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In this work, we introduce a new approach for
analytically specifying the probability distribution of
individual vehicle travel times for stochastic, time-
varying transportation links, such as unidirectional
freeway segments. Knowledge of the link travel-time
distribution is extremely important in many areas of
traffic analysis, namely those of real-time dynamic
control of traffic systems and the least expected cost
(time) routing of vehicles (e.g., emergency or haz-
ardous material vehicles). In the optimal routing
of vehicles through a transportation network, there
exists several techniques to find the least time or least
expected time paths when the link travel times are
assumed to be deterministic or stochastic with time-
invariant distributions. In reality, link travel times are
heavily dependent on prevailing physical, traffic, and
environmental conditions that cause the travel time to
exhibit stochastic and time-variant behavior. Unfortu-
nately, deterministic or estimated mean travel times
may not be reliable input data for control or routing
schemes due to potentially large variance in the travel
time distribution for a given link. For these reasons, it
is instructive to develop sound estimates for the time-
dependent probability distribution of link travel times
as input data to existing optimal control and routing
algorithms (such as the least expected time algorithm
of Miller-Hooks and Mahmassani 2000).

One of the earliest studies dealing explicitly with
the travel time distribution is that of Berry and Bel-
mont (1951) who consider travel time distributions as
they relate to the distribution of spot speeds, or the
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measured speed of a vehicle as it crosses a particular
point on the highway. Such speed distributions were
found to be normally distributed, except in the case
where flow exceeds capacity. In such cases, vehicle
speeds tend to be skewed more toward higher veloci-
ties. Travel times, taken as the reciprocal of speed, are
shown to also be roughly normal, although slightly
skewed. However, this conclusion is valid only under
the assumptions that individual vehicles maintain a
constant speed and that speeds are symmetric about
their mean. It is noted here that the first assumption is
certainly not valid, especially in the case of moderate
traffic. In addition, travel times will not be normally
distributed when traffic volume exceeds link capacity.

Although some researchers have proposed a
stochastic approach to the analysis of link travel
times, none have considered an analytical specifi-
cation of the travel time distribution. For instance,
Jain and Smith (1997) model a freeway segment as
a state-dependent M/G/C/C queue and calculate the
steady-state performance measures, such as mean
time and number in system. The technique, how-
ever, does not provide the means for specifying
the time-varying, link travel-time distribution analyt-
ically. Another trend in link travel-time evaluation is
in fitting different types of models to observed data
at individual sites. For instance, D’ Angelo et al. (1999)
estimate link travel times using nonlinear, time-series
analysis, while Blue et al. (1994) and Park et al. (1998)
apply artificial neural networks to attempt to predict
travel times based on historical data. Although these
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approaches may be robust at the particular locations
where data is observed, they do not provide a general
framework by which travel time may be evaluated,
apart from observed data. Furthermore, such tech-
niques cannot be used to evaluate alternative designs
for new facilities, or to analyze proposed changes to
existing facilities.

Because of the availability of existing algorithms
for finding the least expected time path for a trans-
portation network, link travel-time estimation is an
extremely important topic. The problem is easily
solved by standard techniques if link travel times
are assumed to be deterministic, or are made deter-
ministic by using the expected value of random
travel time when the distribution is assumed to be
time-invariant. Such assumptions are usually deemed
reasonable because most researchers have been more
concerned with finding the shortest path through
the network rather than with exact specification of
link travel-time distributions (Frank 1969, Mirchan-
dani and Soroush 1985). As noted in Miller-Hooks
and Mahmassani (2000), the problem becomes much
more difficult, and realistic, when link travel times
are assumed to be stochastic and time-varying. The
authors present algorithms to find the least expected
time paths when arc weights (travel times) are cho-
sen from a time-dependent, discrete-probability dis-
tribution. It is assumed that such a distribution for
each link (and in each time interval during a peak
period) is given a priori; however, it is not clear how
one would go about specifying such a distribution.
This paper studies the link travel time independently
of the network optimization problem to gain insight
into the behavior of this quantity apart from network
effects. By initially ignoring network effects, we are
able to provide a significant (and necessary) first step
for extending our approach to the overall network
problem in future analysis.

We consider specification of the link travel-time dis-
tribution by considering the stochastic elements that
impact link travel time. The proposed technique con-
siders the speed of a vehicle traversing a link as
a finite-state Markov process that is modulated by
a random environmental process. The environmen-
tal process models the physical, traffic, and environ-
mental factors that are known to influence vehicle
speed as the vehicle traverses a link in the trans-
portation network. We show that, when the environ-
mental process is a continuous-time Markov chain
(CTMC), an exact analytical expression is obtained for
the Laplace-Stieltjes transform of the link travel time,
cumulative-distribution function. We require as input,
the infinitesimal generator matrix for the govern-
ing CTMC and a finite-dimensional vector of veloc-
ities. The generator matrix of the CTMC determines
the rate at which speed transitions occur, while the

environment-dependent velocities may be chosen as
deterministic functions of the state of the environ-
ment. Our new approach is similar to the concept of
stochastic fluid models that have enjoyed great suc-
cess in the stochastic modeling of data communica-
tions networks (Anick et al. 1982, Elwalid and Mitra
1993, Kesidis et al. 1993, Kulkarni and Gautam 1997).

The main contributions of this work are a new
approach for modeling the time-dependent speed of
a vehicle traversing a network link and an explicit
expression for the Laplace-Stieltjes transform of the
link travel-time distribution, which can give approxi-
mate results with numerical inversion or exact results
when the transform can be algebraically inverted. Our
approach implicitly captures the time dependence of
vehicle speed by considering a random environmen-
tal process that evolves stochastically over time for a
given link of the transportation network. When the
environmental process is known to be a CTMC, an
explicit matrix equation for the link travel-time distri-
bution is obtained. The model can also be extended to
more general environmental processes, such as semi-
Markov or Markov regenerative processes, depend-
ing on the application. The distribution of link travel
times can be extremely valuable input in the analysis
of transportation, communication, and manufacturing
systems.

The remainder of the paper is organized as follows.
The next section presents our analytical model for the
travel time distribution. In §2, we use the analytical
model to derive expressions for the travel time dis-
tribution. Section 3 discusses numerical inversion of
the transform obtained in §2. Section 4 presents some
numerical results on two example problems, while §5
explores strategies for obtaining the required inputs.
Finally, our concluding remarks are given in §6.

1. Stochastic Model for Link

Travel Time

Our main objective in this work is to derive an analyt-
ical expression for the cumulative distribution func-
tion (CDF) of travel time for an individual vehicle
traversing a stochastic, time-varying transportation
link, such as a unidirectional freeway segment. The
difficulty in characterizing the travel time distribu-
tion for a particular vehicle stems from the fact that
inherently stochastic processes govern the speed with
which the vehicle may travel at a given point in time
and space. Several factors influence the speed of the
vehicle as it attempts to traverse the freeway. Some
of those may be physical factors (e.g., roadway geom-
etry, grades, visibility), traffic factors (e.g., density,
presence of heavy vehicles, merging traffic), or envi-
ronmental factors (e.g., weather conditions, speed lim-
its, etc.).



Kharoufeh and Gautam: Deriving Link Travel-Time Distributions
Transportation Science 38(1), pp. 97-106, ©2004 INFORMS

99

In the early work of Berry and Belmont (1951), the
authors stressed the need for research on the effect of
physical, traffic, and environmental factors on vehicle
speeds. Furthermore, Lighthill and Whitham (1955)
noted that the classical continuous-fluid model could
possibly represent the limiting behavior of underly-
ing stochastic processes for infinitely long roadways.
This raises an important question: Is it possible to
determine the probability distribution of the travel
time if the underlying stochastic processes govern-
ing the changes in speed are known? One approach
might be to consider only the effect of arrivals and
departures on the system. More specifically, a depar-
ture from the system downstream of the vehicle may
allow the vehicle to increase its speed. An arrival
upstream may catch up to the vehicle, thus increas-
ing the density within its neighborhood and forcing
it to assume a reduced speed. Downstream arrivals
may also cause the vehicle to assume a decreased
speed as the shock wave caused by the increased den-
sity propagates upstream. However, such an analy-
sis would not account for physical or environmen-
tal factors involved in the travel time distribution.
Furthermore, such an approach may be mathemat-
ically intractable unless restrictive assumptions are
made. In the absence of a clear understanding of these
processes, we propose a new approach wherein we
assume that the speed of a vehicle is governed by a
random environment and analyze the stochastic pro-
cess of the speed to obtain the travel time distribution.

The approximate trajectory of a vehicle can be
graphically depicted on a time-space diagram (cf.
Coifman 2002). Figure 1 gives an example of such
a diagram in which T(x) denotes the random time
required to traverse a link of length x and D(t)
denotes the cumulative distance travelled after ¢ time
units.

The true trajectory varies continuously over time
and space as the vehicle assumes various speeds
throughout its sojourn. The superimposed, piecewise-
linear function approximates the true vehicle trajec-
tory by assuming that the vehicle maintains a constant
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Figure 1 Estimated Trajectory of Vehicle Using Piecewise, Linear

Functions

speed for a finite duration before making a speed
transition. The slope of each chord corresponds to the
speed of the vehicle. In this work, we assume that the
vehicle’s speed is governed by a random environment
that may be modeled as a continuous-time stochastic
process. The random environmental process sojourns
through a finite-dimensional state space, expending a
random amount of time (the holding time) in any one
of the states before making a transition to a different
state. Corresponding to each state of the random envi-
ronment is a particular speed (or range of speeds) that
the vehicle may assume in the course of its sojourn.
Such transitions in vehicle speed, because of exter-
nal environmental factors, are particularly prevalent
in congested periods where vehicles are unable to
maintain their desired speeds (e.g., free flow speed).
Initially, we assume that the random environment
spends an exponentially distributed amount of time
in a given state, thereby making the random environ-
mental process a CTMC. It will have to be verified
through empirical data if a CTMC is an accurate rep-
resentation of the environmental process. However,
our methodology is a unique approach to the prob-
lem that allows us to analyze various aspects of travel
time behavior. For this reason, we begin with this sim-
plifying, exponential assumption that lays the founda-
tion for analyses involving more general environmen-
tal processes. It should be noted that, in case empir-
ical studies contradict the exponential assumption, it
is still possible to model the environmental process as
a CTMC because any random variable may be rep-
resented as the sum of independent exponential ran-
dom variables.

In accordance with the random environmental pro-
cess, the speed of a vehicle may now be considered
as a continuous-time stochastic process whose con-
tinuous sample space is bounded below by zero and
above by some appropriate value, such as the speed
limit of the link or the free flow speed. Our approach
here is to create a mapping between the conditions of
the random environment and the speed of the vehicle
with the overall objective of computing, analytically,
the travel time of the vehicle. Hence, we discretize the
continuous sample space of vehicle speed by creating
a partition of the space. Suppose the lower bound on
vehicle speed is V; and the speed limit (or free flow
speed) is given by a value A. Define the continuous
space of potential vehicle speeds as the closed inter-
val [V;, A] miles per hour (mph). For an individual
vehicle, we partition this set into a finite union of K
disjoint sets as

[V, Al= <U[V Vi) UlAl 1)

where Vi = A. In our approach, the lower limit of the
speed sample space, V;, may be greater than or equal
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Figure 2 A Sample Path of the Environmental Process, {Z(t): { > 0}

to zero. That is, in the course of its sojourn, the vehicle
may assume speed zero that corresponds to a state
of extreme traffic density (i.e., jam density). Figure 2
gives a graphical depiction of the discretization of the
sample space of vehicle speed as it corresponds to the
state of the random environmental process.

We now describe the relationship between the
underlying random environmental and vehicle speed.

Consider one link of a unidirectional freeway hav-
ing physical length x > 0. The vehicle’s speed at time
t >0 is governed by a random environmental pro-
cess, {Z(t): t > 0}. The environmental process has
a finite state space, S ={1,2,..., K}, which implies
that the vehicle may assume speeds in the finite set
V={V,, V,,..., Vg} at any point in time. More specif-
ically, when the environment is in state i € S (ie,,
Z(t) =), the vehicle assumes the speed V;, the lower
limit of the interval [V}, V; ), at time t. We assume
the lower limit to yield a conservative estimate of the
overall travel time, though we are not restricted to
this value. An arbitrary function {: S — 7 describes
how the speed changes with regard to the environ-
ment. Hence, the time dependence of vehicle speed
is captured implicitly through the environmental pro-
cess, {Z(t): t > 0}, and the function {. It is obvious
that the time of day at which a vehicle begins its
sojourn will influence the stochastic time required to
traverse the link. It is important to note that, with our
technique, the current traffic conditions on the link
are captured in the initial state of the environment
at time zero, namely, Z(0). In particular, we assume
that just before beginning the sojourn the condition
of the environment is known via the initial distribu-
tion of the environmental process z, = [P{Z(0) = i}];s-
Such information may be obtained through single- or
double-loop inductance detectors, surveillance cam-
eras, probe vehicles, or other commonly used tech-
niques in the transportation literature (cf. Hellinga
and Gudapati 2000).

Now let T(x) be the continuous, random time
required for a vehicle to traverse a freeway link with

physical length x. The main objective of this paper is
to analyze the distribution of T(x), namely,

G(x; t) = P(T(x) < t}. @)

We accomplish this objective by first deriving a partial
differential equation describing the probability distri-
bution of D(f), the random distance travelled along
the link up to time t, whose solution is obtained via
transform methods. Next, we exploit a simple rela-
tionship between the distribution of T'(x) and D(t).
This is the subject of §2.

2. Analysis of the Model

To obtain the analytical travel time distribution, it is
instructive to relate the distribution of T(x) to the dis-
tribution of D(t), which is explicitly a function of time.
Lemma 1 describes the simple relationship that allows
us to find the distribution of T(x) by solving for the
distribution of D(¥).

LEMMA 1. The events {D(t) < x} and {T(x) > t} are
equivalent for all x,t > 0.

Proor.

vehicle travels at most a distance x
up to time ¢

{Dt)=x} &

& it takes at least t time units to
travel a distance x

& {T(x)=t}. O
Using Lemma 1, it is easy to see that

G(x;t)=P{T(x)<t}=1-P{D(t) <x}, x,t>0. (3)
Now define the following joint probability distri-
bution,

Hi(x, ) =P{D(t) =x, Z(t) =i},  ieS, (4
where H;(x, t) is the joint probability that, at time ¢,
the vehicle has travelled a distance no greater than x
and the environmental process is in state i € S. The
objective is to find the joint distribution H;(x, t) and
apply it in Equation (3) to find the travel time distri-
bution. More specifically,

G(x; ) =P|T(x) <t} = 1— P(D(t) < x}
=1-YH(x, 8. (5

ieS
In this research, it is assumed that the random envi-
ronmental process is a CTMC. As previously noted,
we employ this simplifying assumption to obtain
closed-form, analytical results for the travel time dis-
tribution that will provide insight into the behavior
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of the link travel time that would not otherwise be
available. Furthermore, if it is found that the CTMC
assumption is not valid, then appropriate modifica-
tions can be made to make the following analysis
applicable. The CTMC assumption leads to the fol-
lowing theorem, the main result of this paper.

THEOREM 1. If the random environmental process
{Z(t): t = 0} governing vehicle speed is a continuous-time
Markov chain with infinitesimal generator, Q = [q;], then
H;(x, t) satisfies the partial differential equation

oH;(x,t) JdH;(x,t)

Jt dx

Vi=) q;H;(x,t), i€S, (6)

jes
with initial condition
H;(x, 0) = B;(x) = P{Z(0) = i}.
Proor. Let h > 0.
H(x,t+h) = P{D(t+h) <x, Z(t+ h) =i}

= Y P{Z(t+h)=i|D(t+h) <x, Z() =}
i

x P{D(t+h) <x| Z(t) = jP{Z(t) = j}
= (1+g;hH;(x = Vih, 1)

+ > q;ihH;(x = Vih, t) +o(h).
j#i
Simplifying and dividing by the time increment, #,
yields

Hi(x, t+h)—Hj(x,t) _ Hi(x—Vih, t) - Hi(x, )

h h
o(h
+> giHj(x = Vih, )+ T)
jes
Letting h | 0 gives
OH;(x,t) = 0H;(x,t)
at ox Vi= quz'Hi(xl . g (@)

jes
Now, writing Equation (7) in matrix form we have

OH(x,t) 0dH(x,t)
ot dx

where H(x, t) =[H;(x, t)];cs is the 1 x K row vector of
joint distribution values and V =diag(V;, V,, ..., V).
Solving Equation (8) is not a trivial task; thus, we
employ transform techniques to obtain an approxi-
mate solution. To that end, denote by Hj(x,s,), the
Laplace transform (LT) of H;(x,t) with respect to f.
Let H(s;,5,), i € S denote the Laplace-Stieltjes trans-
form (LST) of H;(x,s,) with respect to x,i € S, and
define H*(s;, s5,) = [H/ (51, 5;)];es as the 1 x K row vec-
tor of transforms. Theorem 2 provides the means by
which to compute the transform equations.

V=H(x, 1)Q, 8)

THEOREM 2. The solution to the differential Equa-
tion (6) in the transform space is given by

H*(s,8) =B(s))(5,V +5,0 - Q)7 )

where H*(x,s)) = [Hi(x,8,)]ics is the row vector of
Laplace transforms of H;(x,t) with respect to t, B(s,) is
a 1 x K row vector and s, and s, are complex transform
variables with Re(s;) > 0 and Re(s,) > 0.

Proor. Taking the LT of both sides of Equation (8)
with respect to t, yields

JH*(x,
“H(x,0) +5,H*(x, ) + %

V =H*(x,s,)Q.

Now, taking the LST of the above equation with
respect to x gives

—B(s1)+8,H* (51, ) +5H"(s51,5)V=H"(s,,5)Q. (10)

Rearranging the terms of Equation (10) yields the
desired result. O

Theorem 2 gives an analytical expression for the
transform that may be inverted twice to obtain the
distribution of T(x), the random time to travel a dis-
tance x. In general, an exact expression for the inverse
transform is available when Equation (9) is a vector
of rational functions in both of the complex variables,
s; and s,. In such case, the inversion may be done via
partial fractions. However, this will be a cumbersome
task if K =|S| is large. For these reasons, we employ
numerical inversion techniques to find approximate
solutions for Equation (8). In §3, we present a numer-
ical inversion technique that may be used to accom-
plish this task. First, we review some preliminaries
of numerical inversion of LTs in one and two dimen-
sions.

3. Numerical Inversion

Inversion of Equation (9) is not an easy task. In this
section, the numerical inversion of one- and two-
dimensional LTs is reviewed. Transformation of the
joint distribution into the frequency domain allows
for an exact solution to the partial differential equa-
tion if the two-dimensional transform can be inverted.
Recall that the LT of a real function of time, f(f)
denoted by Z(f(t)) = f*(s) is

L) == [ e, (1)

where s is the complex transform variable and
Re(s) > 0 (the real part of s is positive). The inverse
exists if and only if the function f is absolutely inte-
grable, i.e.,

/_: £ (5)] dt < oo, (12)



102

Kharoufeh and Gautam: Deriving Link Travel-Time Distributions
Transportation Science 38(1), pp. 97-106, © 2004 INFORMS

Recovery of the time-domain function, f, may be
accomplished by using the LT tables if the transform,
f*, can be expressed as a ratio of two rational polyno-
mials in the complex variable s = c + jd, where ¢ and
d are the real and imaginary parts of s, respectively.
Otherwise, recovery of the original function is accom-
plished through the inverse transform

1 cHjee st £x

f(t) = = / e F(s)ds, (13)
which is usually solved by numerical methods for
an approximate solution. Numerical inversion for a
transform in one variable has been studied exten-
sively in the literature. Most notable are the tech-
niques of Weeks (1966), Dubner and Abate (1968), and
Abate et al. (1996). The techniques of Weeks (1966)
and Abate et al. (1996) utilize the Laguerre series rep-
resentation of f due to the fact that the Laguerre gen-
erating function may be expressed directly in terms
of f*, the LT. Abate et al. (1996) improve on Weeks's
approach by implementing a scaling technique
and accelerating convergence by the e-algorithm
(MacDonald 1964, Wynn 1966). The method of
Dubner and Abate (1968) uses Fourier series represen-
tations that are noted for their accuracy on a variety
of function types.

In the travel time distribution problem the origi-
nal function, H;(x,t), may be considered as a two-
dimensional function, even though the travel time is
for a fixed distance, x. Ditkin and Prudnikov (1962)
give an excellent treatment of the operational calcu-
lus in two dimensions, and the major concepts are
reviewed here. For a real-valued function of two con-
tinuous variables, x and ¢, the two-dimensional LT of
f is given by

ZL(f(x, 1) = f*(s1, %)
-/ " / Tt roe dxdt,  (14)

with inverse transform

1 crtjoo rCptjoo
fed =gl L I s (9
The inverse transform equation requires approxima-
tion of the integrand to perform the double numeri-
cal integration with respect to the two complex vari-
ables, s, =¢; +jd, and s, = ¢, + jd,. A number of algo-
rithms have been proposed for the numerical inver-
sion of two-dimensional LTs. Of particular interest are
the techniques of Choudhury et al. (1994) and Moor-
thy (1995). An earlier technique utilized by Singhal
et al. (1975) uses Padé approximations. More recently,
Abate et al. (1998) expand the Laguerre method to the
two-dimensional case and demonstrate the efficacy of
their procedure on applied probability problems.

We focus here on the techniques of Choudhury
et al. (1994) and Moorthy (1995). Both papers utilize
the Fourier series representation of the original func-
tion f. Moorthy (1995), in particular, extends the work
of Dubner and Abate (1968) to the case of two dimen-
sions. Choudhury et al. (1994) present an approach
very similar to that of Moorthy, while incorporat-
ing additional techniques to control for discretization,
truncation, and roundoff error. In this work, we uti-
lize ideas from both papers to invert the transforms
of Equation (9).

Following the notation of Moorthy (1995), an
approximation for the inverse function, f(x,1t), is
given by

Fx 0~ Flae, 1) = 3 expley+ e (T)

G

where

k, = i Re{f*(c;, c; +imm/T)}cos(mmt/T)

m=1

—Im{f*(c;, ¢, +imm/T)}sin(mmt/T)
k, = f:Re{f*(cl +imn/T, c;)}cos(nmx/T)
n=1

—Im{f*(c; +imn/T, c,)}sin(nmx/T)

ky = i > Re{f*(¢; +imn/T, c,+imm/T)}
n=1

m=1

-cos(mnx/T 4+ wmt/T)
+Re{f*(c; +imn/T, c; —iwm/T)}
-cos(mnx/T — wmt/T)
—Im{f*(c; +imn/T, c, +imm/T)}
-sin(mnx/T 4+ wmt/T)
—Im{f*(c, +imn/T, ¢ — imm/T)}
-sin(mnx/T — wmt/T)
= Ay/2x]
c, = A,/2tl,.

The technique assumes f is periodic with period 2T.
The parameters, A; and [;, i =1,2 are chosen as per
Choudhury et al. (1994). Re(w) and Im(w) denote the
real and imaginary parts of the complex number w,
respectively. It is important to note that concepts from
both papers are used here. We use the Fourier series
representation of Moorthy (1995) for the inverse func-
tion, H;(x, t). Careful examination of both techniques
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indicates the equivalence of Moorthy’s parameters c;,
i=1,2 and 4;, i =1,2 of Choudhury et al. (1994).
Thus, we select the parameters A; and [;, i=1,2 of
Choudhury et al. (1994) to control the discretization
and roundoff error, and use the e-algorithm to accel-
erate convergence.

As previously noted, the technique of Moorthy
(1995) assumes that the function, f(x,t) is periodic
with period 2T. This is generally not a problem
as long as T is appropriately chosen. Let T . =
max{x, t}, and select T such that

0.5T,

max

<T <0.8T, .-
One pragmatic choice for the parameter T is the
midpoint of the interval, 0.65T,,,. In §3.1, a formal
description of the algorithm is provided.

3.1. Description of Inversion Algorithm

Step 0: Parameter Selection. Because the function will
be a cumulative probability, select the parameters
A, =A,=28.324 and [; =1, =3 in accordance with
the guidelines of Choudhury et al. (1994). The param-
eters c; and ¢, are calculated as per Equation (16), and
let T =0.65T,,,.

Step 1: Compute Infinite Sums of Equation (16) Using
the e-Algorithm. The e-algorithm requires the selection
of two parameters, m and n. The approximation for an
infinite series is constructed by solving the recursive
equation

o=+ (e )
where €', =0 and €} is the n' partial sum of the
infinite series. The final approximation of the infinite
series is €},,. The values m =6 and n =24 will be ade-
quate. _

Step 2: Compute f(x, t) by Equation (16). It is impor-
tant to note that the inversion algorithm is expected to
perform extremely well whenever the inverse trans-
form f(x,t) decays exponentially and is sufficiently
smooth.

4. Numerical Results

In this section we present two numerical examples
in which we obtain the travel time distribution for a
vehicle whose speed is modulated by a continuous-
time Markov chain. The first example is a two-state
CTMC, while the second example involves a CTMC
with five states.

ExamPLE 1. In this example, we partition the speed
sample space into two intervals so that the vehicle
assumes two velocities in accordance with a two-state
environmental process that has a state space S = {1, 2}.
When the environmental process is in state 7, the vehi-
cle has speed V,, i =1, 2. The velocities are chosen

1

such that speed V, > V,. The amount of time spent in

state 1 is exponentially distributed with rate 8, while
the time spent in state 2 is exponentially distributed
with rate a. We arbitrarily assume that, with proba-
bility 1, the system starts in state 1 at time 0. That
is,

= B(s)=[1 0]

The relevant matrices for this system are

_|=B B
Q= [ a -«
i 0
=0 )
Now, the partial differential equation describing the
probability distribution of D(t) is given by

P{Z(0)=1}=1

and

dH,(x, t)
at dx

dH,(x, t) 2

VizijiHi(xl t)/ i=1,2
j=1

or in matrix form:
3 [Hy(x, t) T+i HGx, 1TV, 0
ot | Hy(x, t) dx | Hy(x, t) 0 V
_[H@EH][-8 B
| Hy(x, 8) a —al
which can be written as

OH(x,t) 0dH(x,t)
ot dx

V=H(x, HQ,

where H(x,t) = [H;(x, t)],—; - Now applying Theo-
rem 2, the matrix H*(s, s,) is obtained by

H*(s,,8) = B(s,)(5,V +5,] — Q)

46 B
_ _ 1
~1 aer-ap| P,
where 6 =5, V,+s,+a and y =5,V +5,+ 3 are scalars.
To implement the inversion algorithm of §3.1, we con-
vert the LST above into a LT by premultiplying the
vector B(s;) by s;! so that

A s) =15 oley-ap)?| ) B

The notation ﬁ(sl, Sy) = [ﬁi(sl, $))]i=1,» is used for the
two-dimensional Laplace transform in x and t. The
parameters chosen for this problem are a = 8 =500
hr™!, V; =65 mph, and V, = 15 mph. The inversion
algorithm of §3.1 was implemented using the MAT-
LAB mathematical computing package. To test the
adequacy of the inversion algorithm, an empirical
CDF based on 100,000 observations of travel time was
generated via Monte-Carlo simulation methods. For
each observation, the program simulates the speed
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Table 1 G(x; t) for the Two-State CTMC, « = 3 =500, V, =65, I/, =15 Table 2 G(x;t) for a General, Five-State CTMC

X (mi) t (min) Inversion Simulation % Error X (mi) t (min) Inversion Simulation % Error
0 1.20 0.1259 0.1288 2.260 0 1.25 0.0786 0.0777 1.134
0 1.29 0.2373 0.2430 2.336 0 1.47 0.3335 0.3352 0.497
0 1.38 0.3720 0.3704 0.420 0 1.70 0.6859 0.6865 0.086
0 1.47 0.5128 0.5140 0.225 1.0 1.92 0.9141 0.9136 0.059
0 1.56 0.6437 0.6484 0.731 1.0 2.14 0.9873 0.9872 0.012
0 1.65 0.7539 0.7501 0.504 0 2.37 0.9991 0.9991 0.005
0 1.74 0.8396 0.8360 0.431 0 2.59 1.0000 0.9999 0.002
0 1.84 0.9010 0.9002 0.091 0 2.81 1.0000 1.0000 0.000
.0 1.93 0.9420 0.9424 0.037

1.0 2.02 0.9677 0.9698 0.221
0 21 0.9830 0.9829 0.009 simulation methods to validate the inversion algo-
0 220 0.9915 0.9914 0.009 rithm. The length of the link was set to x = 1.0 mile
0 2.29 0.9958 0.9957 0.014 & !
0 938 0.9982 0.9980 0.019 and G(x;t) = P{T(x) <t} was computed for a num-
0 247 0.9991 0.9994 0.028 ber of t-values. The results of Table 2 confirm that the
0 2.56 0.9995 0.9996 0.010 inversion algorithm gives very accurate results, even
0 2.66 0.9999 0.9996 0.029 when the CTMC is chosen in an arbitrary manner.
0 2.75 1.0000 1.0000 0.003

process (over time) until the cumulative distance trav-
eled by a vehicle is x miles. In this example, we fixed
x at 1.0 mile. The results of Table 1 confirm that the
inversion algorithm gives very acceptable results for
this problem.

ExAMPLE 2. In this example, the random environ-
mental process is a general, five-state CTMC with
state space S={1,2,3,4,5}. When the environment
is in state i, the speed of the vehicle is V; =75/i for
i € 5. The off-diagonal entries of the generator matrix,
Q = [4;];, jes, are obtained by sampling from a uni-
form distribution on the interval (200, 400) hr~!. If the
CTMC is currently in state i € S, the process has a
probability of g;;/(—g;;) transitioning to state j € S\ {i}.
It is arbitrarily assumed that, with probability 1, the
system starts in state 1 at time O so that

P{Z(0)=1}=1 = B(s)=[1 0 0 0 O].
The off-diagonal entries of Q were computed by gen-
erating a uniform variate on the interval (0,1) and
translating each entry so that it lies in the interval
(200, 400), which is chosen arbitrarily. The infinitesi-
mal generator for this problem is generated randomly
as

—919.75 206.91 264.85 238.67 209.32
223.01 -971.71 301.98 232.73 213.98

Q= 343.04 277.78 —1,283.57 392.72 270.03
353.91 232.27 213.69 —1,059.47 259.59

370.92  200.89 216.80 225.60 —1,014.21

One may now apply Theorem 2 in a manner similar
to that of Example 1 to solve for the distribution. As
before, an empirical CDF based on 100,000 observa-
tions of travel time was generated via Monte-Carlo

In §5, we discuss strategies for obtaining param-
eters of the infinitesimal generator matrix, Q.

5. Obtaining the Generator Matrix

To implement the methods of this paper within a real-
world context, two components are needed, namely
the infinitesimal generator matrix Q and the initial
probability distribution of the environmental process
{Z(t): t = 0}. Specification of the matrix Q entails
approximation of the rate at which environment (and
thus speed) transitions occur. Let g; > 0 denote the
total rate at which the environment makes transitions
out of state i. Furthermore, let g;;, the (i, j)th element
of Q, denote the rate at which the vehicle transitions
from state i € S to j € S such that q; = —q;; = >, g;;-
We now describe a simple method for obtaining statis-
tical estimates of these parameters, namely zj[j Vi,jeS
for an individual link.

By tagging individual vehicles, or through the use
of on-board instrumentation, it is possible to track
individual vehicles during the course of their sojourn
over a particular link. By recording the observed vehi-
cle speed range and duration of time spent in that
range, one may construct a table of values that can be
used to approximate all the elements of the Q) matrix.
In particular, one may draw four columns for a vehi-
cle to record the pertinent data. Table 3 displays sam-
ple data that might be observed in a real scenario.

Using such a table, the data can be sorted according
to the second column and a nonparametric density
estimate (such as a simple histogram) can be drawn
for the amount of time spent in each speed range. If
the histograms exhibit exponential behavior, then the
approach of this paper may be directly applied. More
specifically, if the mean and standard deviation of the
duration in each speed range are roughly equal, then
the total rate of leaving state i, g; can be estimated by
the reciprocal of the mean time in state i denoted by
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g;- Define by p;; the fraction of transitions out of state
i into state j. The off-diagonal elements of Q can then
be estimated by

inj = ﬁij‘?r (17)
The initial distribution of the environmental process,
P{Z(0)=1i},i=1,2,...,K can also be easily obtained
through the observed data given above, or by estimat-
ing the initial speed of the vehicle through standard
techniques, such as the use of single-loop detectors
at the entry point of the link. Therefore, if the initial
speed range is observed to be state i, then we set:

. j=i
PZO=1=1 2; (18)

When computing the total link travel-time distribu-
tion, the methods above hold several advantages over
other potential approaches, such as simply tagging
vehicles and recording travel times or discrete-event
simulation. First, our approach requires less time to
construct the distribution. This may be significant if
the distribution changes rapidly with time. Second,
once the Q matrix has been approximated, signifi-
cant computational savings can be realized over sim-
ulation experiments. For instance, the inversion algo-
rithm computed the travel time distribution 6 times
faster than a Monte-Carlo simulation experiment for
a problem involving 10 distinct environmental states.
Lastly, the analytical specification of the travel time
distribution gives us insight into the nature of the
travel time random variable that will enable us to
study the moments of travel time, asymptotic behav-
ior, and other properties.

The approach here may be adapted to an entire
path through a transportation network. This may be
accomplished by assigning a distinct generator matrix
describing the behavior of environmental transitions
to each link along a path. Hence, the final state of the
first link becomes the initial state of the subsequent

Table 3 Notional Data for Generator Estimation Procedure
Vehicle no.  Speed Range (mph)  Duration (sec)  Next Range (mph)
1 10-20 28.889 20-30
1 20-30 6.802 30-40
1 30-40 12.832 40-50
1 50-60 14.756 60-70
2 20-30 6.802 30-40
2 30-40 12.832 40-50
2 50-60 14.756 60-70
2 40-50 57.409 50-60
3 10-20 21.235 20-30
3 20-30 23.520 30-40
3 30-40 44225 40-50
3 50-60 50-60

10.203

link along the path. Analytical methods for describing
this hand-off interaction between two adjacent links
are currently being explored.

6. Conclusions and Future Work

In this work, we have introduced a new approach
for analytically specifying the probability distribution
of individual vehicle travel times for stochastic, time-
varying transportation links, such as unidirectional
freeway segments. Such information can be extremely
valuable input data to existing algorithms for the real-
time, dynamic control of traffic systems and the least-
cost (time) routing of vehicles. The technique consid-
ers the speed of a vehicle as a finite-state Markov
process that is modulated by a random environ-
ment. The environmental process models the physi-
cal, traffic, and environmental factors that are known
to influence vehicle speed as the vehicle traverses a
link in the transportation network. We have shown
that, when the environmental process is a CTMC, an
exact analytical expression is obtained for the Laplace-
Stieltjes transform of the link travel-time cumulative
distribution function. The technique requires only the
infinitesimal generator matrix as input for the gov-
erning CTMC, a finite-dimensional vector of veloc-
ities, and specification of the initial state of the
environment. The generator matrix of the CTMC
determines the rate at which speed transitions occur,
while the environment-dependent velocities may be
chosen as deterministic functions of the state space.
Strategies for selecting the appropriate generator
matrix were given in §5 when the CTMC assumption
can be employed. However, even if empirical data
does not support this assumption, appropriate modi-
fications can be made to approximate the state hold-
ing times by sums of exponential random variables.

The stochastic process for vehicle speed leads to
a partial differential equation that can be solved via
transform methods and algebraic (numerical) inver-
sion techniques for exact (approximate) results. An
algorithm was presented for the numerical inversion
of the matrix equation and was shown to perform
well on two example problems. By using the ana-
lytical results of this paper, it may now be possible
to obtain all the moments of the random travel time
for the purpose of constructing surrogate distribution
approximations that can be computed with far less
computational effort than the methods presented, or
through Monte-Carlo simulation methods.

Although the technique presented herein provides
an analytical result for the link travel-time distribu-
tion, some ingenuity will be required in determining
the appropriate selection of transition rates for the
CTMC (as described in §5) and the speed function,
{(-). The properties of the speed function should be in
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accordance with well-established traffic flow relation-
ships. For instance, if the states of the environmental
process correspond to the number of vehicles present
on a link on arrival, then the speed is probably best
modeled as an exponentially decaying function of the
number of vehicles present (Jain and Smith 1997).
It will be instructive in the future to derive explicit
expressions for the moments of the random travel
time and asymptotic approximations thereof. Further-
more, we would next like to consider the travel time
distribution over adjacent links governed by distinct
random environments. In addition to transportation
links, the work presented here is equally applicable in
the modeling and analysis of stochastic, time-varying
data communication or manufacturing system links.
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