]
.

Proof. We omit the proof for the sake of brevity. However, the result can be shown by

following the steps of the proof of Theorem 1 in [14]. Note that the generating function B̂(z2) in

[14] is replaced by B̂(z1, z2) above.

If a Bernoulli routing scheme is not used (i.e., if q = 1), all arriving customers who find the server

busy or under repair will join the primary queue by default. In such case, the generating functions

(2)–(4) are the same as those reported in Theorem 1 of [14].

The system controller is faced with the task of deciding the appropriate proportion of arriving

customers to route to the retrial orbit when the server is busy or failed. If this proportion is

too small, the primary queue may become unstable. On the other hand, if the proportion is too

large, a significant number of customers will be denied immediate access to the service system and

asked to return later for service. Our objective is to determine the Bernoulli routing policy that

balances this tradeoff and minimizes the total expected holding costs per unit time. To this end,

we next characterize the primary performance parameters (namely the mean queue lengths) using

the generating functions of (R, Q) and N .
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Proposition 1 For ρ < 1, the generating function of (R,Q) is given by

G(z1, z2) = φ0,0,1(z1)
[
1 + ξ

Λ0,0(z1, z2)
Λ(z1, z2)

+ λ
Λ1,1(z1, z2)
Λ(z1, z2)

]
, (5)

and the generating function of N is given by

H(z) = φ0,0,1(z)
Ψ1(z)
Ψ2(z)

, (6)

where

Ψ1(z) = [α + ξ + λ− λz]b∗(ξ + λ− λz) {αξ + λ(1− z)[α + ξ + λ− λz]} ,

Ψ2(z) = [α + λ− λz] {αξb∗(ξ + λ− λz)− λ(z − b∗(ξ + λ− λz))[α + ξ + λ− λz]} ,

and Λ0,0(z1, z2), Λ1,1(z1, z2), and Λ(z1, z2) are defined in Theorem 1.

Proof. The generating function of (R, Q) is obtained by summing over the three mutually

exclusive and exhaustive server states, i.e.,

G(z1, z2) = φ0,0,1(z1) + ψ0,0(z1, z2) + ψ1,1(z1, z2)

where φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) are given by (2), (3), and (4), respectively. Similarly,

the generating function H(z) is obtained directly by

H(z) = φ0,0,1(z) + ψ0,0(z, z) + z ψ1,1(z, z).

Remark: When q = 1, these results are the same as those reported in Corollary 1 of [14]. Alter-

natively, if we assume that the server is reliable (i.e., if we allow ξ ↓ 0), then we obtain the joint

generating function of Choi and Park [6]. Next, we obtain the mean values of R, Q, and N in the

following proposition.

Proposition 2 The steady state mean orbit size, mean primary queue size, and mean number in

system are respectively given by

E(R) =
1

1− ρ

[
λξp + αρ(ξ + λp)

αθ

+
λ

ξ b∗(ξ)
·
(1− ρ1/ρ)

{
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

}
+ αξ2b∗(ξ)(1− b∗(ξ))(1− ρ1)

αξb∗(ξ)(α + ξ)(1− ρ1)


 ,

(7)

E(Q) =
λq

1− ρ1

[
ξ2b∗(ξ)− (α + ξ)[(α + ξ)B̂′ − αρb∗(ξ)]

αξb∗(ξ)(α + ξ)

]
(8)
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and

E(N) =
1

1− ρ

[
λξp + αρ(ξ + λp)

αθ

+
λ

ξ b∗(ξ)
· b∗(ξ)

{
ξ3 + (1− b∗(ξ))[αξ(α + 2ξ) + λ(α + ξ)2]

}− ξ(α + ξ)2B̂′

αξb∗(ξ)(α + ξ)

]
(9)

where B̂′ = λ
∫∞
0 xe−ξxb(x)dx.

Equations (7) and (9) show that ρ < 1 is necessary to ensure the stability of the retrial orbit and the

system, and by (8) we see that ρ1 < 1 is necessary for the stability of the primary queue. Clearly,

for any ξ ≥ 0, ρ1 ≤ ρ so that the stability of R depends on ρ and not ρ1. Moreover, when ξ > 0 and

q < 1, some interesting insights about the stability of the primary queue and the orbit are revealed.

Specifically, there exists a set of model parameters for which the primary queue will remain stable

even if the orbit is not stable. The dynamics of the system dictate that retrial customers become

subordinate to primary customers since they can regain access to the server only when it is found

to be up and idle. That is, retrial customers experience a smaller effective service rate than do

primary customers; therefore, the orbit may continue to grow while the primary queue remains

stable. From a service quality perspective, it is desirable to keep both average queue lengths small;

however, under certain conditions, the controller may choose to route arrivals only to the primary

queue, or only to the orbit, during busy or down periods. Next, using the results of Theorem 1,

the steady state distribution of the server’s status is obtained.

Proposition 3 For ρ < 1, the steady state distribution of the server’s status is given by

P(Idle) = φ0,0,1(1) = (1− ρ)
(

α

α + ξ

)
,

P(Failed) = ψ0,0(1, 1) =
ξ

α + ξ
,

and

P(Busy) = ψ1,1(1, 1) = ρ

(
α

α + ξ

)
.

Remark: The steady state distribution of the server’s status is intuitive, i.e., the probability that

the server is busy is simply the traffic intensity ρ scaled by the long-run proportion of time that

the server is not under repair, α(α + ξ)−1. Similarly, the steady state probability that the server is

idle is (1 − ρ) scaled by the proportion of time the server is not under repair. Because our model

allows for both active and idle server failures, the long-run proportion of time the server is failed is

intuitively given by ξ(α + ξ)−1. It is noteworthy that the steady state distribution of the server’s

status is insensitive to both the retrial rate θ and the Bernoulli routing parameter q.

Several other M/G/1-type retrial models can be analyzed as special cases of ours, and we

present a few of these in the next section. We characterize the optimal Bernoulli routing parameter

in section 5.
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4 Some Special Cases

The last section revealed the insensitivity of the stability condition and the distribution of the

server’s status to the parameters θ and q. Interestingly, the stability condition and server status

distribution for the present model are identical to those derived in [14]. However, equations (7)–(9)

show that the retrial rate and Bernoulli routing parameter have a significant impact on the mean

queue lengths. In this section, we demonstrate that our model can be used to analyze other M/G/1

retrial models. To this end, let S denote an arbitrary (uninterrupted) service time with c.d.f. B,

and for k ≥ 1, let

βk ≡ E(Sk) < ∞.

Denote by ρ̂ the traffic intensity of the ordinary (non-retrial) M/G/1 queue with a perfectly reliable

server so that ρ̂ = λβ1, and suppose that ρ̂ < 1. Now, as ξ ↓ 0 in (7)–(9), we obtain

E(R) =
λ2p

1− ρ̂

[
β1

θ
+

β2

2(1− qρ̂)

]
, (10)

E(Q) =
λ2qβ2

2(1− qρ̂)
, (11)

and

E(N) = ρ̂ +
λ2

1− ρ̂

[
β1p

θ
+

β2

2

]
. (12)

Equations (10) and (11) are identical to equation (16) of Choi and Park [6] who studied a similar

retrial model with a primary queue, retrial orbit, and a reliable server. Now, if we set q = 0 (p = 1)

in (10)–(12), our model reduces to the standard M/G/1 retrial queue (i.e., one which does not

possess a primary queue) with a reliable server, and the results are equivalent to those reported by

Artalejo and Gómez-Corral [2] and Falin and Templeton [8]. Specifically,

E(R) =
λ2

1− ρ̂

[
β1

θ
+

β2

2

]
,

and

E(N) = ρ̂ +
λ2

1− ρ̂

[
β1

θ
+

β2

2

]
.

Note that E(Q) = 0 here because all arriving customers who find the server busy are routed to the

retrial orbit (i.e., there is no primary queue to accommodate waiting customers).

Next, consider our original model and allow q → 1. With q = 1, we obtain the model analyzed

by Sherman et al. [14] in which all arriving customers who find the server busy or failed join the

primary queue. Allowing q → 1 in (7)–(9) gives precisely the results obtained for E(R), E(Q), and

E(N) in [14]. Moreover, if the uninterrupted service time distribution is exponential with parameter

µ, we obtain the mean queue lengths of the model described in [13].

In the next section, we consider the problem of minimizing the total expected cost per unit

time of holding customers in the primary queue and the orbit under a Bernoulli routing policy.

10



5 Optimal Bernoulli Routing Policy

We now consider the problem of determining an optimal Bernoulli routing policy for the retrial

system with an unreliable server. The objective is to minimize the total expected holding costs per

unit time. Under this criterion, we provide sufficient conditions to ensure the existence of a unique

routing parameter, q∗. Denote the holding cost per customer per unit time in the primary queue

by cQ (0 < cQ < ∞), and let cR (0 < cR < ∞) be the holding cost per customer per unit time in

the retrial orbit. We consider only stable systems, i.e., those for which ρ < 1. Using (7) and (8),

our optimization problem is of the form

min ϑ(q) = cRE(R) + cQE(Q) (13a)

s.t. q ∈ [0, 1], (13b)

where it is understood that E(R) and E(Q) depend explicitly on q. The optimal solution (when

it exists) will be denoted by q∗. We elucidate the structure of ϑ(q) and characterize the optimal

Bernoulli routing parameter in Proposition 4.

Proposition 4 Suppose that ρ < 1 and ξ > 0. Then,

(i) The cost function ϑ(q) is monotone increasing on [0, 1] if

cQ

cR
− 1 >

ξ2b∗(ξ)(α + ξ)(ξ + αρ)

θ(1− ρ)
{

ξ3b∗(ξ)− (α + ξ)2
[
ξB̂′ − λ(1− b∗(ξ))

]} . (14)

In this case, the optimal routing parameter is q∗ = 0;

(ii) The cost function ϑ(q) is monotone decreasing on [0, 1] if

cQ

cR
− 1 <

ξ2b∗(ξ)(α + ξ)(ξ + αρ)(1− b∗(ξ)ρ)2

θ(1− ρ)
{

ξ3b∗(ξ)− (α + ξ)2
[
ξB̂′ − λ(1− b∗(ξ))

]} . (15)

In this case, the optimal routing parameter is q∗ = 1.

(iii) The cost function ϑ(q) is strictly convex on [0, 1] if

ξ2b∗(ξ)(α + ξ)(ξ + αρ)(1− b∗(ξ)ρ)2

θ(1− ρ)
{

ξ3b∗(ξ)− (α + ξ)2
[
ξB̂′ − λ(1− b∗(ξ))

]} ≤ cQ

cR
− 1

≤ ξ2b∗(ξ)(α + ξ)(ξ + αρ)

θ(1− ρ)
{

ξ3b∗(ξ)− (α + ξ)2
[
ξB̂′ − λ(1− b∗(ξ))

]} . (16)

In this case, q∗ uniquely solves ϑ′(q) = 0 and is given by

q∗ =
1−

√(
cQ

cR
− 1

)
θ(1−ρ){ξ3b∗(ξ)−(α+ξ)2[ξB̂′−λ(1−b∗(ξ))]}

ξ2b∗(ξ)(α+ξ)(ξ+αρ)

b∗(ξ)ρ
. (17)

11



Proof. Substituting E(R) and E(Q) from (7)–(8), respectively, and differentiating ϑ(q) respect

to q, we obtain

ϑ′(q) ≡ dϑ(q)
dq

= (cQ − cR)
λ

{
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

}

αξ2b∗(ξ)(α + ξ)(1− qb∗(ξ)ρ)2
− cR

λ(ξ + αρ)
θα(1− ρ)

. (18)

The cost function ϑ(q) is (strictly) monotone increasing on [0, 1] if ϑ′(q) > 0 for each q ∈ [0, 1], and

in such case it attains its minimum at the boundary point 0. Equation (18) shows that ϑ′(q) > 0 if

(cQ − cR)
λ

{
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

}

αξ2b∗(ξ)(α + ξ)(1− qb∗(ξ)ρ)2
> cR

λ(ξ + αρ)
θα(1− ρ)

,

or equivalently, if

cQ

cR
− 1 >

ξ2b∗(ξ)(α + ξ)(ξ + αρ)

θ(1− ρ)
{

ξ3b∗(ξ)− (α + ξ)2
[
ξB̂′ − λ(1− b∗(ξ))

]} .

Similarly, ϑ(q) is (strictly) monotone decreasing on [0, 1] if ϑ′(q) < 0 for each q ∈ [0, 1], and in this

case ϑ(q) attains its minimum at 1. By (18), this condition is met if

cQ

cR
− 1 <

ξ2b∗(ξ)(α + ξ)(ξ + αρ)(1− b∗(ξ)ρ)2

θ(1− ρ)
{

ξ3b∗(ξ)− (α + ξ)2
[
ξB̂′ − λ(1− b∗(ξ))

]} .

Finally, we prove that there is a region for which the strict convexity of ϑ(q) is ensured. Differen-

tiating (18) with respect to q yields

ϑ′′(q) ≡ d2ϑ(q)
dq2

= (cQ − cR)
2λρ

{
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

}

αξ2(α + ξ)(1− qb∗(ξ)ρ)3
. (19)

The denominator of (19) is strictly positive for any q ∈ [0, 1] and ρ < 1 since 0 < b∗(ξ) < 1 for

any ξ > 0. We can conclude that the numerator is also strictly positive since it was shown in the

proof of Lemma 2 of [14] that λ(1− b∗(ξ))− ξB̂′ ≥ 0 for ξ ≥ 0. By rearranging the terms of (16),

it is seen that cQ must exceed cR in this region. Therefore, we conclude that when condition (16)

is met, ϑ′′(q) > 0 for each q ∈ [0, 1], and hence, ϑ(q) is strictly convex and has a unique stationary

point q∗ satisfying ϑ′(q∗) = 0. By (18), this point is given by

q∗ =
1−

√(
cQ

cR
− 1

)
θ(1−ρ){ξ3b∗(ξ)−(α+ξ)2[ξB̂′−λ(1−b∗(ξ))]}

ξ2b∗(ξ)(α+ξ)(ξ+αρ)

b∗(ξ)ρ
. (20)

The advantage of Proposition 4 is that it allows us to determine the form of the optimal solution by

simply checking the value cQ/cR − 1. Section 6 illustrates and highlights the main results through

a few numerical examples.

12



6 Numerical Examples

In this section, we illustrate the behavior of the cost function ϑ(q) in the three regimes iden-

tified by Proposition 4. Additionally, we provide a comparison of the derived mean performance

parameters (namely the mean queue lengths) with values obtained via a discrete-event simula-

tion model. For both illustrations we consider two absolutely continuous service time distributions

whose Laplace transforms (LTs) are well defined, namely the exponential and uniform distributions.

To compute the mean queue lengths and the cost function, we need expressions for b∗(ξ), the LT

of the service time distribution evaluated at ξ, and B̂′ which is given by

B̂′ = λ

∫ ∞

0
x exp(−ξx)b(x)dx.

Let S denote an arbitrary (uninterrupted) service time. When S is distributed exponentially with

rate µ, it is easy to show that

b∗(ξ) =
µ

µ + ξ
,

and

B̂′ =
λµ

(µ + ξ)2
.

When S is distributed uniformly on the interval (0, y), 0 < y < ∞, we obtain

b∗(ξ) =
1
yξ

[1− exp(−yξ)] ,

and

B̂′ =
λ

yξ2
[(1− exp(−yξ)(1 + yξ)] .

Before comparing mean queue lengths with simulated results, we first illustrate the cost func-

tion, ϑ(q). For both distributions we use the following parameters: λ = 2.0, µ = 10.0, ξ = 1.0,

α = 2.0, and θ = 2.0. In the case of exponential service times, the traffic intensity is ρ ≈ 0.3100.

Figure 1 depicts two cases when the cost function ϑ(q) is monotone. In Figure 1(a), the cost pa-

rameters are cQ = 8.0 and cR = 2.0 so that cQ/cR − 1 = 3.0, and the cost function is monotone

increasing on [0, 1] as dictated by part (i) of Proposition 4. For Figure 1(b), we use cQ = 2.5

and cR = 1 so that cQ/cR − 1 = 1.50, and the cost function is monotone decreasing on [0, 1] in

accordance with part (ii) of Proposition 4.
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(a) Exponential case (i): ϑ(q) is monotone increasing.
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(b) Exponential case (ii): ϑ(q) is monotone decreasing.

Figure 1: Sample monotone cost functions when service time is exponential.

In case (i), the optimal Bernoulli routing parameter and corresponding minimum cost are given

by q∗ = 0.0 and ϑ(q∗) ≈ 4.12381, respectively. Using this set of parameter values and holding

cost coefficients, it is optimal to divert all primary arrivals to the orbit when the server is busy or

failed. For case (ii), the optimal Bernoulli routing parameter and corresponding minimum cost are

q∗ = 1.0 and ϑ(q∗) ≈ 1.71905, respectively. In this case, it is optimal to admit all new arrivals to

the primary queue when the server is busy or failed, despite the fact that the holding cost in the

primary queue is more than double that of the retrial queue. This case illustrates the fact that the

primary queue can remain stable even as the retrial queue continues to grow and shows that the

relative magnitudes of the cost coefficients are not the only determinants of the optimal Bernoulli

routing policy.

Figure 2 depicts the cost function when cQ = 3, cR = 1, and cQ/cR − 1 = 2. The cost function

is strictly convex on [0, 1] in accordance with part (iii) of Proposition 4. The optimal Bernoulli

routing parameter, computed by equation (17), and the corresponding minimum cost are given by

q∗ ≈ 0.6450 and ϑ(q∗) ≈ 1.9319,

respectively. In this case, we see that there is a tradeoff between the cost coefficients and the growth

of the queue lengths. In particular, it is optimal for the controller to divert roughly 35% of the

arrival stream directly to the orbit while nearly 65% are admitted to the primary queue.
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Figure 2: Exponential case (iii): ϑ(q) is strictly convex.

Next, we consider the case when the service time S is uniformly distributed on (0, y) where we

assume y = 4/µ, i.e., the mean service time is twice that of the exponential case with all other

parameter values unchanged. For this case, the traffic intensity is ρ ≈ 0.63989. Similar graphs can

be drawn for this case; however, the cost coefficients need to be altered to conform to the conditions

of Proposition 4.

Figure 3 depicts two cases when the cost function ϑ(q) is monotone. In Figure 3(a), the cost

parameters are cQ = 30 and cR = 2 so that cQ/cR − 1 = 14, and the cost function is monotone

increasing on [0, 1] as dictated by part (i) of Proposition 4. For Figure 3(b), we use cQ = 2 and

cR = 1 so that cQ/cR − 1 = 1, and the cost function is monotone decreasing on [0, 1] in accordance

with part (ii) of Proposition 4. In case (i), we obtain q∗ = 0 and ϑ(q∗) ≈ 12.21908, while in case (ii),

the optimal routing parameter is q∗ = 1 with a corresponding minimum cost of ϑ(q∗) ≈ 3.98708.
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(a) Uniform case (i): ϑ(q) is monotone increasing.
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(b) Uniform case (ii): ϑ(q) is monotone decreasing.

Figure 3: Sample monotone cost functions when service time is uniform.

Finally, in Figure 4, we use cQ = 3 and cR = 1 so that cQ/cR − 1 = 2, and the cost function
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is strictly convex on [0, 1] in accordance with part (iii) of Proposition 4. The optimal Bernoulli

routing parameter, and corresponding minimum cost, are given by q∗ ≈ 0.8400 and ϑ(q∗) ≈ 4.93731,

respectively.
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Figure 4: Uniform case (iii): ϑ(q) is strictly convex.

As expected, it is seen that the optimal Bernoulli routing parameter that minimizes the total

expected holding costs per unit time is on the interior of the feasible region.

Next, we examine the mean queue lengths as a function of the overall traffic intensity, ρ. In

the experiments that follow, we assumed µ = 3, α = 4, ξ = 0.1, θ = 5, q = 0.5, and we varied λ to

obtain increasing values of ρ. Table 1 shows a comparison of the computed mean queue lengths as

compared to the same values obtained via a discrete-event simulation model when the service time

is exponential with parameter µ = 3.

Table 1: Mean queue lengths with exponential service times.

E(R) E(Q) E(N)
ρ Analytical Simulated Analytical Simulated Analytical Simulated

0.1 0.015922 0.015890 0.005898 0.005920 0.119381 0.119470
0.3 0.140043 0.139810 0.052832 0.052670 0.485558 0.485170
0.5 0.542132 0.541680 0.161568 0.161440 1.191505 1.190800
0.7 1.874600 1.868800 0.359237 0.358610 2.916764 2.910300
0.9 10.207577 10.173000 0.691578 0.690730 11.777204 11.741000

It is interesting to note in Table 1 that there is a dramatic increase in E(R) (and E(N)) when the

traffic intensity increases from 0.7 to 0.9. By contrast, the increase in the mean primary queue size,

E(Q), is more moderate.

For the case of uniformly-distributed service times, the parameter values are the same; however,

the service time is assumed to be U(0, 2/µ) where µ is the rate parameter of the exponential case.

16



Note that the mean service time is identical to that of the exponential case. Table 2 summarizes

the steady state mean queue lengths and mean number of customers in the system. In this exper-

Table 2: Mean queue lengths with uniform service times.

E(R) E(Q) E(N)
ρ Analytical Simulated Analytical Simulated Analytical Simulated

0.1 0.013951 0.013950 0.004270 0.004270 0.115781 0.115750
0.3 0.114872 0.114950 0.036583 0.036580 0.444137 0.444220
0.5 0.432099 0.432210 0.110704 0.110660 1.030608 1.030600
0.7 1.463517 1.463800 0.244981 0.244980 2.391425 2.391500
0.9 7.824286 7.830100 0.470328 0.470290 9.172663 9.178500

iment, we also note that, as the overall traffic intensity increases, there is a much more profound

effect on E(R) and E(N) than on the mean primary queue length whose stability depends on ρ1.

Specifically, when ρ = 0.90, ρ1 ≈ 0.4353. Therefore, the increase in the overall traffic intensity from

0.7 to 0.9 results in only a moderate increase in the primary queue length.
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