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Abstract—A microgrid is a small-scale version of a centralized
power grid that generates, distributes and regulates electricity
flow to local entities using distributed generation and the main
grid. Distributed energy storage systems can be used to mitigate
adverse effects of intermittent renewable sources in a microgrid
in which operators dynamically adjust electricity procurement
and storage decisions in response to randomly-evolving demand,
renewable supply and pricing information. We formulate a
multistage stochastic programming (SP) model whose objective
is to minimize the expected total energy costs incurred within a
microgrid over a finite planning horizon. The model prescribes
the amount of energy to procure, store and discharge in each
decision stage of the horizon. However, for even a moderate num-
ber of stages, the model is computationally intractable; therefore,
we customize the stochastic dual dynamic programming (SDDP)
algorithm to obtain high-quality approximate solutions. Compu-
tation times and optimization gaps are significantly reduced by
implementing a dynamic cut selection procedure and a lower
bound improvement scheme within the SDDP framework. An
extensive computational study reveals significant cost savings
as compared to myopic and non-storage policies, as well as
policies obtained using a two-stage SP model. The study also
demonstrates the scalability of our solution procedure.

Index Terms—Microgrid, energy storage, stochastic program-
ming, stochastic dual dynamic programming.

I. INTRODUCTION

ONE way of achieving deeper penetration of renewable
energy sources into the electric power grid is the use

of microgrids, which offer an incremental approach to de-
ploying small-scale renewable sources, like wind and solar, in
close proximity to local demand. Developed for a residential
community, university, military-base, or other demand-side
entities, a microgrid is a small-scale version of a centralized
power grid that generates, distributes, and regulates electricity
flow using local renewable generation sources [1], [2]. How-
ever, a deeper penetration of renewable sources in the overall
energy portfolio poses a new set of challenges. Renewable
sources are highly intermittent and uncertain in nature, making
future supplies difficult to predict. Moreover, the limited
generating capacity of renewable sources in microgrids makes
them susceptible to real-time power shortages and reliability
issues. Distributed energy storage systems, such as batteries
or flywheels, serve to hedge against renewable uncertainty,
and can be used to shift local energy consumption from peak-
demand to low-demand periods [3], [4]. Moreover, with the
advent of bidirectional technologies, operators in a microgrid
can exploit dynamic pricing mechanisms by storing energy
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during off-peak periods for use in peak-price periods [5], [6].
With the growing appeal of renewable generation, dynamic
strategies for procuring electricity and charging energy to, or
discharging energy from, storage can be devised for microgrid
entities to minimize their expected total costs in the presence
of uncertain renewable sources, random demand, and time-
varying electricity prices.

The literature related to optimal demand-side energy storage
strategies is relatively small but is developing rapidly. Most
prevalent are models that devise optimal demand-response
schemes for consumers with elastic loads [7], [8]. However,
such schemes have exhibited only a minor shift in consumer
demand to match prices [9]. More recently, residential storage
has emerged as a key facilitator of demand response on the
consumer side [10], [11]. Earlier formulations of the demand-
side storage management problem have employed a linear
programming approach to minimize finite-horizon electricity
costs assuming a priori knowledge of prices [12], [13]. Van
de Ven et al. [14] examined a demand response problem under
real-time pricing uncertainty using a finite-horizon Markov
decision process (MDP) model. Proved was the existence of
a dual-threshold, cost-minimizing optimal storage policy for a
residential consumer with finite energy storage capacity. Hill
et al. [15] developed simple threshold policies for grid-scale
energy storage to mitigate negative impacts of solar energy
integration while improving the overall real-time frequency re-
sponse and voltage control capabilities of the grid. Koutsopou-
los et al. [16] analyzed an optimal storage control problem
under price and supply uncertainty. Using an infinite-horizon
MDP model, they derived an optimal threshold policy for the
online problem and proved its asymptotic optimality (as the
storage capacity approaches infinity). However, none of these
MDP models account for simultaneous uncertainty in demand,
supply, and pricing, and they use relatively few scenarios to
keep the problem dimension low. Furthermore, they are single-
consumer models that do not consider network constraints and
interactions between different microgrid entities.

Consequently, stochastic programming (SP) has emerged
as a viable alternative to MDP models for problems with
continuous actions and high-dimensional state spaces (cf. [17]
for additional details). Lee et al. [18] formulated a two-
stage linear SP model to minimize investment and ancillary-
generation costs in a power network with high penetration
of renewable sources and energy storage. They employed the
well-known L-shaped algorithm [17] to solve the model in
a day-ahead setting; however, a relatively small number of
scenarios (≈ 100) were considered. Ji et al. [19] proposed
a two-stage stochastic, mixed-integer, quadratic programming
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(SMIQP) model to jointly optimize the day-ahead operations
of renewable sources and storage systems in a microgrid, also
using a small number of scenarios. Xi et al. [20] addressed the
problem of co-optimizing the real-time scheduling of storage
usage for multiple applications, such as energy arbitrage and
regulation services, while accounting for price and renewable
uncertainty. They proposed a two-stage, stochastic mixed-
integer programming (SMIP) model to obtain piecewise-
linear value function approximations for a MDP model with
continuous states and actions. Other representative two-stage
SP models for similar problems can be found in references
[21]–[24]. Generally speaking, most realistic SP models are
NP-hard; however, their prevalence in the energy literature
stems from the fact that several decomposition algorithms are
available to solve such models efficiently [25]. By comparison,
the literature is relatively sparse for multistage SP models that
allow for recourse decisions at multiple stages of decision
making. A key feature of multistage models is that they yield
solutions that are non-anticipative, i.e., decisions made in any
stage depend only on the information available up to that stage.
By contrast, decisions from two-stage models are anticipative
and may result in suboptimal strategies. However, multistage
SP models are significantly harder to solve, and are intractable
for even a moderate number of stages [26].

The main contributions of our work here can be summarized
as follows. First, we propose a novel, multistage SP model
to obtain viable procurement and storage operation strate-
gies in a grid-connected microgrid. In this model, the initial
(or first-stage) decisions are the storage capacities of local
energy storage systems (e.g., batteries), subject to a budget
constraint. During each subsequent stage of the planning
horizon, multiple recourse decisions are made, including the
total active and reactive power procured from the grid, the
active power charged to, or discharged from, local storage
systems, and the active and reactive power flowing in the lines
based on a rigorous power flow model. The objective is to
minimize the expected total energy costs incurred within the
microgrid over a finite planning horizon, subject to storage
capacity, line capacity, and other physical constraints. The
model is distinguished from existing two-stage SP models
in that non-anticipative procurement and storage decisions
must be made in the face of multiple sources of uncertainty:
demand, renewable supply and prices are all modeled as
random variables. Second, to overcome the computational
challenges associated with multistage SP models, we cus-
tomize the stochastic dual dynamic programming (SDDP)
algorithm [27] to obtain high-quality solutions for a 24-hour
planning horizon. The algorithm is enhanced by implementing
a dynamic cut selection (DCS) heuristic [28] to significantly
reduce the SDDP computation time. Moreover, the SDDP
algorithm is remarkably improved by employing a novel, yet
pragmatic, lower bound enhancement procedure using Jensen’s
inequality. This refinement drastically reduces computation
time and significantly improves solution quality, and it fa-
cilitates the use of a large number of potential scenarios.
Our computational study demonstrates that very tight solution
bounds are attainable within a reasonable amount of time.
The results also suggest the scalability of our customized

SDDP algorithm to problems of larger scale. Finally, the
computational results reveal significant economic advantages
as compared to myopic and non-storage policies, as well as
policies obtained using a two-stage SP model.

II. MODEL DESCRIPTION

This section describes the multistage SP formulation to
prescribe viable energy procurement and storage strategies for
microgrid entities over a finite planning horizon. As in [29]–
[31], we consider a grid-connected microgrid with a radial
topology – a tree-like network of interconnected buses and
power lines emanating from a reference bus (the feeder),
which is connected to the main grid. The feeder is often con-
nected to a distribution substation and delivers power procured
from the main grid to other microgrid buses. Some or all of
those buses have access to distributed storage systems. The
operators use both distributed generation (e.g., wind and/or
solar) and electricity procured from the main grid to satisfy
the net demand and power flow constraints in each stage of
the planning horizon. Surplus energy can be stored in finite-
capacity storage systems for future use. The decision makers,
who make procurement and storage decisions at the start of
each stage, have access to real-time pricing information from
an electricity spot market. However, the amount of energy that
can be stored or made available for current or future stages
is constrained by the capacity of the storage systems and
power lines. Moreover, these decisions are subject to demand,
renewable supply, and pricing uncertainty. The objective is to
minimize the expected total energy costs incurred within the
microgrid over the finite planning horizon.

A. Preliminaries
Consider a planning horizon of length Υ, and partition the

time interval [0,Υ) so that

[0,Υ) =

N⋃
t=1

[εt−1, εt),

where N is the number of time intervals (or stages) and εt is
the tth decision epoch with ε0 ≡ 0 and εN ≡ Υ. Therefore, the
discrete time horizon is denoted by T = {1, . . . , N}, where
t ∈ T is the index of the tth stage, namely [εt−1, εt). Let
δt ≡ (εt−εt−1) denote the duration of the tth stage. Let C =
{0, 1, . . . ,K} be the finite set of buses in the microgrid, where
bus 0 denotes the feeder connected to the main grid, and bus
i ∈ C \ {0} denotes the ith microgrid bus. It is assumed that
the feeder is not connected to any load, renewable generator
or storage device, and has a fixed voltage level. For notational
convenience, we also define T ′ ≡ T \ {1} and C ′ ≡ C \ {0}.
The set of all lines in the microgrid is denoted by A = {(i, k) :
i, k ∈ C}, where (i, k) ∈ A is a power line connecting bus i
to bus k.

Next, we describe the physical parameters of the microgrid.
Let α be the maximum storage capacity of the microgrid,
and βa(i, k) and βr(i, k) be the active and reactive power
capacities (also known as nameplate capacities) of line (i, k).
Let ϕ(i, k) denote the impedance of line (i, k) such that

ϕ(i, k) = λ(i, k) + jϑ(i, k), (i, k) ∈ A,
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where λ(i, k) and ϑ(i, k) denote the resistance and reactance
of line (i, k), respectively, and j =

√−1 is the unit imaginary
number. Let ν denote the average per-unit cost of power lost
due to resistive heating in any line (i, k) ∈ A. The quantity
ηi denotes the average cost per unit energy charged to, or
discharged from, the battery at bus i, while κi is the per-
unit cost of battery capacity at bus i. The parameters ρic and
ρid represent the charging and discharging efficiencies of the
battery at bus i, respectively. The round-trip efficiency of the
battery at bus i is defined as ρi ≡ ρicρ

i
d – a value that usually

lies in the interval [0.7, 0.9]. The quantities τ ic and τ id denote
the maximum charging and discharging rates of the battery at
bus i, respectively. Let γi

min and γi
max be the minimum and

maximum proportions of battery capacity that can store energy,
where γi

min, γ
i
max ∈ (0, 1). It is assumed that the batteries

cannot self-discharge, i.e., energy is not dissipated when the
batteries are not in use.

Now we describe the uncertain variables that evolve over
the decision stages in T ′. All random variables are defined
on a common and complete probability space (Ω,A ,P). Let
dit denote the net-demand (demand minus renewable supply)
realized per unit-time at bus i at the start of stage t, such that

dit = rit + jwi
t, (i, t) ∈ C × T ′,

where rit and wi
t denote the active and reactive power compo-

nents of dit, respectively. Collect the net demand realizations
in the vector dt ≡ ((rit, w

i
t) : i ∈ C ′). Let pt denote the

real-time price realized at the start of stage t. Then for each
t ∈ T ′, the bounded vector ωt ≡ (dt, pt) ∈ Ωt denotes the
stage t realization of the random vector ω̃t. Assume |Ωt| < ∞
for all t ∈ T ′. It is noted that Ωt ⊆ RM , where M ≤ 2K− 1.
Henceforth, we refer to a scenario ω ∈ Ω ≡ Ω2 × · · · × ΩN

as a realization (or sample path) of the stochastic process
{ω̃t : t ∈ T ′}.

In the following subsection, we define the decision variables
and constraints of the model, and formulate a multistage SP
model using the DistFlow equations for radial networks.

B. Multistage Stochastic Optimization Model

Let xi
1 be the stage 1 battery capacity decision at bus i that

incurs a cost κi x
i
1. The capacity decisions are made before

any of the random variables are realized. Collect the stage 1
decisions in the vector x1 ≡ (xi

1 : i ∈ C ′). Let c1 ≡ (κi : i ∈
C ′) denote the cost vector in stage 1 so that the total cost in
this stage is

c′1x1 =
∑

i∈C′
κi x

i
1. (1)

However, the capacity decisions are constrained by the maxi-
mum storage capacity of the microgrid as follows:

0 ≤
∑

i∈C′
xi
1 ≤ α. (2)

Unique to our model is the fact that, starting from stage 2 and
moving forward in time, microgrid operators make recourse
decisions at the start of each stage. The stage t recourse
decisions, when ωt is realized, are collected in the vector
xt(ωt). Henceforth, for notational convenience, we suppress

the dependence of xt on ωt and simply write xt. For each
i ∈ C ′ and (i, k) ∈ A, the decision vector for stage t ∈ T ′ is
defined as xt ≡ (yit,m

i
t, n

i
t, v

i
t, qt(i, k), st(i, k), at, bt), whose

elements are as follows:
• yit: energy storage level at bus i at the start of stage t;
• mi

t: active power charged into the battery at bus i;
• ni

t: active power discharged from the battery at bus i;
• vit: voltage level at bus i
• qt(i, k): active power flow in line (i, k);
• st(i, k): reactive power flow in line (i, k);
• at: active power procured from main grid at the feeder;
• bt: reactive power procured from main grid at the feeder.
For each bus i ∈ C ′, the battery levels in successive stages

are coupled via

yit+1 = yit + δt(ρ
i
cm

i
t − ni

t/ρ
i
d), t ∈ T ′. (3)

An interpretation of (3) is that the energy stored in a battery
equals the stored energy at the start of the current stage,
minus (plus) the amount of energy discharged from (charged
to) the battery in the current stage, scaled by the discharging
(charging) efficiency parameter. Note that the power quantities
mi

t and ni
t are multiplied by the factor δt to convert them into

units of energy. It is assumed that the batteries are capable
of charging or discharging active power only and not reactive
power (cf. [31]–[33]). Because demand, renewable supply and
prices exhibit diurnal seasonality [34], [35], storage operations
are optimized over a planning horizon that covers at least
one complete cycle of the seasonal variables. Therefore, the
terminal storage levels of the batteries are set to their initial
levels [36], [37]. Specifically, for all i ∈ C ′,

yi1 = yiN . (4)

The power that is charged to, or discharged from, the storage
device is constrained by the current storage level, as well as
the charging and discharging rates of the battery. Therefore,
for each i ∈ C ′,

0 ≤ mi
t ≤ min{τ ic , δ−1

t (xi
1 − yit)/ρ

i
c}, t ∈ T ′, (5)

0 ≤ ni
t ≤ min{τ id, δ−1

t ρidy
i
t}, t ∈ T ′. (6)

As battery life can be reduced due to excessive charging or
discharging, for each i ∈ C ′, battery levels in each stage are
limited by the following state-of-charge (SOC) constraints:

γi
min x

i
1 ≤ yit ≤ γi

max x
i
1, t ∈ T ′. (7)

Next, we describe constraints related to power flow in the
lines. In contrast to transmission systems, where power flows
are characterized using DC optimal power flow approxima-
tions, the DistFlow model is often adopted for distribution
networks to calculate the complex power flow and voltage pro-
files. Several recent papers have justified using the DistFlow
equations for microgrids [29], [31], [38]–[40]. Because power
flow is directional, assume that qt(i, k) ≥ 0 when active power
flows from bus i to bus k, and qt(i, k) < 0 if it flows from bus
k to i; similar notation is adopted for the reactive component
st(i, k). For a given bus i ∈ C ′, let Λi and Θi denote the
parent bus and the adjoining children buses connected to bus i,
respectively. The fixed voltage level at the feeder is denoted by
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v0. Then for each i ∈ C ′ and t ∈ T ′, the DistFlow equations
are

qt(Λi, i) = rit +mi
t − ni

t +
∑

k∈Θi

qt(i, k), (8a)

st(Λi, i) = wi
t +

∑

k∈Θi

st(i, k), (8b)

vit = vΛi
t − λ(Λi, i)qt(Λi, i) + ϑ(Λi, i)st(Λi, i)

v0
. (8c)

The left-hand side of (8a) represents the active power that
flows into a bus from its parent, while the right-hand side is
the net active power that flows out of the bus to its children,
after accounting for the local active demand and battery power
flows. Equation (8b) can be similarly interpreted for reactive
power flows. Equation (8c) is used to compute the voltage
level of bus i.

Power procured from the main grid is delivered to the
microgrid via the feeder (bus 0). The DistFlow equations at
the feeder are

at =
∑

k∈Θ0

qt(0, k), t ∈ T ′, (9a)

bt =
∑

k∈Θ0

st(0, k), t ∈ T ′, (9b)

where at+jbt is the net power injected into the microgrid via
the feeder at stage t. To avoid reverse power flows at the feeder
that can negatively affect operation of voltage regulators and
protective devices [31], [41], we impose the following non-
negativity constraint:

at ≥ 0, t ∈ T ′. (10)

For any line (i, k) ∈ A, the active and reactive power flows
are constrained by the nameplate capacities via

|qt(i, k)| ≤ βa(i, k), t ∈ T ′, (11)
|st(i, k)| ≤ βr(i, k), t ∈ T ′, (12)

ensuring that power lines are not damaged due to resistive
overheating [31], [42]. Additionally, distribution networks
typically require the nominal voltage level at each bus to be
maintained within a tolerance band [29], [30]. Therefore, the
voltage level at each bus i ∈ C ′ is constrained by the inequality

vimin ≤ vit ≤ vimax, t ∈ T ′, (13)

where vimin and vimax denote the minimum and maximum
voltage levels allowed at bus i, respectively.

It is noted that the decisions made at a current stage depend
on the decisions made up to the previous stage via the temporal
linking constraints (3). Thereby, the set of feasible decisions xt

in each stage t ∈ T ′ is denoted by Xt(xt−1, ωt), and this set is
defined by the constraints (3) – (13) for each (ω, t) ∈ Ω×T ′.

Finally, we describe the objective function, which is to be
minimized. Let ct denote the cost vector in stage t ∈ T ′ so
that the total cost incurred in this stage is

c′txt = ptatδt +
∑

i∈C′
ηi(m

i
t +ni

t)δt +
∑

(i,k)∈A

ν`t(i, k)δt, (14)

where `t(i, k) is the resistive power loss in line (i, k). The first
term on the right-hand side of (14) is the total grid procurement
cost, the second term is the total battery charge-discharge cost,
and the third term represents the total cost incurred due to
power-line losses in stage t. Each term on the right-hand side
of (14) is multiplied by δt to convert power units to energy
units. The battery cost rate ηi is assumed to be equal for both
charging and discharging; however, this assumption can be
relaxed. Using the DistFlow equations, the resistive power loss
in line (i, k) ∈ A can be closely represented by the quadratic
function (see [33], [43])

`t(i, k) = λ(i, k)

(
qt(i, k)

2 + st(i, k)
2

v20

)
, t ∈ T ′, (15)

so the per-unit cost incurred due to power losses in line (i, k)
at stage t is equal to ν`t(i, k). Note that, because `t(i, k) is
quadratic and convex, it can be readily approximated using
piecewise-linear functions (cf. [44] in the context of the unit-
commitment problem). This approach is commonly imple-
mented by commercial optimization solvers (e.g., Gurobi)
that exploit linear optimization algorithms to efficiently solve
quadratic programs. Therefore, the multistage linear SP model
can now be formulated and represented in the nested form

z = min
x1

c′1x1 + Eω̃2

[
min
x2

c′2x2 + Eω̃3|ω̃2

[
min
x3

c′3x3

+ · · ·+ Eω̃N |ω̃N−1

[
min
xN

c′NxN

]
. . .

]]
(16a)

s.t. xt ∈ Xt(xt−1, ωt), ∀(ω, t) ∈ Ω× T ′, (16b)

0 ≤
∑

i∈C′
xi
1 ≤ α, (16c)

where Eω̃i|ω̃j
denotes the expectation taken with respect to

the conditional probability measure P(ω̃i|ω̃j). Note that the
nested structure of model (16) is a direct consequence of the
multiple recourse opportunities available to the decision maker
as information is progressively revealed over the planning
horizon. This distinguishes model (16) from two-stage SP
models that allow only a singular recourse opportunity under
uncertainty [24], [45]. Unfortunately, model (16) is compu-
tationally intractable, even when the number of stages N is
moderate (see [26], [27], [46] for additional details). However,
in Section III, we describe how the stochastic dual dynamic
programming (SDDP) algorithm can be used to obtain high-
quality, approximate solutions to model (16).

III. STOCHASTIC DUAL DYNAMIC PROGRAMMING
(SDDP)

SDDP is a well-known decomposition procedure that can
be used to solve multistage, stochastic programs with a large
number of stages [27], [47]. The SDDP algorithm builds
piecewise-linear outer approximations of the cost-to-go func-
tions at each stage by randomly sampling from a finite set
of scenarios. The algorithm iteratively updates the lower and
upper bounds of the optimal value z of model (16) using a
two-step procedure – a forward pass and a backward pass –
and assumes stage-wise independence of the random variables.
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The algorithm terminates once the bounds satisfy a prescribed
convergence criterion.

To customize the SDDP algorithm, model (16) is first
reformulated as an N -stage stochastic dynamic program. The
first-stage (or stage 1) problem is defined as

z = min
x1

c′1x1 + E[Q2(x1, ω̃2)] (17)

s.t. 0 ≤
∑

i∈C′
xi
1 ≤ α,

where Q2(x1, ω2) is the total future cost incurred under
decision x1 and realization ω2 ∈ Ω2. For t ∈ T ′, the stage
t problem is defined as

Qt(xt−1, ωt) = min
xt

c′txt + E[Qt+1(xt, ω̃t+1)] (18)

s.t. Ftxt = ht(ωt)−Gtxt−1.

In formulation (18), matrices Ft and Gt, and the vector
ht(ωt), are obtained by reformulating constraints (3) – (13) as
equality constraints. Let πt(ωt) denote the optimal dual vec-
tor associated with (18). In dynamic programming parlance,
Qt(xt−1, ωt) is the stage t cost-to-go (or value) function.
Without loss of generality, assume E[QN+1(xN , ω̃N+1)] = 0
in the stage N problem; however, any continuous, convex
function can be assumed for E[QN+1(xN , ω̃N+1)].

To implement the SDDP algorithm, the scenarios of model
(16) are stored as a finite scenario tree with N stages. A
scenario tree originates at a root node that stores the first-stage
decision x1 and progressively branches to other child nodes
that are defined by the number of possible stage t realizations
|Ωt| in stage t ∈ T ′. The nodes in stage N are called the leaf
nodes. The total number of leaf nodes equals the number of
scenarios of (16). Figure 1 depicts a scenario tree with three
stages and six scenarios. Because the number of scenarios,
|Ω2 × · · · × ΩN |, grows exponentially with N , problem (16)
must be solved approximately to accommodate a planning
horizon of 24 (or more) decision stages.

Fig. 1. Depiction of a scenario tree with three stages and six scenarios.

To solve (16) approximately, a finite number of scenarios
are sampled from the scenario tree to develop a piecewise-
linear outer approximation of E[Qt+1(xt, ω̃t+1)] in (18) for
each stage t problem. The approximate stage t cost-to-go
function is denoted by Q̂t(xt−1, ωt). The outer approximations
are developed by generating Bender’s cuts

θt+1 ≥ h̄t+1,k − π̄′
t+1,kGt+1xt, k ∈ K. (19)

In (19), the set K is the index set for all Bender’s cuts added
to each stage t problem (18). Here, column vector π̄t+1,k ≡

E[πt+1(ω̃t+1)] defines the gradient and h̄t+1,k is the intercept
term for cut k ∈ K, where

h̄t+1,k = E[Q̂t+1(x
k
t , ω̃t+1)] + π̄′

t+1,kGt+1x
k
t ,

and xk
t is a feasible stage t solution. Thus, the approximate

stage t problem assumes the form

Q̂t(xt−1, ωt) = min
xt

c′txt + θt+1 (20)

s.t. Ftxt = ht(ωt)−Gtxt−1,

θt+1 ≥ h̄t+1,k − π̄′
t+1,kGt+1xt, k ∈ K

while the approximate stage 1 problem is

ẑ = min
x1

c′1x1 + θ2 (21)

s.t.
∑

i∈C′
xi
1 ≤ α,

θ2 ≥ h̄2,k − π̄′
2,kG2x1, k ∈ K

x1 ≥ 0.

Let x̂(ω) ≡ (x̂t(ω))t∈T be an approximate policy obtained
by solving problems (20) and (21) for scenario ω ∈ Ω2×· · ·×
ΩN . In the forward pass of the SDDP algorithm, S distinct
scenarios are sampled uniformly from the scenario tree using
the well-known Monte-Carlo method (see [27], [28], [46]).
Subsequently, the stage t problems are solved approximately
for each of the sampled scenarios, starting from the first stage
and moving forward to the final stage. At the completion of
the forward pass, an upper bound to z is calculated, and a
convergence criterion is tested. If the criterion is satisfied, the
algorithm terminates; otherwise, the current optimal policy is
amended by adding |Ωt| Bender’s cuts to each of the stage
t problems associated with the sampled scenarios, starting
from the last stage and working backwards to the first stage.
Figure 1 depicts the forward and backward passes of the SDDP
algorithm for a given scenario tree. Let ΩS ⊂ Ω be a finite
set of S distinct scenarios ω sampled from Ω. The steps of
the algorithm are summarized as follows:

1) Sampling
Sample S distinct scenarios ω from Ω to form ΩS .

2) Forward Pass
2a) For t = 1, solve (21) and save x̂1 and ẑ;
2b) For t = 2, . . . , N and ω ∈ ΩS , solve (20) and store

x̂t(ω) and Q̂t(x̂t−1(ω), ωt), where ωt is the (t−1)th
component of ω.

3) Convergence Test (at the 95% confidence level)
3a) Compute an upper bound of z by

zu = c′1x̂1 + (1/S)
∑

ω∈ΩS

N∑
t=2

c′tx̂t(ω),

and assign lower bound z` := ẑ by solving (21);
3b) Terminate the algorithm if (see [27])

zu +
(
1.96 σ̂u/

√
S
)
− z` ≤ ε,

where ε is a prescribed accuracy level, and σ̂u is
the sample standard deviation of the observations
{zω : ω ∈ ΩS} with
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zω = c′1x̂1 +

N∑
t=2

c′tx̂t(ω);

Else go to Step 4.
4) Backward Pass

4a) For t = 2, . . . , N and ω ∈ ΩS

– For each ωt ∈ Ωt, solve (20) using x̂t−1(ω), and
save π̂t(ωt) and Q̂t(x̂t−1(ω), ωt);

– Generate a Bender’s cut (19) and add it to all
subproblems at stage t− 1;

4b) Go to step 1.

IV. IMPROVING THE PERFORMANCE OF SDDP

The standard SDDP algorithm of Section III involves vis-
iting S scenarios in the forward pass, and then a backward
pass is performed to build |Ωt| cuts for each stage t problem.
This procedure yields an increasing number of Bender’s cuts
for each stage t problem, not all of which are active at each
iteration of the algorithm. To reduce the computational burden
of solving problems (20) and (21), a more sensible approach is
to select cuts for the current iteration from a collection of cuts
that have been generated in prior iterations. While there exist
several classes of cut selection procedures in the stochastic
programming literature (cf. [17], [46]), an effective dynamic
cut selection (DCS) procedure due to de Matos et al. [28] was
implemented to reduce the computation time of the standard
SDDP algorithm.

A. Dynamic Cut Selection (DCS) Heuristic

In the DCS procedure, cuts are added iteratively rather
than adding all cuts at once. At each iteration of the SDDP
algorithm, a sequence of values Vk ≡ (h̄t+1,k−π̄′

t+1,kGt+1x̂t)
are computed for all k ∈ K (the index set of all cuts generated
in prior iterations) and x̂t is the current optimal solution at
stage t. If the cut k∗ = argmaxk{Vk} has not been added to
(20) yet, then k∗ is added to (20) and re-solved. Moreover,
at each stage t ∈ T ′, the cuts that were generated for the
stage t problems, associated with the scenarios visited in prior
iterations, can be accessed to determine the set of active cuts
for the stage t problems in the current iteration. Consequently,
a broad set of cuts are retained that are likely to be important
to all the subproblems at a given stage. Note that at the start
of a new iteration, cuts of all the stage problems are cleared.
However, the cuts are not discarded because one cannot ensure
that a currently inactive cut will remain inactive for other
scenarios visited at a later iteration. Thus, the algorithm has
access to all the cuts generated in earlier iterations, and only
adds the active cuts to the stage t problems during the forward
and backward passes of the current iteration. The steps of the
algorithm are summarized as follows:

1) Remove cuts
Remove the cuts from all stage t problems (20) and the
stage 1 problem (21).

2) Sampling
Sample S distinct scenarios ω from Ω to form ΩS .

3) Forward Pass

3a) For t = 1, solve (21) and save x̂1 and ẑ;
3b) For t = 2, . . . , N and ω ∈ ΩS

– Solve (20) and store x̂t(ω) and Q̂t(x̂t−1(ω), ωt),
where ωt is the (t− 1)th component of ω;

– If k∗ = argmaxk{h̄t+1,k − π̄′
t+1,kGt+1x̂t(ω)} is

not in (20), then add cut k∗ and re-solve (20).
4) Convergence Test

Identical to Step 3 of the standard SDDP algorithm.
5) Backward Pass

5a) For t = 2, . . . , N and ω ∈ ΩS

– For each ωt ∈ Ωt, solve (20) using x̂t−1(ω), and
save π̂t(ωt) and Q̂t(x̂t−1(ω), ωt);

– If k∗ = argmaxk{h̄t+1,k − π̄′
t+1,kGt+1x̂t(ω)} is

not in (20), then add cut k∗ and re-solve (20);
– Generate a Bender’s cut (19) and add it to all

subproblems at stage t− 1;
5b) Go to step 1.

B. Lower Bound Improvement via Jensen’s Inequality

The DCS heuristic reduces the number of cuts that are
added at each stage; however, it cannot guarantee the strength
of these cuts. The standard SDDP algorithm exhibits slow
convergence because the lower bounds obtained from the ap-
proximate stage t problems – which do not exploit strong valid
inequalities – are relatively weak (cf. [48], [49]). To address
this shortcoming, we propose a lower bound improvement
scheme that makes use of Jensen’s inequality (see [50], p.
188). The idea is to generate a set of strong valid inequalities
during the backward pass of the SDDP algorithm. First, the
elements of an artificial scenario, ω̄ ≡ (ω̄2, . . . , ω̄N ), are
obtained by

ω̄t =
∑

ωt∈Ωt

ωt/|Ωt|, t ∈ T ′.

We call ω̄ the average scenario and note that it may not
necessarily belong to Ω. Next, during a backward pass of the
SDDP algorithm, a valid inequality of the form

θt+1 ≥ Qt+1(xt, ω̄t+1), t ∈ T, (22)

is added to each approximate stage t problem. The right-hand
side of inequality (22) is evaluated by setting xt = x̂t, where
x̂t is the current optimal solution at stage t. Because ω̄ is
computed a priori, and x̂t is known for each t ∈ T ′ from the
forward pass, adding cut (22) does not impose any additional
computational burden. Note that, for a given feasible solution
xt, the inequality θt+1 ≥ E[Qt+1(xt, ω̃t+1)] holds because
problem (20) is a relaxation of problem (18). Furthermore,
we have that E[Qt+1(xt, ω̃t+1)] ≥ Qt+1(xt, ω̄t+1) by Jensen’s
inequality. Therefore, the cuts (22) are valid inequalities for
the approximate stage t problems. The computational results
of Section V reveal that the addition of these valid inequalities
significantly improves solution quality and drastically reduces
computation time, as compared to the standard SDDP algo-
rithm.
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V. COMPUTATIONAL RESULTS

This section presents computational results illustrating pro-
curement and storage policies obtained by solving problem
(16) approximately using standard SDDP, its DCS variant
(SDDP+DCS), and the lower bound improvement scheme
integrated within SDDP+DCS (SDDP+DCS+J), as described
in Sections III, IV-A and IV-B, respectively. First, detailed
descriptions of the source data, microgrid configuration and
computational study are provided.

A. Data Description
Hourly demand and real-time electricity pricing data were

obtained from PJM Interconnection (http://pjm.com/), while
hourly wind speed data were obtained from the National
Renewable Energy Laboratory (http://nrel.gov/) for the years
2012 and 2013. Wind speeds were converted to active wind-
power outputs for a small-scale wind turbine by applying
equation (13) of [51]. Moreover, reactive wind-power outputs
were obtained from the PQ characteristic curve of a small
wind turbine; for more details, see [52]. As price and wind
levels are highly seasonal, the original data were partitioned
into two disjoint sets, each spanning one year. As an aid to
data visualization, for each data set, 95% confidence intervals
(c.i.) were constructed for hourly demand, wind-generation
and price levels by fitting truncated normal distributions whose
parameters were estimated via maximum likelihood estimation
(MLE). Figure 2 depicts the average electricity prices and
wind-generation levels over a 24-hour period for the year 2012.
Note that midnight is 0000 so that hour 1 corresponds to 0000
to 0100, hour 2 is 0100 to 0200, and so forth.

B. Microgrid Configuration
We consider a 4-bus microgrid configuration as depicted in

Figure 3. The 4-bus system is powered by the main grid and
a small-scale wind turbine that is connected to a single local
storage device located at bus 3, which implies that xi

1 = 0
for all i ∈ C ′ \ {3}. In what follows, let r̄it and w̄i

t denote the
sample means of the active power (r̃it) and reactive power (w̃i

t)
components of net demand, respectively, in stage t ∈ T ′ at bus
i ∈ C ′. Denote the associated sample variances by r̂it and ŵi

t,
respectively. The net demand components at bus i ∈ C ′ are
assumed to follow truncated normal distributions, i.e.,

r̃it ∼ TN(r̄it, r̂
i
t), t ∈ T ′, (23)

w̃i
t ∼ TN(w̄i

t, ŵ
i
t), t ∈ T ′. (24)

For each stage t, the (finite) supports of the random variables
r̃it and w̃i

t were determined using the maximum and minimum
levels of net demand obtained from the PJM demand and
NREL wind data.

The loads connected to buses 1 and 2 are assumed to be
homogenous with identical active power distributions, i.e.,

r̃1t
d
= r̃2t , t ∈ T ′.

Moreover, both loads are assumed to have high power factors
(the ratio of active to apparent power) and, therefore, consume
negligible reactive power. Thus,

w̃1
t = 0 and w̃2

t = 0, t ∈ T ′.
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(a) Real-time hourly electricity prices.
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(b) Hourly wind-generation levels.

Fig. 2. Average price and wind-generation levels for the year 2012.

Fig. 3. A 4-bus, grid-connected microgrid.

The wind turbine connected to bus 3, on the other hand,
generates both active and reactive power in each stage t.

The microgrid operators are assumed to be price-takers with
no demand-response capabilities. However, simple demand-
response schemes can be integrated into the model without
imposing additional computational burden. Microgrid opera-
tors have access to the main grid at all times and can procure
electricity at spot prices that also follow truncated normal
distributions of the form

p̃t ∼ TN(p̄t, p̂t), t ∈ T ′, (25)

where p̄t and p̂t are the sample mean and variance of the price
at stage t, respectively.
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The power lines are all assumed to have identical line
capacities (βa, βr), resistance (λ) and reactance (ϑ) values.
A deep-cycle, lead-acid battery with a shelf-life of over 24
hours is used as the storage device at bus 3. The battery
parameters (κ, η, ρc, ρd, τc, τd, γmin, γmax) are selected based
on information provided in [53]. It is assumed that the battery
is charged up to its maximum SOC level at the start of
the planning horizon, i.e., y1 = γmaxx1, and therefore, the
terminal battery level is yN = y1 = γmaxx1 by (4). The
voltage limits (vmin, vmax) at each bus were set to ±5% of
the feeder voltage v0 (see [30], [31]). Table I summarizes the
parameter values used in the computational experiments.

TABLE I
PARAMETER VALUES FOR THE PROBLEM INSTANCES.

Parameter Parameter description Value
α Maximum battery capacity (kWh) 60.00
κ Per-unit cost of battery capacity ($/kWh) 50.00
η Per-unit cost of charging/discharging ($/kWh) 2.00
τc Charging rate of the battery (kW) 25.00
τd Discharging rate of the battery (kW) 25.00
ρc Charging efficiency of the battery 0.95
ρd Discharging efficiency of the battery 0.90

γmin Minimum battery SOC fraction 0.10
γmax Maximum battery SOC fraction 0.90
βa Line capacity for active power (kW) 60.00
βr Line capacity for reactive power (kVAR) 60.00
λ Line resistance (Ohm) 0.009
ϑ Line reactance (Ohm) 0.009
v0 Fixed voltage level at the feeder (kV) 10.00

vmin Minimum bus voltage level (kV) 9.50
vmax Maximum bus voltage level (kV) 10.50

C. Description of Experiments
For the computational experiments, a 24-hour planning hori-

zon in the year 2012 was considered, i.e., T = {1, . . . , 25},
where hour 1 is stage 2, hour 2 is stage 3 and so forth;
hence, δt = 1 for each t. The standard SDDP, SDDP+DCS
and SDDP+DCS+J algorithms were coded in Python 2.7
and solved using the Gurobi 6.5 solver. The piecewise-linear
approximation to (15) was created using the default settings
of Gurobi, and the dual-simplex method was selected as the
default linear programming (LP) solver. The algorithms were
implemented on a 64-bit, 4th generation Intel R© CoreTM i7, 64
GB, 2.9 GHz Windows machine.

We considered different combinations of the number of
sampled scenarios (S) in the forward pass, and the number
of stage t realizations (|Ωt|) for the backward pass, holding
|Ωt| constant for all t ∈ T ′. The parameter S was varied
from 50 to 250 in increments of 50, while |Ωt| was varied
from 5 to 20 in increments of 5. For each t ∈ T ′, a set of |Ωt|
samples were first generated to construct a scenario tree before
running any of the three procedures. To generate the samples
ωt ≡ (rit, w

i
t, pt : i ∈ C ′) at each stage t, a multivariate

truncated normal distribution was used in which each marginal
distribution is also truncated normal. The sampling procedure
was further simplified by assuming that the random variables
at each stage are all mutually independent, i.e., for each t ∈ T ′

Ft(ωt) = Pt(pt)

3∏

i=1

Ri
t(r

i
t)Wi

t(w
i
t), ∀ωt ∈ Ωt,

where Ft is the joint probability density function (p.d.f.), and
Pt, Ri

t, and Wi
t are the stage t marginal p.d.f.s of price

(25), active power (23) and reactive power (24) components
of net demand at bus i, respectively. Alternative sampling
procedures can be used, such as those described in [54];
however, we chose this sampling procedure to satisfy the
stage-wise independence criterion of the SDDP algorithm. For
comparison purposes, the same |Ωt| samples were used to
generate scenario trees for all three procedures.

Once a scenario tree is generated, S distinct forward-pass
scenarios ω ≡ (ωt : t ∈ T ′) are uniformly sampled from
the scenario tree in each iteration of the three procedures. It is
worth noting that empirical forecast distributions, based on for-
ward bootstrapping techniques [55], can also be used to sample
scenarios; however, our main purpose here is to illustrate the
usefulness of the SP model and its solutions. The quality of
solutions obtained using standard SDDP, SDDP+DCS, and
SDDP +DCS+J algorithms was assessed by computing the
approximate gap percentage

Gap (%) =
zu − z`

z`
× 100. (26)

All three procedures were terminated if either the SDDP
convergence criterion was satisfied (with ε = 10−5), or 500
iterations were completed, whichever occurred first.

D. Results and Discussion

The computational results for the standard SDDP procedure
are provided in Table II. It is noted that for a fixed number
of scenarios S, the gap percentage decreases sharply as |Ωt|
increases; however, as one might expect, the computation
times increase. Specifically, if additional state information is
used at each stage to develop Bender’s cuts, better value-
function approximations are obtained; however, a far greater
number of stage t problems must be solved. Similarly, for
a fixed value of |Ωt|, the gap percentages decrease, and
the computation time increases (but only moderately) as S
increases. This trend stems from the fact that the lower bounds
progressively improve, albeit slowly, as more scenarios are
sampled, but a larger number of stage t problems must be
solved in each iteration. However, the reported gap percentages
indicate that the bounds are not tight. For example, when
S = 250 and |Ωt| = 20, solving the model for over 6.7 hours
reduced the gap to only 6.96%.

Table III summarizes the results when using the standard
SDDP algorithm supplemented with DCS. The table reveals
that both solution quality and computation time improved,
relative to the results for standard SDDP. For instance, when
S = 250 and |Ωt| = 20, SDDP+DCS reduces the gap
percentage by a factor of over 2.3 (from 6.96% to 3%).
Additionally, the computation time is reduced by a factor of
nearly 1.3 (from 403.64 min to 311.37 min). However, the
gap percentages for SDDP+DCS are still high in absolute
terms, which points to a slow rate of convergence of the
lower bounds z`. In fact, for both the SDDP and SDDP+DCS
procedures, the lower bounds converged rapidly in the first few
iterations, and converged very slowly thereafter. For example,
when S = 250 and |Ωt| = 20, the SDDP +DCS lower bound
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TABLE II
RESULTS USING THE STANDARD SDDP ALGORITHM.

S |Ωt| z` zu Gap % Time (mins)

50

5 62.46 78.03 24.93 48.76
10 66.28 77.64 17.14 64.85
15 68.89 77.21 12.08 98.33
20 69.8 77.02 10.34 132.65

100

5 63.42 77.97 22.94 61.28
10 67.24 77.28 14.93 92.37
15 69.72 77.15 10.66 131.54
20 70.23 77.01 9.65 189.95

150

5 64.45 77.56 20.34 73.89
10 67.93 77.15 13.57 129.76
15 69.96 76.97 10.03 186.21
20 70.82 76.58 8.13 238.86

200

5 64.98 77.39 18.96 84.21
10 68.02 76.93 13.10 148.49
15 70.37 76.62 8.88 235.72
20 70.95 76.51 7.84 325.39

250

5 65.35 77.12 18.01 97.65
10 68.63 76.75 11.83 171.26
15 70.92 76.58 7.98 272.74
20 71.43 76.21 6.96 403.64

improved from −∞ to 71.43 (final value of standard SDDP
lower bound) in the first 60 iterations, and increased to only
73.98 in the next 440 iterations. This slow convergence may
be attributed to weak Bender’s cuts that are generated in the
backward pass. Such weak cuts often lead to relaxations of
the stage t problems that are not tight – a common trend in
Bender’s decomposition-based algorithms [48]. The numerical
results indicate that DCS alone may not significantly improve
computation time and the quality of solutions obtained by the
SDDP algorithm.

TABLE III
RESULTS USING THE SDDP+DCS ALGORITHM.

S |Ωt| z` zu Gap % Time (mins)

50

5 64.03 78.05 21.89 33.67
10 68.25 77.61 13.71 49.29
15 70.04 77.18 10.19 66.27
20 71.26 77.01 8.08 87.25

100

5 65.57 77.93 18.85 48.58
10 69.72 77.34 10.93 73.46
15 71.23 77.16 8.30 101.28
20 72.61 76.92 5.97 148.65

150

5 67.03 77.39 15.46 60.09
10 70.04 77.19 10.04 102.25
15 72.27 76.89 6.43 156.43
20 73.06 76.45 4.61 195.23

200

5 68.17 77.41 13.55 73.21
10 70.92 76.90 8.43 112.28
15 72.89 76.69 5.21 179.38
20 73.21 76.42 4.45 235.29

250

5 68.87 77.41 11.83 86.46
10 71.11 76.98 7.68 147.76
15 73.57 76.81 3.96 202.41
20 73.98 76.15 3.00 311.37

To improve the convergence rate of the lower bounds, and
further reduce the computation time, valid inequalities of the
form (22) were added to each stage t problem in the backward
pass (see Section IV-B). Table IV summarizes the results for
the SDDP+DCS+J procedure. The table reveals a dramatic
improvement in solution quality as well as computation time.
For instance, when S = 250 and |Ωt| = 20, SDDP+DCS+J

TABLE IV
RESULTS USING THE SDDP+DCS+J ALGORITHM.

S |Ωt| z` zu Gap % Time (mins)

50

5 70.12 77.98 11.21 16.65
10 72.93 77.46 6.24 24.28
15 74.17 77.19 4.07 36.69
20 75.03 76.97 2.23 49.63

100

5 71.47 77.81 8.87 25.97
10 73.54 77.34 5.13 37.80
15 74.97 77.15 2.91 54.32
20 75.45 76.82 1.84 71.21

150

5 72.12 77.72 7.77 38.57
10 74.32 77.29 4.56 68.43
15 75.59 76.83 1.64 101.36
20 75.67 76.29 0.89 150.26

200

5 72.96 77.43 6.13 50.45
10 75.01 77.16 2.95 83.53
15 75.71 76.86 1.52 121.62
20 75.98 76.28 0.45 179.97

250

5 73.21 77.41 6.03 64.36
10 75.06 77.01 2.83 98.14
15 75.89 76.85 1.34 141.42
20 75.99 76.19 0.32 206.73

reduces the gap percentage by factors of 21.75 and 9.36,
respectively, as compared to standard SDDP (from 6.96% to
0.32%) and SDDP+DCS (from 3% to 0.32%). These results
are highly significant in that a realistic scenario tree with 25
stages yields very high quality solutions (gap of 0.32%) within
a reasonable amount of time (206.73 minutes). Figures 4 and
5 illustrate the gap and computation time reductions achieved
by using SDDP+DCS+J for different values of |Ωt|.
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Fig. 4. Gap percentage for different values of |Ωt| when S = 250.

Moreover, the numerical experiments suggest a significant
improvement in the convergence rate of the lower bounds for
SDDP+DCS+J, compared to the other two SDDP variants. For
example, when S = 250 and |Ωt| = 20, the SDDP+DCS+J
lower bound attained the final value of the SDDP+DCS lower
bound (z` = 73.98) in only 20 iterations. Furthermore, the
lower bounds increased by only 5 × 10−4 in the final 300
iterations of SDDP+DCS+J, indicating convergence of the
lower bounds. It is noteworthy that a mere 2.7% improvement
(73.98 to 75.99) in the lower bound of SDDP+DCS+J, over
that of the SDDP+DCS, caused the gap percentage to drop by
nearly 2.7% (3% to 0.32%). The comparisons are even more
stark between the standard SDDP and SDDP+DCS+J. A mere
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Fig. 5. Average computation time for different values of |Ωt|.

6.38% (71.43 to 75.99) increase in z` reduced the gap from
6.96% to 0.32%.

Figure 6 depicts box plots of the lower bounds obtained
for the SDDP, SDDP+DCS, and SDDP+DCS+J algorithms.
It is noted that the lower bounds obtained by SDDP+DCS+J
are not only stronger, but also less variable, as compared to
the those of standard SDDP and SDDP+DCS. This is because
the Jensen’s inequality-based Bender’s cuts lead to stronger
relaxations and, therefore, tighter lower bounds. That is, as
the number of iterations increases, the relaxations become
progressively stronger as a large number of high-quality
Bender’s cuts are added. Furthermore, the computation time
decreases because DCS retains only the strong, active cuts
from prior iterations. Consequently, the lower bounds converge
rapidly, and the computation time decreases significantly using
SDDP+DCS+J. By contrast, the variability of lower bounds
obtained by standard SDDP and SDDP+DCS are of the same
order because the DCS heuristic does not generate stronger
cuts; it simply reduces the number of cuts that are retained
from prior iterations during the current iteration. Figure 6
confirms our conjecture that SDDP+DCS+J generates much
tighter lower bounds, and therefore, solutions with small gap
percentages.
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Fig. 6. Box plots of the lower bounds obtained via SDDP and its two variants.

Next, we compared the approximate solutions of
SDDP+DCS+J to solutions obtained using a myopic,

price-based threshold (MPT) policy that ignores the future
impact of current storage and power-flow decisions. The
MPT policy maximizes the charging or discharging quantities
at each stage, subject to the feasibility constraints (3)–(13),
depending on whether the price realized at that stage is
below or above a fixed price threshold, respectively. That
is, for a given scenario ω ∈ Ω, the MPT policy, denoted by
xφ(ω) ≡ (xφ

t (ω))t∈T ′ , was obtained by solving a sequence
of stage t problems

xφ
t (ω) = argmax

∑

i∈C′
mi

tI[pt<p̄] + ni
tI[pt≥p̄]

s.t. Ftxt = ht(ωt)−Gtx
φ
t−1(ω),

where xφ
t−1(ω) is the MPT decision vector at stage t − 1,

p̄ is a known price threshold and IA denotes the indicator
function of event A. In these experiments, the threshold p̄ was
set to the sample mean of the prices in the PJM pricing data.
Specifically,

p̄ =
1

24

25∑
t=2

p̄t ≈ $35.79/MWh.

The one-step cost at stage t using the MPT policy is denoted
by c′tx

φ
t (ω) and is calculated via (14). Then, the total cost over

the horizon for scenario ω is

zφ(ω) = c′1x
φ
1 +

∑

t∈T ′
c′tx

φ
t (ω).

Let zφ denote the average MPT policy cost of S distinct
forward-pass scenarios used in SDDP+DCS+J.

The expected cumulative costs incurred over the planning
horizon were compared using SDDP+DCS+J, the MPT policy,
and the corresponding model when no energy storage is
available (for the case S = 250 and |Ωt| = 20). The expected
cumulative cost at hour t is the sum of accumulated costs up
to that hour, so the expected cost at hour 24 is the expected
total cost incurred over the planning horizon. In the absence
of storage capacity, we set x1 = 0; therefore, there are no
charging or discharging decisions in each of the subsequent
stages. Denote the cost of the no-storage policy by zN . Figure
7 reveals that the SDDP+DCS+J policy significantly reduces
cumulative costs in each stage. Specifically, the total horizon
costs are reduced by 25.65% (from 102.47 to 76.19) as
compared to the MPT policy, and by 48.68% (from 143.67
to 76.19) as compared to the policy that does not use energy
storage.

Figure 8 depicts the average battery levels for the
SDDP+DCS+J and MPT policies and the average electricity
price in each hour of the day. The battery can be charged up to
its maximum SOC level (γmaxx1) at the start of the planning
horizon. The data revealed that hours 1 to 10, on average,
had low price and high wind-generation levels. Therefore, the
battery retains most of its initial charge during hours 1 to 10
under the SDDP+DCS+J policy. The MPT policy does not
discharge energy (on average) during hours 1 to 10 because
the prices (on average) are less than the price threshold p̄
in these periods. As prices increase and wind generation
decreases in subsequent periods, energy is discharged from
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Fig. 7. Expected cumulative costs over the planning horizon.

the battery to satisfy the demand under both of these policies.
Not surprisingly, the battery is discharged to its minimum SOC
level (γminx1) during the peak-price periods (hours 18 to 21)
in both cases.

Although the initiation of discharging is earlier in
SDDP+DCS+J (hour 6) compared to the MPT policy (hour
11), the MPT battery levels fall dramatically once discharge is
initiated in hour 11. This is because the MPT policy maximizes
the energy discharged from the battery between hours 11 to
21, when prices, on average, are greater than the threshold
level p̄. It is noted that for the MPT policy, the battery level
reaches the minimum SOC level as early as hour 18, thereby
forcing procurement of electricity during hours 18 to 21 when
the (average) prices are highest. This behavior is reflected in
Figure 7 by the steep slope of the cumulative-cost curve of the
MPT policy between hours 18 to 21. Thus, the MPT policy
effectively diminishes the advantage of using stored energy –
namely to reduce peak-period costs. By contrast, the policy
obtained via SDDP+DCS+J is intelligent in that it prescribes
the use of stored energy during peak-price periods, thereby
reducing the overall expected costs over the horizon. Figure
8 highlights the benefits of time-shifting energy consumption
via storage in a microgrid. Although the two policies exhibit
similar behavior over time, the SDDP+DCS+J policy accounts
for the future impact of current decisions, yielding better
operational decisions that lead to significant cost savings.

Next, we compared the solutions of the multistage SP model
to those obtained by solving an associated two-stage SP model
in which the non-anticipativity condition is relaxed. The two-
stage model allows for only a single recourse opportunity in
stage 2. The stage 2 recourse decisions for a realized scenario
ω ∈ Ω are collected in the vector x(ω) ≡ (xt(ω) : t ∈ T ′).
For notational convenience, we drop the dependence of x on ω
and simply write x. Let c ≡ (ct : t ∈ T ′) be the corresponding
second-stage cost vector (also a function of ω). The stage 1
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Fig. 8. Average battery level and average price for each hour.

problem is

ž = min
x1

c′1x1 + E[Q(x1, ω)] (27a)

s.t. 0 ≤
∑

i∈C′
xi
1 ≤ α, (27b)

and the stage 2 problem is

Q(x1, ω) = min
x

c′x (28a)

s.t. Fx = h(ω)−Gx1. (28b)

The matrices F and G and vector h(ω) were obtained by
reformulating constraints (3) – (13) together for all stages
t ∈ T ′. The SDDP+DCS+J algorithm was used to solve
model (27) approximately. The lower and upper bounds of
the optimal value ž are denoted by ž` and žu, respectively.
Table V summarizes the results of the two-stage SP model.

TABLE V
TWO-STAGE RESULTS USING THE SDDP+DCS+J ALGORITHM.

S |Ω| ž` žu Gap % Time (mins)

50 104 80.02 82.86 3.55 7.57
3× 104 80.93 82.54 1.99 20.26

100 104 80.21 82.69 3.09 15.48
3× 104 81.61 82.43 1.00 46.23

150 104 80.52 82.48 2.45 24.86
3× 104 81.88 82.37 0.59 73.39

200 104 80.73 82.38 2.04 37.12
3× 104 81.96 82.37 0.50 101.72

250 104 81.01 82.36 1.67 56.75
3× 104 82.13 82.36 0.28 148.27

Similar to the results of the multistage model, the gap
percentage for the two-stage model decreases as both S
and |Ω| increase, while the computation time increases. Of
far greater interest, however, is the comparison between the
solution bounds of the multistage and two-stage models. Let ž∗u
and z∗u denote the best upper bound obtained for the two-stage
and multistage models, respectively, for a particular number of
forward-pass scenarios S. We compared these upper bounds
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for each S ∈ {50, 100, 150, 200, 250} using

∆S(%) =
ž∗u − z∗u

ž∗u
× 100,

where ∆S denotes the cost savings over the planning horizon
(as a percentage) when multiple recourse opportunities are
available. Table VI provides strong evidence that substantial
cost savings are achieved by using the multistage SP model.

TABLE VI
TWO-STAGE VERSUS MULTISTAGE SP UPPER BOUNDS.

S ž∗u z∗u ∆S(%)
100 82.54 76.97 6.75
200 82.43 76.82 6.81
300 82.37 76.29 7.38
400 82.37 76.28 7.39
500 82.36 76.19 7.49

Finally, to examine scalability issues associated with our
solution procedure, we solved a simplified two-bus system and
compared its results with the 4-bus system. As depicted in
Figure 9, the two-bus system is configured by aggregating the
loads of the 4-bus system into a single bus that is connected
to the wind turbine and a single storage device.

Fig. 9. A two-bus, grid-connected microgrid.

The aggregated net demand components in the two-bus
system are assumed to follow truncated normal distributions

r̃t ∼ TN(r̄t, r̂t), t ∈ T ′,

w̃t ∼ TN(w̄t, ŵt), t ∈ T ′,

where the corresponding means and variances are as follows:

r̄t =
∑

i∈C′
r̄it; r̂t =

∑

i∈C′
r̂it;

w̄t =
∑

i∈C′
w̄i

t; ŵt =
∑

i∈C′
ŵi

t.

The price distributions are identical to those of the 4-bus
system, and the two-bus system has a single line constraint.
The model parameters for the two-bus system were set to
the values given in Table I. The model was solved using the
SDDP+DCS+J procedure. Table VII summarizes the results
for the case S = 250, as it provides the best gap percentages.

It is noted that gaps below 1% were obtained for all
values of |Ωt| ≥ 10. Moreover, the computation times are
strikingly smaller. For example, a 25-stage scenario-tree with
|Ωt| = 20 was solved in less than 1.5 hours with a gap of only
0.18%. Figure 10 compares the computation time between
the two systems for different values of |Ωt|. The results
are intuitive due to dimensionality reduction of the two-bus

TABLE VII
RESULTS USING SDDP+DCS+J FOR THE TWO-BUS MICROGRID.

|Ωt| z` zu Gap % Time (mins)
5 54.62 56.15 2.90 17.36
10 55.06 55.54 0.87 35.32
15 55.32 55.52 0.36 58.54
20 55.41 55.51 0.18 84.75

system. However, it is interesting to note that the computation
time does not appear to scale exponentially with problem size.
This provides affirmative evidence of the scalability of the
SDDP+DCS+J algorithm to problems with multiple scales.
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Fig. 10. Computation time for different values of |Ωt| when S = 250.

VI. CONCLUSION

In this paper, we have presented a multistage stochastic
programming model to obtain viable energy procurement and
storage strategies for grid-connected microgrids. The model
includes three sources of uncertainty: demand, renewable
generation, and real-time electricity prices. This framework en-
ables microgrid operators to determine the appropriate amount
of electricity to procure from the main grid and the amount to
charge to, or discharge from, local storage devices, to satisfy
demand and power flow requirements during each stage of a
finite planning horizon. Our extensive computational study on
a realistic 4-bus microgrid revealed that the multistage stochas-
tic programming model achieves significant cost reductions
as compared to myopic and non-storage policies, as well as
policies obtained using a two-stage SP formulation. Moreover,
our customized SDDP algorithm is able to address the com-
putational challenges associated with the multistage structure
of the problem. Our customization, which uses dynamic cut
selection and a novel lower bound improvement strategy,
drastically outperforms the standard SDDP algorithm and also
demonstrates its scalability to potentially much larger problem
instances. It is also conjectured that our improved solution
method can be extended to address the computational issues
of multistage electric generation expansion and hydropower
scheduling problems.
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While the multistage stochastic programming model is very
useful for prescribing solutions that reduce total electricity
costs, it can be improved in several important ways. First,
it will be instructive to model the case in which the microgrid
operators have the flexibility to sell excess power back to
the main grid and exploit arbitrage opportunities in electric-
ity markets. This feature is likely to alter the microgrid’s
procurement and storage strategies significantly. Second, the
stage-wise independence assumption of the uncertain variables
may be restrictive. For example, price and wind generation
levels may exhibit autocorrelation over time; therefore, it will
be instructive in future work to explore solution approaches
that relax the stage-wise independence assumption. Third,
more sophisticated sampling procedures, such as importance
sampling, and other variance reduction techniques, can be used
to identify a set of scenarios that balances the exploration-
exploitation tradeoff in the SDDP algorithm (see [54] for
additional details). Finally, extending the the SDDP algorithms
to handle problems of higher dimensionality is an important
area of future work.

ACKNOWLEDGMENT

We are grateful to five anonymous referees, and the As-
sociate Editor, for their constructive comments. This research
was supported, in part, by grants from the Mascaro Center
for Sustainable Innovation and the Center for Industry Studies
(CIS) at the University of Pittsburgh.

REFERENCES

[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,”
IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78–94, 2007.

[2] A. Khodaei, S. Bahramirad, and M. Shahidehpour, “Microgrid planning
under uncertainty,” IEEE Transactions on Power Systems, vol. 30, no. 5,
pp. 2417–2425, 2015.

[3] Y. Zhang, N. Gatsis, and G. B. Giannakis, “Robust energy management
for microgrids with high-penetration renewables,” IEEE Transactions on
Sustainable Energy, vol. 4, no. 4, pp. 944–953, 2013.

[4] B. Roberts and C. Sandberg, “The role of energy storage in development
of smart grids,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1139–1144,
2011.

[5] S. Suryanarayanan, F. David, J. Mitra, and Y. Li, “Achieving the smart
grid through customer-driven microgrids supported by energy storage,”
in Proceedings of the IEEE International Conference on Industrial
Technology (ICIT), 2010, pp. 884–890.

[6] J. Kaldellis and D. Zafirakis, “Optimum energy storage techniques
for the improvement of renewable energy sources-based electricity
generation and economic efficiency,” Energy, vol. 32, no. 12, pp. 2295–
2305, 2007.

[7] I. Atzeni, L. G. Ordón̋ez, G. Scutari, D. P. Palomar, and J. R. Fonollosa,
“Day-ahead bidding strategies for demand-side expected cost minimiza-
tion,” in IEEE International Conference on Smart Grid Communications
(SmartGridComm), 2012, pp. 91–96.

[8] C. Gouveia, J. Moreira, C. L. Moreira, and J. A. P. Lopes, “Coordinating
storage and demand response for microgrid emergency operation,” IEEE
Transactions on Smart Grid, vol. 4, no. 4, pp. 1898–1908, 2013.

[9] M. Lijesen, “The real-time price elasticity of electricity,” Energy Eco-
nomics, vol. 29, no. 2, pp. 249–258, 2007.

[10] B. Dunn, H. Kamath, and J. Tarascon, “Electrical energy storage for the
grid: A battery of choices,” Science, vol. 334, no. 6058, pp. 928–935,
2011.

[11] Z. Wang and M. Lemmon, “Stability analysis of weak rural elec-
trification microgrids with droop-controlled rotational and electronic
distributed generators,” in Proceedings of the IEEE Power Energy
Society General Meeting, 2015, pp. 1–5.

[12] K. Ahlert and C. van Dinther, “Sensitivity analysis of the economic ben-
efits from electricity storage at the end consumer level,” in Proceedings
of the IEEE PowerTech Conference, 2009, pp. 1–8.

[13] W. Hu, Z. Chen, and B. Bak-Jensen, “Optimal operation strategy of
battery energy storage system to real-time electricity price in Denmark,”
in Proceedings of the IEEE Power and Energy Society General Meeting,
2010, pp. 1–7.

[14] P. Van de Ven, N. Hegde, L. Massoulie, and T. Salondis, “Optimal
control of end-user energy storage,” IEEE Transactions on Smart Grid,
vol. 4, no. 2, pp. 789–797, 2013.

[15] C. Hill, M. Such, D. Chen, J. Gonzalez, and W. Grady, “Battery energy
storage for enabling integration of distributed solar power generation,”
IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 850–857, 2012.

[16] I. Koutsopoulos, V. Hatzi, and L. Tassiulas, “Optimal energy storage
control policies for the smart power grid,” in IEEE International
Conference on Smart Grid Communications, 2011, pp. 475–480.

[17] J. Birge and F. Louveaux, Introduction to Stochastic Programming,
Second Edition. New York, NY: Springer, 2011.

[18] D. Lee, J. Kim, and R. Baldick, “Stochastic optimal control of the
storage system to limit ramp rates of wind power output,” IEEE
Transactions on Smart Grid, vol. 4, no. 4, pp. 2256–2265, 2013.

[19] Y. Ji, J. Wang, S. Yan, W. Gao, and H. Li, “Optimal microgrid energy
management integrating intermittent renewable energy and stochastic
load,” in IEEE Advanced Information Technology, Electronic and Au-
tomation Control Conference (IAEAC), 2015, pp. 334–338.

[20] X. Xi, R. Sioshansi, and V. Marano, “A stochastic dynamic program-
ming model for co-optimization of distributed energy storage,” Energy
Systems, vol. 5, no. 3, pp. 475–505, 2014.
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