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Abstract

We consider the problem of dynamically controlling a 2-bus energy distribution network with

energy storage capabilities. An operator seeks to dynamically adjust the amount of energy to

charge to, or discharge from, energy storage devices in response to randomly-evolving demand,

renewable supply and prices. The objective is to minimize the expected total discounted costs

incurred within the network over a finite planning horizon. We formulate a Markov decision

process (MDP) model that prescribes the optimal amount of energy to charge or discharge and

transmit between the two buses during each stage of the planning horizon. Established are

the multimodularity of the value function, and the monotonicity of the optimal policy, in the

energy storage levels. We also show that the optimal operational cost is convex and monotone

in the storage capacities. Furthermore, we establish bounds on the optimal cost by analyzing

comparable single-storage systems with pooled and decentralized storage configurations, respec-

tively. These results extend to more general multi-bus network topologies. Numerical examples

illustrate the main results and highlight the significance of interacting demand-side entities.

Keywords: Energy storage; network; Markov decision processes.

1Ph: 412-626-1799; Email: cfcarnabiitkgp@gmail.com
2Corresponding author. Ph: 412-624-9832; Email: jkharouf@pitt.edu
3Ph: 412-624-5045; Email: bzeng@pitt.edu

1



1 Introduction

Despite energy efficiency improvements and targeted efforts to reduce residential energy con-

sumption, the U.S. Energy Information Administration (EIA) predicts a 24% increase in U.S.

residential electricity demand by the year 2040, while electricity prices are expected to rise by

over 13% over the same period [1]. If realized, these increases will impose enormous pressure on

the electric power grid to produce reliable and sustainable energy. The integration of renewable

energy sources, such as wind and solar power, into the main grid will likely play a prominent role

in meeting the escalating demand for electricity. Indeed, the EIA forecasts that renewable sources

will account for roughly 57% of the increase in power generation between 2010 and 2030, and that

renewable energy will comprise no less than 15% of the overall generation portfolio by 2030 [15].

One way to increase the penetration of renewable sources is to integrate small-scale, distributed

generation (DG) sources, such as solar panels or wind turbines, in close proximity to local consumer

demand [29, 48]. In addition to satisfying local demand, DG sources also provide ancillary services,

such as reactive capacity and spinning reserves, to the main grid. However, the intermittent and

variable nature of DG sources may significantly affect the availability of energy within a distribution

network, as DG sources have limited generating capacities in the range of 1-1000 kilowatts (kW)

and are highly susceptible to power reliability issues. Moreover, a high penetration of DG sources

increases the risk of short-circuit faults and voltage fluctuations in distribution networks [13],

which can severely impact the quality of energy supplied to local consumers. Presumably, these

complications can be overcome by deploying small-scale, distributed energy storage (DES) systems,

such as batteries and flywheels, with storage capacities in the range 5-100 kilowatt-hours (kW-h).

Energy storage can be used to decouple the times of energy consumption and generation, thereby

enabling network operators to improve energy generation and scheduling decisions in distribution

networks. With the advent of bidirectional communication technologies, operators can exploit

arbitrage opportunities in electricity markets by storing energy in low-price periods for use in peak-

price periods – often referred to as time-shifting of energy [24, 35, 46, 48, 51, 55]. Finally, DES

systems help curtail the dependence on polluting ancillary sources (e.g., diesel fuel generators)

[17, 25] and promote sustainable and clean energy usage in distribution networks.

In this paper, we examine optimal energy storage management strategies in power networks

with access to local renewable DG sources, as well as finite-capacity DES devices. The network

operator’s objective is to minimize the expected total discounted costs incurred over a finite planning

horizon by making a sequence of operational decisions. Specifically, for each stage of the planning

horizon, the operator must decide (i) the amount of energy to charge to, or discharge from, the

energy storage devices; and (ii) the amount of energy to transmit between the load buses. These

decisions are complicated by uncertainty in local demand, the supply of renewable energy and the

real-time price of electricity. Furthermore, the operator must balance supply and demand, while

considering storage inefficiencies and line losses. To address the operator’s problem, we devise a

finite-horizon, discounted Markov decision process (MDP) model and analyze its key attributes.

Energy storage, as a means by which to integrate renewable sources into the power grid, has
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spawned significant interest in the energy systems modeling literature. The storage problem bears

some resemblance to classical inventory and asset management problems (cf. [16, 59]), except that

the operator is faced with multiple sources of uncertainty, storage and line inefficiencies, as well

as network energy balance constraints. Most of the relevant work in this area focuses on devising

an optimal storage policy for a single consumer (or supplier) with access to renewable energy and

finite-capacity storage. A linear programming approach was employed to solve the consumer’s

storage problem under deterministic price, demand and renewable supply levels in [2, 23]. Bar-Noy

et al. [6, 7] developed efficient online algorithms to reduce a consumer’s peak demand costs by

optimally procuring and storing energy when demand is uncertain. More recently, MDP models

have been used extensively to analyze the single consumer problem under exogenous uncertainty.

Using an infinite-horizon MDP model, Van de Ven et al. [50] proved the existence of an optimal

dual-threshold storage policy for a consumer with uncertain demands, subject to deterministic

time-of-use electricity prices. Harsha and Dahleh [20] derived a similar dual-threshold optimal

storage policy for a finite-horizon problem under uncertain prices, demand and renewable supply.

Furthermore, they analytically characterize a consumer’s optimal storage capacity for the case when

prices are fixed. Similar single-storage MDP models have been employed for a supplier’s storage

management problem, which involves optimizing the bidding strategies of renewable suppliers that

participate in day-ahead or real-time energy markets to maximize profits by deploying energy

storage (cf. [10, 12, 18, 26, 27, 28, 34, 42, 56]). However, single-storage models do not account

for network constraints and interactions between different network entities with storage, rendering

them unrealistic for our setting. Alternatively, stochastic programming (SP) models have been

devised to solve network storage problems with continuous actions and high-dimensional state

spaces. Some representative examples of such models include [9, 18, 30, 36, 53]. Although SP

models allow for the incorporation of network constraints, the number of possible scenarios in such

models can be prohibitively large. Additionally, solutions to SP models can be difficult to interpret,

as they provide little insight into the structure of the optimal policy.

The model we present here is distinguished from existing single-storage models in that it con-

siders the perspective of multiple demand-side entities, each with energy storage capabilities, in a

distribution network. Specifically, we first examine a 2-bus network model in which decisions are

made under randomly-evolving demand, renewable supply and real-time electricity prices. This

model captures the salient features of distributed energy storage operations by considering the

impact of renewable generation, storage inefficiencies, supply-demand imbalances, distribution en-

ergy losses, and constrained power-line capacities on the optimal storage decisions. We focus first

on the 2-bus system in light of the fact that network reduction methods can be used to analyze

more complicated multi-bus networks as equivalent 2-bus networks for power system planning and

operational problems [38, 41, 52]. A unique feature of our model is the fact that the buses can

transmit energy to one another – a feature that is shown to significantly impact the optimal de-

cisions and operational costs. Our main results can be summarized as follows. First, we establish

the monotonicity and convexity of our MDP model’s value function in the storage levels for each

fixed exogenous state. Next, we prove that the value function is multimodular in the storage levels,
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the optimal policy is monotone and the optimal storage decisions in each stage exhibit bounded

sensitivities. We also establish bounds that compare the cost of the 2-bus network to those of two

comparable systems with pooled and decentralized storage configurations, respectively, and the

main results are extended to more general multi-bus network topologies. To illustrate the struc-

tural properties, we present numerical examples that use real renewable generation and pricing data

obtained from open sources. These examples help quantify the benefits of using the network model

in lieu of simpler, single-storage models that fail to account for interactions between demand-side

entities in a distribution network.

The remainder of the paper is organized as follows. The next section describes the 2-bus

distribution network and introduces notation and nomenclature of the mathematical model. In

Section 3, we present the main results, which include structural properties of the value function,

optimal policy and the optimal operational cost. Section 4 provides numerical examples that

illustrate the main structural results and highlight the importance of interactions between network

entities. Finally, in Section 5, we provide a few concluding remarks and directions for future work.

2 Model Description

Consider a 2-bus network connected to the main grid through a reference bus (or feeder) as

depicted in Figure 1. The feeder is not connected to any distributed energy storage system or

renewable energy sources; however, the other two buses (the load buses) are connected to finite-

capacity storage systems and renewable generators that satisfy the demand realized at these buses.

Any unmet demand can be satisfied by procuring energy from the grid and/or by receiving energy

transmitted from the other bus. Similarly, any surplus energy generated at a load bus can be

sold to the main grid and/or transmitted to the other load bus. However, energy flow between

the buses is constrained by the capacity of the power line (hereafter the line) connecting them, as

well as supply-demand balance constraints at each bus. Additionally, storage capacity limitations

restrict the amount of energy that can be charged to, or discharged from, the storage devices. We

assume that a central network operator (or controller) is responsible for all energy flow and storage

decisions within the distribution network.

The distribution network incurs three types of costs: (i) the explicit cost of procuring energy

from, or selling energy to, the grid at real-time prices; (ii) the implicit cost of lost energy due to line

losses stemming from resistive overheating [4]; and (iii) costs associated with storage inefficiencies.

While transmitting energy between the load buses helps to offset the cost of procuring energy from

the grid, only a limited amount of energy can be transmitted due to a line capacity constraint

between the buses. Moreover, transmitting stored energy to another bus is a lost opportunity to

procure and store surplus energy from the grid for future use when prices are high. Therefore,

an obvious tradeoff exists between the amount of energy to buy or sell, and the amount that is

transmitted between the load buses. The operator’s objective is to minimize the expected total

discounted costs incurred over a finite planning horizon by making a sequence of operational deci-

sions. For each stage of the planning horizon, the operator must decide the amount of energy to:
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Figure 1: Graphical depiction of a 2-bus distribution network.

(i) buy from, or sell to, the main grid; (ii) charge to, or discharge from, the energy storage devices;

and (iii) transmit between the two load buses. These decisions are made under randomly-varying

demand, renewable generation and real-time prices.

We formulate the operator’s sequential decision problem using a finite-horizon Markov decision

process (MDP) model. Specifically, consider a planning horizon of length Υ and partition the time

interval [0,Υ) so that

[0,Υ) =

N
⋃

t=1

[εt−1, εt),

where N is the number of time intervals (or stages) and εt is the tth decision epoch with ε0 ≡ 0

and εN ≡ Υ. The discrete time horizon is denoted by T = {1, 2, . . . , N}, where t ∈ T is the index

of the tth stage, namely the interval [εt−1, εt). It is assumed that no decisions are made at stage

N . For future use, let T ′ ≡ T \ {N}. Let C = {0, 1, 2} be the set of buses in the network, where

bus 0 is the feeder, and bus i ∈ C ′ ≡ {1, 2} denotes the ith load bus. The set of all lines in the

network is denoted by A = {(i, j) : i, j ∈ C}, where (i, j) is the line connecting bus i to bus j.

The physical parameters of the network are described as follows. Let αi (αi < ∞) denote the

capacity of the storage device located at bus i ∈ C ′. The parameters ρic and ρ
i
d denote the charging

and discharging efficiencies of the storage device at bus i, where ρic, ρ
i
d ∈ (0, 1]. The round-trip

efficiency of the storage device at bus i is defined as ρi ≡ ρicρ
i
d. The quantities τ ic and τ id denote

the maximum charging and discharging rates of the storage device at bus i, respectively. Gather

the parameters αi, τ
i
c and τ id in the vectors α, τ c and τ d, respectively. Let β be the capacity of the

line connecting the load buses. Finally, let ν denote the per-unit cost of line losses, while ϕ is the

per-unit cost of charging energy to, or discharging energy from, the storage devices.

The model contains several sources of uncertainty that we now describe in detail. All random

variables are defined on a common, complete and filtered probability space (Ω,A , {At}t∈T ,P) with

natural filtration {At : t ∈ T }, i.e., At contains the information available up to stage t. Any

random quantity with subscript t is assumed to be At-measurable. Let Di
t denote the random
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net demand (demand minus renewable supply) at bus i ∈ C ′ with countable support Di
t ⊂ R,

and let Pt be the random real-time price at the start of stage t with countable support Pt ⊂ R+.

Let W t = (Pt,D
1
t ,D

2
t ) denote the exogenous information available at the start of stage t, and let

Wt ≡ Pt × D1
t × D2

t be the support of W t. A realization of W t is denoted by wt ≡ (pt, d
1
t , d

2
t ),

where pt, d
1
t and d2t are realizations of Pt,D

1
t and D2

t , respectively. This information is exogenous

in the sense that the evolution of W t is independent of the operator’s decisions over the planning

horizon. The set of all sample paths of W = {W t : t ∈ T} is denoted by W ≡ W1× · · · ×WN , and

it is assumed that W possesses the Markov property, i.e., for any t ∈ T ,

P(W t = wt|W t−1, . . . ,W 1;At−1) = P(W t = wt|W t−1;At−1), wt ∈ Wt.

At the start of stage t, let the (random) storage level at bus i be denoted by Y i
t , define Y t =

(Y 1
t , Y

2
t ) and let Y ≡ [0, α1] × [0, α2] be the set of all possible storage levels. Note that Y is

time-invariant, as the storage capacities α1 and α2 are fixed a priori. In contrast to the exogenous

variables, the endogenous component Y t is influenced by the operator’s actions up to stage t− 1.

The random state of the process at the start of stage t is a vector St = (W t,Y t) whose state space

is St ≡ Wt × Y. A realization of St is denoted by st = (wt,yt) for wt ∈ Wt and yt ∈ Y, and we

assume that the initial state, S1, is known with certainty.

The decision process evolves as follows. At the start of each stage, the operator observes the

exogenous state and the current storage levels at the load buses. Then, the operator makes the

operational decisions to procure or sell, to charge or discharge, and whether to transmit energy

between the load buses. The operator makes no decisions in the final stage and incurs a terminal

cost. It is noted that all of the decisions are made simultaneously because, unlike other commodities,

energy cannot be backlogged and needs to be consumed immediately. Let xt(st) be the decision

vector at the start of stage t when state st is realized; henceforth, the dependence of xt on st is

suppressed for notational brevity. The decision vector assumes the form xt = (ut, qt), where the

vector ut contains the charge/discharge decisions at each bus, and qt is the amount of energy to

transmit between the buses. Note that the buy/sell decisions are not explicitly included in the

decision vector, as these decisions are auxiliary to the charge/discharge decisions. These quantities

are further elucidated in what follows, along with the feasibility set of xt.

Let ut = (uit : i ∈ C ′) be the vector of charging/discharging decisions at stage t described as

follows. For each stage t: (i) if uit > 0, then uit units of energy are charged to the storage device

at bus i; (ii) if uit < 0, then −uit units of energy are discharged from the storage device at bus

i; and (iii) if uit = 0, then energy is neither charged to, nor discharged from, the storage device

at bus i. The charging/discharging decisions are constrained by the storage capacities and the

charging/discharging rates of the storage devices. That is,

−min{yt, τ d} ≤ ut ≤ min{α− yt, τ c}, t ∈ T ′, (1)

where all inequalities involving vectors are understood to hold component-wise.

The energy flow between the buses at stage t, namely qt, is described as follows: if qt > 0, then

qt units of energy flow from bus 1 to bus 2; if qt < 0, then −qt units of energy flow from bus 2 to
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bus 1; and if qt = 0, then no energy flows between the two buses. These variables are constrained

by the line capacity via

−β ≤ qt ≤ β, t ∈ T ′. (2)

Similarly, let g1t and g2t be the energy flow in the lines connecting the feeder to buses 1 and 2 (the

feeder lines), respectively. Here, if g1t , g
2
t > 0, then energy flows from the feeder to the load buses,

and if g1t , g
2
t < 0, energy flows from the buses to the feeder. If these quantities are zero, then no

energy is bought from, or sold to, the grid. For each t ∈ T ′ and i ∈ C ′, define the variables θit as

follows:

θit =







1/ρic, uit ≥ 0,

ρid, uit < 0.

Then the supply-demand balance equations at the load buses are

g1t = d1t + θ1t u
1
t + qt, t ∈ T ′, (3)

g2t = d2t + θ2t u
2
t − qt, t ∈ T ′. (4)

As noted earlier, g1t and g2t are auxiliary variables that depend on (ut, qt) and represent the buy-

ing/selling decisions. Because the feeder lines serve as the main connection between the distribution

system and the main grid, they typically possess sufficient, reliable capacity and incur only minor

line losses. Therefore, we assume that energy flows in the feeder lines are not restricted by line

capacities and do not incur line losses. Next, define the stage t feasibility set (or action space) by

Xt(yt), which is characterized by the linear constraints (1) and (2); note that Xt(yt) is a bounded

polyhedron. A feasible policy is a vector π = (xt : t ∈ T ′) ∈ Π, where Π denotes the set of all

feasible Markov deterministic (MD) policies.

Following the actions taken by the operator in the current stage, the process next transitions

randomly to another state in the next stage. The endogenous storage levels evolve as a deterministic

function of the current storage levels and the charge/discharge decisions via

yt+1 = yt + ut, t ∈ T ′, (5)

while the exogenous variables evolve according to the non-stationary, conditional probability dis-

tribution Pt(wt+1|wt). The transition probabilities of the Markov chain induced by π are

P
π

t (st+1|st) = ψ(yt+1 − yt − ut)Pt(wt+1|wt), t ∈ T ′, (st, st+1) ∈ St × St+1, (6)

where ψ(a) is the Kronecker-delta function, i.e., for a ∈ R
n, ψ(a) = 1 when a = 0, and ψ(a) = 0

otherwise.

Next, we describe the objective function which is the cost to be minimized. The one-step cost

incurred in stage t is

ct(st,xt) = pt(g
1
t + g2t ) + ϕ(|u1t |+ |u2t |) + νξ(ut, qt), t ∈ T ′, (7)

and cN (sN ) = 0 without loss of generality. The first term on the right-hand side (r.h.s.) of (7)

is the total cost of procuring or selling energy, the second term is the total cost of charging or
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discharging energy, and the third term is the cost of resistive line losses, where ξ, the resistive

line-loss function, is nonnegative, separable and convex in (ut, qt) (see [9, 47]). It is assumed that

|ct(st,xt)| < ∞. For an a priori storage configuration α, the operator seeks an optimal policy

π∗ ∈ Π that minimizes the expected total discounted costs over the planning horizon as follows:

zα = min
π∈Π

E
π

s

(

∑

t∈T ′

δt−1ct(st,xt)

∣

∣

∣

∣

S1 = s;α

)

, (8)

where δ ∈ (0, 1] is a discount factor. Henceforth, we call zα the optimal operational cost. Bellman’s

optimality equations are then

Vt(st) = min
xt∈Xt(yt)

ct(st,xt) + δE(Vt+1(st+1)|st,xt), t ∈ T ′, (9)

with VN (sN ) = 0.

3 Structural Results

In this section, we present important structural properties of the value function, Vt, the optimal

policy π∗ and the optimal cost zα. First, we examine properties of Vt that depend on the exogenous

component wt and the endogenous storage levels yt. Subsequently, we examine the behavior of the

optimal policy. In what follows, a fixed exogenous state is denoted by w̄t.

3.1 Structural Properties of the Value Function

In this subsection, we examine important properties of the value function Vt. First note that, for

a fixed exogenous state w̄t, the function ct(w̄t,yt,xt) is convex in (yt,xt). Proposition 1 asserts

that the expected future cost at each stage is jointly convex in the storage levels. Stated more

clearly, the marginal cost of using storage increases with increasing storage levels.

Proposition 1 For each t ∈ T , Vt(w̄t,yt) is convex in yt ∈ Y.

Proof. The result is proved using backward induction on Vt(wt,yt) for a fixed wt. By

assumption, VN (sN ) = 0 for all sN ∈ SN , so the result clearly holds at stage N . For the induction

hypothesis, suppose Vt+1(wt+1,yt+1) is convex in yt+1, given a fixed wt+1, for t + 1 < N . Note

that the expectation in (9) is taken with respect to (w.r.t.) the conditional probability distribution

Pt(wt+1|w̄t). Moreover, yt+1 is a linear, deterministic function of yt and ut by (5). Therefore, the

expectation in (9) can be expressed around the post-decision state sxt = (w̄t,yt + ut) (see [39] for

additional details), so that

Vt(w̄t,yt) = min
xt∈Xt(yt)

ct(w̄t,xt) + V x
t (w̄t,yt + ut), (10)

where V x
t (w̄t,yt +ut) ≡ δE(Vt+1(st+1|s

x
t )) is the post-decision value function. As the expectation

operator preserves convexity, and compositions of convex and affine functions are also convex (see
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Proposition 2.1.3 (b) of [45]), V x
t (w̄t,yt + ut) is convex in (yt,ut). Note that an optimal solution

to (10) exists because Xt(yt) is a bounded polyhedron. Moreover, ct(w̄t,xt) is piecewise-convex in

xt. As the sum of two convex functions is convex, the objective function of (10) is jointly convex

in (yt,xt). As convexity is preserved under partial minimization (see Section 3.2.5 in [11]), we

conclude that Vt(w̄t,yt) is convex in yt.

Intuitively, Proposition 1 implies that the flexibility to store surplus generation decreases with

an increase in the current storage level. Consequently, the operator must either sell the excess

energy, possibly at a lower price, or transmit a portion of it to the other bus, possibly incurring line-

loss costs. Note that, if the functional form of Vt is known for a fixed w̄t, the optimality equations

(9) can be solved efficiently using convex optimization algorithms. Unfortunately, characterizing

the expectation in (9) is nontrivial due to the multidimensional nature of St and Xt(yt).

The next result, Proposition 2, asserts that the expected future cost at each stage is monotone

decreasing in the storage levels.

Proposition 2 For each t ∈ T , Vt(w̄t,yt) is monotone decreasing in yt ∈ Y.

Proof. The proposition is proved via backward induction on Vt(wt,yt) for a fixed wt. Clearly,

the result holds at stage N . For the induction hypothesis, suppose Vt+1(wt+1,yt+1) is monotone

decreasing in yt+1 for t + 1 < N for a fixed wt+1. As the expectation operator preserves mono-

tonicity, the function V x
t (w̄t,yt + ut) in (10) is decreasing in yt and ut. Next, consider two

states sat = (w̄t,y
a
t ) and sbt = (w̄t,y

b
t), such that 0 ≤ ya

t < yb
t ≤ α. We seek to show that

Vt(w̄t,y
a
t ) ≥ Vt(w̄t,y

b
t). To this end, let xa

t = (ua
t , q

a
t ) and xb

t = (ub
t , q

b
t ) be the optimal solutions

of (10) for states sat and sbt , respectively. Then,

Vt(w̄t,y
a
t ) = ct(w̄t,u

a
t , q

a
t ) + V x

t (w̄t,y
a
t + ua

t ),

Vt(w̄t,y
b
t) = ct(w̄t,u

b
t , q

b
t ) + V x

t (w̄t,y
b
t + ub

t).

Consider the following two cases:

Case 1 : Suppose xa
t ∈ Xt(y

b
t). As x

a
t is feasible for problem (10) in state sbt , the optimal value

Vt(w̄t,y
b
t) is at most equal to the objective value at xa

t , i.e.,

ct(w̄t,u
a
t , q

a
t ) + V x

t (w̄t,y
b
t + ua

t ) ≥ Vt(w̄t,y
b
t). (11)

As ya
t < yb

t , the following inequality holds by the induction hypothesis on V x
t :

V x
t (w̄t,y

a
t + ua

t ) ≥ V x
t (w̄t,y

b
t + ua

t ). (12)

Adding ct(w̄t,u
a
t , q

a
t ) to both sides of (12) and combining it with (11) yields

ct(w̄t,u
a
t , q

a
t ) + V x

t (w̄t,y
a
t + ua

t ) ≥ ct(w̄t,u
a
t , q

a
t ) + V x

t (w̄t,y
b
t + ua

t ) ≥ Vt(w̄t,y
b
t), (13)

where the left-most expression in (13) equals Vt(w̄t,y
a
t ) by definition. Hence, Vt(w̄t,y

a
t ) ≥ Vt(w̄t,y

b
t).
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Case 2 : Suppose xa
t 6∈ Xt(y

b
t). A sufficient condition for xa

t 6∈ Xt(y
b
t) is u

a
t ∈ (α−yb

t ,min{τ c,α−

ya
t }]. Construct a feasible solution x̄b

t = (ūb
t , q̄

b
t ) ∈ Xt(y

b
t) such that ūb

t = α−yb
t < ua

t and q̄bt = qat .

For such a case,

Vt(w̄t,y
a
t ) = ct(w̄t,u

a
t , q

a
t ) + V x

t (w̄t,y
a
t + ua

t ) ≥ ct(w̄t, ū
b
t , q̄

b
t ) + V x

t (w̄t,y
a
t + ua

t )

≥ ct(w̄t, ū
b
t , q̄

b
t ) + V x

t (w̄t,α)

≥ ct(w̄t,u
b
t , q

b
t) + V x

t (w̄t,y
b
t + ub

t)

= Vt(w̄t,y
b
t).

The first inequality holds because ct(w̄t,u
a
t , q

a
t ) ≥ ct(w̄t, ū

b
t , q̄

b
t ) for ua

t > ūb
t and qat = q̄bt . The

second inequality holds by the induction hypothesis on V x
t . The third inequality holds because

(ūb
t , q̄

b
t ) is a feasible, but not necessarily optimal, solution to problem (10) for state sbt . Hence, we

conclude that Vt(w̄t,y
a
t ) ≥ Vt(w̄t,y

b
t), and the proof is complete.

Proposition 2 suggests that stored energy tends to reduce the expected operational costs. When

the storage levels are high, a larger fraction of the demand is satisfied by using stored energy, thereby

reducing the overall operational cost. Moreover, higher storage levels allow the operator to satisfy

demand and sell any excess energy back to the grid. This is especially useful during the peak-price,

peak-demand periods.

Next, we present a result for the special case in which the load buses have similar operational

characteristics. The load buses are called homogenous if: (i) α1 = α2, and (ii) the (conditional)

joint cumulative distribution function (c.d.f.) of the net demands at each stage is symmetric, i.e.,

for t ∈ T , k ∈ {t, . . . , N} and any a1, a2 ∈ R,

Pk(D
1
k+1 ≤ a1, D

2
k+1 ≤ a2|Dk;Ak) = Pk(D

1
k+1 ≤ a2, D

2
k+1 ≤ a1|Dk;Ak). (14)

Condition (14) is indicative of a joint distribution function in R
2 that is symmetric along the line

a1 = a2. Proposition 3 asserts that, for a pair of homogenous buses, allocating the total stored

energy equally between the two buses minimizes the expected future cost at each stage. For ease

of exposition, let YΘ
t ≡ {yt ∈ Y : y1t + y2t = Θ} denote the set of feasible storage-level allocations

at stage t when the total stored energy in the network is Θ ∈ [0, α1 + α2].

Proposition 3 For each t ∈ T and a fixed Θ,

Vt(w̄t,yt) ≥ Vt(w̄t,Θ/2), ∀yt ∈ YΘ
t .

Proof. The result obviously holds at stage N . For t ∈ T ′, consider two feasible storage-level

vectors ya
t and yb

t , such that ya
t ,y

b
t ∈ YΘ

t . By definition, (ya
t + yb

t)/2 = (Θ/2,Θ/2) ≡ Θ/2. For a

pair of homogenous buses that satisfy the conditions α1 = α2 and (14), it follows directly that Vt is

symmetric w.r.t. yt for a fixed w̄t, i.e., Vt(w̄t,y
a
t ) = Vt(w̄t,y

b
t). Using Jensen’s inequality for the

convex function Vt at the points yt = ya
t and yt = yb

t , we obtain

Vt(w̄t,y
a
t ) =

1

2

(

Vt(w̄t,y
a
t ) + Vt(w̄t,y

b
t)
)

≥ Vt(w̄t, (y
a
t + yb

t)/2) = Vt(w̄t,Θ/2,Θ/2).

As ya
t (or yb

t) is any feasible element in YΘ
t , we conclude that Vt(w̄t,yt) ≥ Vt(w̄t,Θ/2,Θ/2) for all

yt ∈ YΘ
t .
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3.2 Behavior of the Optimal Policy

Here we examine structural properties of the optimal policy π∗. For a fixed w̄t, the optimality

equations (9) are a collection of parameterized optimization problems in which the objective func-

tion and the constraints depend on the storage levels yt. For such a class of problems, monotone

comparative statics [49] can be used to characterize the monotone behavior of optimal decisions

with respect to the state variables. Moreover, monotone comparative statics are useful for problems

in which the value function is non-differentiable [33] and are closely linked to the concept of substi-

tutability. Two variables are called economic substitutes if an increase in one variable increases the

marginal cost of the other variable [45]. The property of multimodularity [3, 19, 37] is known to

imply substitutability, and is inherently related to the concepts of supermodularity and increasing

differences that arise frequently in lattice theory [49]. In what follows, we show that, for a fixed w̄t,

Vt is multimodular in yt, and the optimal decisions x∗
t are not only monotone, but also economic

substitutes of yt. We first review some needed elements of lattice theory.

Consider A ⊂ R
n with the standard component-wise order ≤; that is, for any a,a′ ∈ A, a ≤ a′

if and only if ai ≤ a′i for each i = 1, . . . , n. Any subset of Rn is a partially-ordered set (or poset) by

definition (see Section 2.2 of [49]). A special poset, namely a lattice, is a group-algebraic structure

as next defined.

Definition 1 A poset (A,≤) is called a lattice if and only if for any a,a′ ∈ A,

a ∨ a′ ≡
(

sup{a1, a
′
1}, . . . , sup{an, a

′
n}
)

∈ A,

a ∧ a′ ≡
(

inf{a1, a
′
1}, . . . , inf{an, a

′
n}
)

∈ A.

In words, a lattice is a poset whose nonempty, finite subsets possess a supremum and an infimum.

Given a lattice (A,≤), any S ⊆ A is called a sublattice of A if S is itself a lattice. Note that Rn is

a lattice by definition. Next, we review important properties of functions defined on lattices.

Definition 2 Let (A,≤) be a lattice. A mapping f : A → R is supermodular on A if for any

a,a′ ∈ A,

f(a) + f(a′) ≤ f(a ∨ a′) + f(a ∧ a′).

The function f is said to be submodular on A if −f is supermodular on A.

Supermodular functions exhibit the more intuitive increasing differences property (see Theorem

2.2.2 in [45]). Given two posets (M,≤) and (N,≤), a mapping f : M × N → R has increasing

differences if for any n, n′ ∈ N with n ≤ n′, f(m,n′) − f(m,n) is increasing in m ∈ M . Clearly,

increasing differences, and therefore supermodularity, imply substitutability. However, supermod-

ularity is not preserved under minimization [31, 45]. By contrast, multimodularity, which is next

defined, is preserved under minimization [31, 58].

Definition 3 Let A = {(v, b) ∈ R
n+1 : (v1− b, v2− v1, . . . , vn− vn−1) ∈ U ⊆ R

n, b ∈ R} be a lattice

characterized by the posets (U,≤) and (R,≤). A mapping f : U → R is said to be multimodular on

U if Ψ(v, b) ≡ f(v1 − b, v2 − v1, . . . , vn − vn−1) is submodular on A.
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Now, to establish the multimodularity of Vt, we first recast the sets Y, Xt(yt) and U ≡ Y ×

∪yt∈Y
Xt(yt) as lattices by employing the following change of variables: y1t = v1 − b, y2t = v2 − v1,

u1t = r1− v1, u
2
t = r2− v2, and qt = r3− r2, where (v, b) ≡ (v1, v2, b) and r ≡ (r1, r2, r3) are vectors

of new variables. Redefining the sets Y, U and Xt(yt), respectively, we obtain

V ≡
{

(v, b) ∈ R
3 : v1 − b ∈ [0, α1], v2 − v1 ∈ [0, α2]

}

, (15)

L ≡
{

(v, b, r) ∈ R
6 : (v, b) ∈ V, (r1 − v1, r2 − v2, r3 − r2) ∈ Xt(v1 − b, v2 − v1)

}

, (16)

L(v, b) ≡
{

r ∈ R
3 : (r1 − v1, r2 − v2, r3 − r2) ∈ Xt(v1 − b, v2 − v1)

}

. (17)

The set U is the set of all feasible state-action pairs in stage t for a fixed w̄t, and for any (v, b) ∈ V,

L(v, b) is called a section of L at (v, b) (see page 16 in [49]). Henceforth, we assume that τ c, τ d > α

to simplify the analysis; however, the main results are valid even if this assumption is relaxed.

Proposition 4 asserts that the posets V, L and L(v, b) are lattices.

Proposition 4 The sets V, L and L(v, b) are lattices.

The proof of Proposition 4 is provided in the Appendix.

Next, we present our main result, Theorem 1, which asserts the multimodularity of Vt, and the

monotonicity of x∗
t , with respect to yt. With a slight abuse of notation, let ∆if(w̄t,a) denote both

the forward and backward finite differences of a function f(w̄t,a) with respect to dimension i of a.

Specifically, for some ǫ > 0, the forward difference of f is

∆if(w̄t,a) = f(w̄t,a+ ǫei)− f(w̄t,a),

and the backward difference is f(w̄t,a)− f(w̄t,a− ǫei), where ei is the ith unit vector. Similarly,

let ∆i,jf(w̄t,a) be the second-order finite difference of f(w̄t,a), with respect to dimensions i and

j of a, defined by

∆i,jf(w̄t,a) = ∆j (∆if(w̄t,a)) .

Theorem 1 For each t ∈ T and a fixed exogenous state w̄t,

(i) Vt(w̄t,yt) is multimodular in yt ∈ Y;

(ii) Vt(w̄t,yt) has increasing differences and is component-wise convex in yt ∈ Y. That is,

∆1,1Vt(w̄t,yt) ≥ ∆1,2Vt(w̄t,yt) ≥ 0,

∆2,2Vt(w̄t,yt) ≥ ∆2,1Vt(w̄t,yt) ≥ 0;

(iii) x∗
t = (u∗

t , q
∗
t ) is monotone decreasing in yt ∈ Y. Furthermore, if qt is fixed, then

−1 ≤ ∆1 u
1∗
t (w̄t,yt) ≤ ∆2 u

1∗
t (w̄t,yt) ≤ 0,

−1 ≤ ∆2 u
2∗
t (w̄t,yt) ≤ ∆1 u

2∗
t (w̄t,yt) ≤ 0.
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The proof of Theorem 1 is provided in the Appendix. The multimodularity asserted in Theorem 1

(i) directly implies result (ii), which is often called the diagonal-dominance property (cf. [37, 60])

in the inventory literature. Multimodular value functions imply that the storage levels at the load

buses are economic substitutes of each other. Theorem 1 (ii) implies result (iii). The monotonicity

result in part (iii) asserts that, when the storage levels are high, it is more profitable to discharge

and sell excess energy to the grid, rather than procuring energy and storing it. However, more

insightful is the fact that the optimal storage decisions exhibit bounded sensitivities, as seen in the

two inequalities of part (iii). That is, for each bus, using the optimal policy, a unit increase in

the amount of stored energy yields less than a unit decrease in optimal charge/discharge decision.

Furthermore, this marginal decrease is more sensitive to a local increase in the storage level, as

opposed to an increase in the storage level at the other bus. The bounded sensitivities property

shows that it need not be optimal to fully charge, or fully discharge, the storage devices at each

stage, even when τ c, τ d > α. That is, the optimal storage policy is not necessarily of the so-

called “bang-bang” type, which is optimal in single-storage models that assume batteries with

fast-charging capabilities (cf. [20, 42]). Thus, the bounded sensitivities property is indicative of

a stable operating regime for the network and highlights the economic benefit of sharing stored

energy under line capacity constraints.

3.3 Behavior of the Optimal Operational Cost

Here, we examine the behavior of the optimal operational cost zα. This examination is mo-

tivated by the operator’s desire to determine the appropriate storage capacity at each bus prior

to making any operational decisions. This determination is further warranted by the significant

costs associated with storage investment in distribution networks. The operator’s storage allocation

problem is formulated as follows:

min
α

κ
∑

i∈C′

αi + zα, (18a)

s.t. 0 ≤ α ≤ ᾱ, (18b)

where κ is the per-unit cost of storage capacity, and ᾱ is a budget vector of the maximum storage

capacity allowed at each bus. Proposition 5 asserts that the optimal operational cost is convex and

monotone decreasing in the storage capacities.

Proposition 5 The optimal operational cost zα is convex and monotone decreasing in α.

The proof of the proposition is provided in the Appendix. This result implies that additional

storage capacity leads to lower costs, but with decreasing marginal benefit.

Next, we compare the operational cost of the 2-bus network to those of two comparable networks

having distinct storage configurations. The 2-bus network has a coupled storage (CS) configuration,

in which the two buses can transmit stored energy between them. By contrast, energy cannot be

transmitted between the buses in a decentralized storage (DS) setting; thus, there is no interaction
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between the buses, and the operational cost is the sum of the operational costs incurred at each of

the buses. Finally, a pooled storage (PS) configuration consists of a centralized storage facility that

satisfies the collective energy demand in the network. Figure 2 depicts these three networks and

their storage configurations. It is assumed that the total storage capacity in each network is equal

to α1 + α2. Additionally, it is assumed that both the charging and the discharging efficiencies in

each network are equal to ρ for a fixed ρ ∈ (0, 1].

Figure 2: The pooled, coupled and decentralized storage configurations.

Theorem 2 asserts that the network with pooled storage has the lowest operational cost, followed

by the one with coupled storage, which in turn is less than the cost in the decentralized storage

network. For ease of exposition, let zP , zC and zD denote the optimal operational costs of the PS,

CS and DS network configurations, respectively. The next result shows how these costs compare

to one another.

Theorem 2 The optimal operational costs of PS, CS and DS configurations are ordered such that

zP ≤ zC ≤ zD.

Proof. As qt = 0 ∈ [−β, β] at each stage t ∈ T ′ in the DS network, it is clear that any optimal

policy for the DSf network is a feasible, but not necessarily optimal, policy for the CS network;

therefore, we have zC ≤ zD. Next, we show that zP ≤ zC . Assume that the initial storage levels

in the CS and PS networks are zero without loss of generality. Let u∗
t = (u1∗t , u

2∗
t ) be the optimal

charge/discharge decisions in the CS network at stage t. Construct a storage policy for the PS

network, denoted by π̈ = (üt : t ∈ T ′), such that üt = u1∗t + u2∗t for each t ∈ T ′. Let ÿt be the

associated storage level realized at stage t under policy π̈, where ÿt+1 = ÿt + üt. Then, starting

from ÿt = 0, it is easy to verify that 0 ≤ ÿt + üt ≤ α1 + α2 for each t ∈ T ′, which implies that π̈ is
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a feasible policy for the PS network. Next, define the variables (θ̈t : t ∈ T ′), such that

θ̈t =







1/ρ, üt ≥ 0,

ρ, üt < 0.

Consider a realization w = (wt : t ∈ T ) of the exogenous process W . The one-step cost incurred

at stage t in the PS network, when the state (wt, ÿt) is realized, is

c̈t(wt, üt) = pt(d
1
t + d2t + θ̈tüt) + ϕ|üt|,

while the corresponding one-step cost in the CS network for state (wt,y
∗
t ) is

ct(wt,u
∗
t , q

∗
t ) = pt(d

1
t + d2t + θ1tu

1∗
t + θ2t u

2∗
t ) + ϕ(|u1∗t |+ |u2∗t |) + νξ(u∗

t , q
∗
t ).

Define ät ≡ θ̈tüt and at ≡ θ1t u
1∗
t + θ2tu

2∗
t . Next, compare the terms c̈t(wt, üt) and ct(wt,u

∗
t , q

∗
t ). To

this end, consider the following six cases involving u1∗t , u2∗t and üt ≡ u1∗t + u2∗t :

Case 1 : u1∗t ≥ 0, u2∗t ≥ 0 and u1∗t + u2∗t ≥ 0. Then θ1t = θ2t = θ̈t = 1/ρ, and at = ät =

(u1∗t + u2∗t )/ρ.

Case 2 : u1∗t ≥ 0, u2∗t < 0 and u1∗t + u2∗t ≥ 0. Then θ1t = θ̈t = 1/ρ, θ2t = ρ, and at =

u1∗t /ρ+ ρu2∗t ≥ (u1∗t + u2∗t )/ρ = ät.

Case 3 : u1∗t < 0, u2∗t ≥ 0 and u1∗t + u2∗t ≥ 0. Then θ1t = ρ, θ2t = θ̈t = 1/ρ, and at =

ρu1∗t + u2∗t /ρ ≥ (u1∗t + u2∗t )/ρ = ät.

Case 4 : u1∗t < 0, u2∗t < 0 and u1∗t +u2∗t < 0. Then θ1t = θ2t = θ̈t = ρ, and at = ät = ρ(u1∗t +u2∗t ).

Case 5 : u1∗t < 0, u2∗t ≥ 0 and u1∗t + u2∗t < 0. Then θ1t = θ̈t = ρ, θ2t = 1/ρ, and at =

ρu1∗t + u2∗t /ρ ≥ ρ(u1∗t + u2∗t ) = ät.

Case 6 : u1∗t ≥ 0, u2∗t < 0 and u1∗t + u2∗t < 0. Then θ1t = 1/ρ, θ2t = θ̈t = ρ, and at =

u1∗t /ρ+ ρu2∗t ≥ ρ(u1∗t + u2∗t ) = ät.

Clearly, at ≥ ät ⇒ θ1t u
1∗
t +θ2t u

2∗
t ≥ θ̈tüt in all of the above cases. Also, |üt| = |u1∗t +u2∗t | ≤ |u1∗t |+|u2∗t |

by the triangle inequality, and νξ(u∗t , q
∗
t ) ≥ 0 by definition. Therefore, ct(wt,u

∗
t , q

∗
t ) ≥ c̈t(wt, üt)

for each t ∈ T ′. Adding the one-step costs over the decision stages and taking expectation of these

sums, we obtain

Eπ̈

(

∑

t∈T ′

c̈t(wt, üt)

)

≤ Eπ∗

(

∑

t∈T ′

ct(wt,u
∗
t , q

∗
t )

)

= zC . (19)

However, the l.h.s. of (19) is greater than or equal to zP because π̈ is a feasible, but not necessarily

optimal, policy for the PS network. This concludes the proof.

To the authors’ knowledge, Theorem 2 is the first result to establish theoretical bounds on the

optimal operational cost (zC) incurred in a 2-bus distribution network with storage; however, the

upper and lower bounds of zC (zD and zP , respectively) need not be tight in general. Specifically,

these bounds are the optimal costs of simplified, single-storage models that do not account for

energy flow constraints in a 2-bus network. It is well-known that optimal storage policies for single-

storage models exhibit a dual-threshold structure (cf. [20, 26, 43, 50, 53]), allowing such models
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to be solved efficiently using specialized backward induction algorithms (see Section 4.7.6 in [40]).

It is instructive that the quantity zC − zP represents the cost savings achieved by pooling stored

energy in a centralized facility, while the quantity zD − zC can be interpreted as the opportunity

cost of prohibiting the transmission of stored energy between the buses. Consequently, the ratio

(zD − zP )/zD can be viewed as the marginal benefit of centralizing the storage operations of two

decentralized storage systems.

3.4 Extension to Multi-bus Networks

In this subsection, we extend the results of Theorems 1 and 2 to networks with more than

two buses. Specifically, we consider loop and mesh network configurations, which are common

for distribution networks [13]. Figure 3 depicts these two configurations, which differ primarily in

the number of line connections between the buses. The mesh configuration is a fully-connected

network topology in which each pair of buses is connected by a line. By contrast, a loop network is

a simply connected network. Let G denote the total number of load buses in the network, and let

(a) Loop network. (b) Mesh network.

Figure 3: Depiction of networks with the loop and the mesh configurations.

C ′ ≡ {1, . . . , G} denote the set of such buses. The set of lines in the loop and the mesh networks

are denoted by AL and AM , respectively. For both networks, let q̄it be the energy flow in the feeder

line connected to bus i, and let qt(i, j) denote the energy flow in line (i, j), where qt(i, j) ≥ 0 if

energy flows from bus i to bus j, and qt(i, j) < 0 otherwise. For notational convenience, denote

qt(G,G+1) ≡ qt(G, 1). For each t ∈ T ′ and i ∈ C ′, the supply-demand balance constraints in these

two multi-bus networks are

(Loop) q̄it = dit + θitu
i
t + qt(i, i + 1)− qt(i− 1, i),

(Mesh) q̄it = dit + θitu
i
t +

∑

(i,j)∈AM :j>i

qt(i, j) −
∑

(j,i)∈AM :j<i

qt(j, i).

16



Let qL
t = (qt(i, j) : (i, j) ∈ AL) and qM

t = (qt(i, j) : (i, j) ∈ AM ) be the vector of energy

flows between the load buses in the loop and the mesh networks, respectively. Then, one-step costs

incurred at stage t in the two multi-bus networks are

(Loop) cLt (st,xt) = pt
∑

i∈C′

(dit + θitu
i
t) + ϕ

∑

i∈C′

|uit|+ νξ(ut, q
L
t ),

(Mesh) cMt (st,xt) = pt
∑

i∈C′

(dit + θitu
i
t) + ϕ

∑

i∈C′

|uit|+ νξ(ut, q
M
t ).

The functions cLt and cMt are of the same form as that of ct in (7). Moreover, the storage

level and line capacity constraints in the multi-bus networks mirror those in the 2-bus network;

hence, the lattice structure of the feasibility sets is conserved, despite the fact that the number of

constraints is significantly higher for the multi-bus configurations. This leads us to the next result

in Theorem 3 that holds for both the multi-bus networks and is stated without proof.

Theorem 3 For each t ∈ T ,

(i) Vt(w̄t,yt) is multimodular in yt ∈ Y.

(ii) x∗
t is monotone decreasing in yt ∈ Y.

The next result, Theorem 4, establishes a sequence of bounds involving the optimal costs of the

pooled (zP ), decentralized (zD), loop (zL) and mesh (zM ) networks.

Theorem 4 The optimal operational costs are ordered such that zP ≤ zM ≤ zL ≤ zD.

Proof. Note that, for the DS network, qt(i, j) = 0 for all (i, j) ∈ AL; therefore, it is clear

that any optimal policy for the DS network is a feasible, but not necessarily optimal, policy for

the loop network. Therefore, zL ≤ zD. Similarly, qt(i, j) = 0 for all (i, j) ∈ AM \ AL in the loop

network. Using a similar feasibility-optimality argument for the optimal costs of the loop and mesh

networks, we conclude that zM ≤ zL. Next, we show that zP ≤ zM . Assume that the initial storage

levels in the mesh and PS networks are zero without loss of generality. Let u∗
t = (ui∗t : i ∈ C ′) be

the optimal charge/discharge decisions in the mesh network at stage t. Construct a storage policy

for the PS network, denoted by π̈ = (üt : t ∈ T ′), such that üt =
∑

i∈C′ ui∗t for each t ∈ T ′. Let ÿt

be the storage level realized at stage t under policy π̈, where ÿt+1 = ÿt + üt. Then, starting from

ÿt = 0, it is easy to verify that 0 ≤ ÿt + üt ≤
∑

i∈C′ αi, which implies that π̈ is a feasible policy for

the PS network. Next, define the variables (θ̈t : t ∈ T ′), such that

θ̈t =







1/ρ, üt ≥ 0,

ρ, üt < 0.

Next, we show that
∑

i∈C′ θitu
i∗
t ≥ θ̈tüt by using a simple induction argument. For k ∈ C ′\{1}, define

ũkt ≡
∑k

i=1 u
i∗
t , and let θ̃kt = 1/ρ if ũkt ≥ 0, and θ̃kt = ρ otherwise. From the proof of Theorem 2, we

know that
∑k

i=1 θ
i
tu

i∗
t ≥ θ̃kt ũ

k
t for k = 2. For the induction hypothesis, suppose

∑k
i=1 θ

i
tu

i∗
t ≥ θ̃kt ũ

k
t

for some k > 2. Adding the term θk+1
t u

(k+1)∗
t to both sides, we obtain

∑k+1
i=1 θ

i
tu

i∗
t ≥ θ̃kt ũ

k
t +
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θk+1
t u

(k+1)∗
t . Define at ≡ θ̃kt ũ

k
t + θk+1

t u
(k+1)∗
t and ãt = θ̃k+1

t ũk+1
t . Next, we compare the terms at

and ãt for the following six cases involving the terms ũkt , ũ
k+1
t and u

(k+1)∗
t :

Case 1 : ũkt ≥ 0, u
(k+1)∗
t ≥ 0 and ũk+1

t ≥ 0. Then θ̃kt = θ̃k+1
t = θ

(k+1)∗
t = 1/ρ, and at = ãt =

ũk+1
t /ρ.

Case 2 : ũkt ≥ 0, u
(k+1)∗
t < 0, and ũk+1

t ≥ 0. Then θ̃kt = θ̃k+1
t = 1/ρ, θ

(k+1)∗
t = ρ and

at = ũkt /ρ+ ρu
(k+1)∗
t ≥ ũk+1

t /ρ = ãt.

Case 3 : ũkt < 0, u
(k+1)∗
t ≥ 0, and ũk+1

t ≥ 0. Then θ̃kt = ρ, θ
(k+1)∗
t = θ̃k+1

t = 1/ρ and

at = ρũkt + u
(k+1)∗
t /ρ ≥ ũk+1

t /ρ = ãt.

Case 4 : ũkt < 0, u
(k+1)∗
t < 0, and ũk+1

t < 0. Then θ̃kt = θ
(k+1)∗
t = θ̃k+1

t = ρ and at = ãt = ρũk+1
t .

Case 5 : ũkt < 0, u
(k+1)∗
t ≥ 0, and ũk+1

t < 0. Then θ̃kt = θ̃k+1
t = ρ, θ

(k+1)∗
t = 1/ρ and

at = ρũkt + u
(k+1)∗
t /ρ ≥ ρũk+1

t = ãt.

Case 6 : ũkt ≥ 0, u
(k+1)∗
t < 0, and ũk+1

t < 0. Then θ̃kt = 1/ρ, θ
(k+1)∗
t = θ̃k+1

t = ρ and

at = ũkt /ρ+ ρu
(k+1)∗
t ≥ ρũk+1

t = ãt.

Clearly, at ≥ ãt ⇒ θ̃kt ũ
k
t + θk+1

t u
(k+1)∗
t ≥ θ̃k+1

t ũk+1
t . Finally, by the induction hypothesis, we obtain

∑k+1
i=1 θ

i
tu

i∗
t ≥ θ̃k+1

t ũk+1
t , which proves that our induction hypothesis is true. For k = M , this is

equivalent to
∑

i∈C′ θitu
i∗
t ≥ θ̈tüt. The rest of the proof is similar to that of Theorem 2, from which

we conclude that zD ≤ zM .

4 Numerical Examples

In this section, we present numerical examples to illustrate the structural properties of the value

function (Vt), the optimal policy (π∗) and the optimal operational cost (zα) for a 2-bus network

using real renewable generation and pricing data. Before presenting these examples, the source

data, solution methodology and computational study are described in greater detail.

4.1 Data Description

Hourly wind speed and real-time electricity pricing data for calendar year 2012 were ob-

tained from the NREL (National Renewable Energy Laboratory; http://www.nrel.gov) and PJM

(Pennsylvania-Jersey-Maryland Interconnection; http://www.pjm.com), respectively. Let vt and

Pt be the wind speed and price in hour t ∈ {1, . . . , 24}, respectively. Due to seasonality effects, we

partitioned both data sets into 24 segments, each one hour in duration, and fit separate probability

density functions to each segment. The hourly prices were fit using truncated normal (TN) distri-

butions of the form Pt ∼ TN(p̂t, σ̂
2
t ), where p̂t and σ̂2t are the (estimated) mean and variance of

the price level in hour t, respectively. As was done in [14, 44], we fit the hourly wind speeds using

Weibull distributions, i.e., vt ∼ Weibull (ℓ̂t, n̂t), where ℓ̂t and n̂t are the (estimated) shape and scale

parameters, respectively. Each of the distribution parameters were estimated from the real data

using maximum likelihood estimation (MLE), and the values are presented in Table 1. Next, we

determined the wind generation levels at the two buses. Let Ri
t denote the wind generation in hour
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t at bus i. It was assumed that the Evance R9000 wind turbine models is installed at both buses.

The turbine at bus 1 has a power rating of R̄1 = 50 kW, while the turbine at bus 2 has a power

rating of R̄2 = 25 kW. Both turbines have a cut-in speed of vc = 3 meter per second (m/s), a

cut-off speed of vf = 60 m/s, and a rated wind speed of v̄ = 12 m/s. The following deterministic

model (see p. 547 of [32]) was used to compute the hourly wind generation level at each bus i:

Ri
t =



















R̄i
(

v̄−vt
v̄−vc

)

, vc ≤ vt ≤ v̄,

R̄i, v̄ ≤ vt ≤ vf ,

0, otherwise.

For the analysis that follows, Pt, R
1
t , and R

2
t are assumed to be mutually independent random

variables. Figure 4 depicts the average hourly wind generation at bus 1 and price levels (and

associated 95% confidence intervals) for a 24-hour period. In this figure, hour 1 is midnight to

0100, hour 2 is 0100–0200, hour 3 is 0200–0300, and so forth. Examining Figure 4(a) closely, it is
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(a) Real-time hourly electricity prices.
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(b) Hourly wind generation levels at bus 1.

Figure 4: Average price and wind generation levels in the year 2012.

seen that the evening hours (hours 17 to 21) are the peak-price periods, while the off-peak price

periods span the late night and early morning hours (hours 1 to 7). The variability in the hourly

prices exhibits a similar trend. By contrast, as seen in Figure 4(b), wind power output is highest

during the late night and early morning hours and is lowest in the afternoon (hours 12 to 16).

Next, we impose assumptions about the wind generation levels at the two buses. LetR1
t , R

2
t and

Pt denote the (bounded) supports of R
1
t , R

2
t and Pt, respectively. The lower and upper limits of these

sets correspond to their respective minimum and maximum values observed during 2012. In order

to numerically compute the optimal policy, we assume finite supports for the exogenous variables.

Theorem 6.10.11 of [40] provides an error bound for finite-state approximations to countable-state

MDP models. These supports were therefore discretized as follows: R1
t = R2

t = {0, 1, . . . , 9}, and

Pt = {5n : n = 0, 1, . . . , 12}. Let φt, ϑ
1
t and ϑ2t be the probability density functions of Pt, R

1
t and

R2
t , respectively. For ease of computation, we fix the hourly demand levels at their mean values

(obtained from PJM demand data). Therefore, the (random) exogenous state W t consists of the
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Table 1: MLE estimates of the wind energy and price distribution parameters.

t 1 2 3 4 5 6 7 8 9 10 11 12

ℓ̂t 4.51 4.49 4.41 4.36 4.33 4.29 4.22 4.08 3.81 3.61 3.56 3.59

n̂t 2.09 2.08 2.06 2.02 1.99 1.96 1.89 1.79 1.59 1.46 1.43 1.43

p̂t 27.26 25.65 23.48 23.39 23.75 25.65 28.47 32.46 33.67 36.82 34.95 37.64

σ̂2t 6.50 9.45 10.42 12.91 14.56 15.18 15.43 18.21 19.36 21.59 20.07 24.31

t 13 14 15 16 17 18 19 20 21 22 23 24

ℓ̂t 3.62 3.71 3.78 3.85 3.87 3.83 3.78 3.86 4.07 4.31 4.46 4.52

n̂t 1.43 1.44 1.67 1.49 1.50 1.52 1.55 1.59 1.72 1.87 1.98 2.03

p̂t 38.54 39.94 40.67 41.52 44.85 46.64 50.33 52.78 51.08 38.85 34.71 28.25

σ̂2t 25.74 26.25 28.53 28.21 29.03 30.33 32.74 36.59 31.28 26.65 18.19 14.09

price and wind generation levels only, i.e., W t = (Pt, R
1
t , R

2
t ), so that Wt = Pt × R1

t × R2
t . Let

gt be the joint probability mass function of W t. Then, due to the independence assumption, the

exogenous process transitions from state wt−1 ∈ Wt−1 to another state wt = (p, r1, r2) ∈ Wt with

probability

Pt−1(wt|wt−1) = gt(wt) =
φt(p)
∑

p̃∈Pt

φt(p̃)
×

ϑ1t (r1)
∑

r̃1∈R
1
t

ϑ1t (r̃1)
×

ϑ2t (r2)
∑

r̃2∈R
2
t

ϑ2t (r̃2)
. (20)

For the problem instances that follow, we used the parameter values of Table 2. It was assumed

that both buses have identical energy storage parameters αi, ρ
i
c, ρ

i
d, τ

i
c and τ

i
d. Moreover, the storage

devices were assumed to have a shelf-life exceeding one year.

Table 2: Summary of parameter values for the problem instances.

Parameter(s) Parameter descriptions Value(s)

(α1, α2) Storage capacities at buses 1 and 2 (in kW-h) (10,10)

(τ ic , τ
i
d) Storage charging and discharging rates at buses 1 and 2 (in kW) (4,4)

(ρic, ρ
i
d) Storage charging and discharging efficiencies at buses 1 and 2 (0.90,0.85)

β Line capacity (in kW-h) 3.5

ϕ Per-unit cost of charging or discharging energy (dollars/kW-h) 10

ν Per-unit cost of line losses (dollars/kW-h) 20

The parameter ϕ can be viewed as the implicit cost of degradation per unit of energy charged or

discharged from the battery and can be determined using a life-cycle cost analysis that accounts

for several factors affecting battery performance, such as temperature, state-of-charge profile, and

depth-of-discharge limits (see [5, 21, 22]). Similarly, the quantity ν can be estimated by using a

life-cycle cost model (e.g., equation (6) of [57]), which uses the resistance per unit length of the

power lines, per unit electricity prices, and the maximum allowable current in the power lines.
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4.2 Solving the MDP Model

For the computational experiments, we considered a 24-hour (or 25-stage) planning horizon,

i.e., T = {1, . . . , 25}, in January 2012. It is assumed that decisions are made at the start of

each hour (or stage). Moreover, the state space in each stage was assumed to be time invariant,

i.e., St = S for all t ∈ T . We discretized the storage levels, Y 1
t and Y 2

t , to have support Y =

{0, 1, . . . , 10} × {0, 1, . . . , 10}. Hence, there are 13 × 102 × 112 = 157, 300 possible states in each

stage.

We employ the linear programming (LP) approach devised in [8] to solve the non-stationary,

finite-horizon model (8) and begin by introducing its primal LP formulation. For notational conve-

nience, denote Xt(s) simply as Xt. Let (λt(s) : t ∈ T ′, s ∈ S) be the vector of primal LP variables,

and (γt(s) : t ∈ T ′, s ∈ S) be the vector of cost coefficients such that γt(s) ∈ (0,∞) for each t ∈ T ′

and s ∈ S. The primal LP formulation is

max
∑

t∈T ′

∑

s∈S

γt(s)λt(s) (21a)

s.t. λt(s) ≤ ct(s,x) + δ
∑

s′∈S

Pt(s
′|s,x)λt+1(s

′), ∀t ∈ T ′, s ∈ S, x ∈ Xt, (21b)

λt(s) ∈ R. (21c)

Let (λ∗t (s) : t ∈ T ′, s ∈ S) be the vector of optimal solutions of (21). As γt(s) > 0, it must be the

case that the constraints (21b) hold with equality at optimality, i.e.,

λ∗t (s) = ct(s,x) + δ
∑

s′∈S

Pt(s
′|s,x)λ∗t+1(s

′), ∀t ∈ T ′, s ∈ S, x ∈ Xt,

which implies that λ∗t (s) = Vt(s) by Bellman’s optimality principle. Thus, we can recover the

value functions of (8) by solving model (21). Note if we choose γ1(s) = P(S1 = s), such that
∑

s∈S γ1(s) = 1, we can express the optimal value of (8) according to

zα =
∑

s∈S

γ1(s)λ
∗
1(s) =

∑

s∈S

γ1(s)V1(s).

Unfortunately, the number of constraints in formulation (21) is prohibitively large for the problem

instances considered in our numerical examples; hence, we solve the dual of (21), which has sig-

nificantly fewer constraints. Let (µt(s,x) : t ∈ T ′, s ∈ S, x ∈ Xt) be the vector of dual variables

associated with constraints (21b). Define T ′′ ≡ {1, . . . , N − 2}. Then, the dual of problem (8) is

min
∑

t∈T ′

∑

s∈S

∑

x∈Xt

ct(s,x)µt(s,x) (22a)

s.t.
∑

x∈X1

µ1(s,x) = γ1(s), ∀s ∈ S, (22b)

∑

x∈Xt

µt+1(s,x)− δ
∑

s′∈S

∑

x∈Xt

Pt(s|s
′,x)µt(s

′,x) = γt+1(s), ∀t ∈ T ′′, s ∈ S, (22c)

µt(s,x) ≥ 0, ∀t ∈ T ′, s ∈ S, x ∈ Xt. (22d)
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It can be shown that the optimal solution of (22) has a one-to-one correspondence with the optimal

policy of (8). That is, for each s ∈ St, µ
∗
t (s,x) > 0 when x = x∗

t , and µ
∗
t (s,x) = 0 otherwise (see

the discussion in [8]). Therefore, the optimal policy π∗ can be recovered directly from the optimal

solution of model (22). The model was coded in Python 2.7 and solved using Gurobi 6.5. The

discount factor δ was set to 0.99. All problem instances were executed on a Windows-based 64-bit,

4th generation, Intel® Core™ i7, 64 GB, 2.9 GHz Windows machine.

4.3 Results and Discussion

First, we illustrate the behavior of the value functions with respect to the storage levels. For a

given storage level vector yt, the average value function, denoted by V̄t(yt), is

V̄t(yt) =
∑

wt∈Wt

P(W t = wt)Vt(wt,yt), yt ∈ Y.

Figure 5 depicts the average value functions at stages 1 and 17 as functions of the storage levels.

Clearly, V̄t(yt) is monotone decreasing and convex in yt. This implies that the expected future cost

decreases with increasing storage levels but with decreasing marginal benefit. Similar trends were

observed at all other stages in the planning horizon. Interestingly, the surface plot in Figure 5(b)

has a steeper slope than the one in Figure 5(a), particularly at lower storage levels. This is because
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(a) Stage 1 average value function V̄1(y1).
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(b) Stage 17 average value function V̄17(y17).

Figure 5: Average value functions V̄t(yt) in stages 1 and 17.

stage 17 marks the onset of the peak-price periods – characterized by high price variability – in

which procurement costs rise rapidly when stored energy is in short supply. Note that the average

value of the function V̄1(y1) over its domain Y represents the daily, optimal operational cost of

using a storage system with total capacity ᾱ = α1 + α2. Then, the marginal benefit (or marginal

value) of using storage can be defined as the difference between the operational costs at capacities

0 and ᾱ. For instance, the marginal benefit of using storage was equal to $26.75 for the problem

instance used here (ᾱ = 20 kW-h).
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Next, to illustrate the main results of Theorem 1, Figure 6 depicts the optimal charge/discharge

decisions in stage t = 17 as functions of the storage levels for a fixed exogenous state. We note that

the optimal storage decisions are monotone decreasing in the storage levels. Moreover, the optimal

storage decision at each bus exhibits greater sensitivity to a marginal change in the storage level

at that bus, as opposed to the storage level at the other bus. To illustrate this point, when y2 is

fixed at 10 kW-h, and y1 increases from 0 to 10 kW-h, the optimal charge/discharge decision (u1∗t )

decreases from +2.97 kW-h to -3.03 kW-h as (i.e., ∆1u
1∗
t = −0.6). On the other hand, when y1 is

fixed at 10 kW-h, and y2 increases from 0 to 10 kW-h, u1∗t decreases from −2.95 kW-h to −3.32

kW-h (i.e., ∆2u
1∗
t = −0.037). Similar trends were observed in u2∗t , and more generally, for all of

the storage decisions at each stage t ∈ T ′.

0

Storage level at bus 2 (in kW-h)

2
4

6
8

1010Storage level at bus 1 (in kW-h)
8

6
4

2

1

4

2

3

0

-1

-3

-4

-2

0

O
pt

im
al

 s
to

ra
ge

 d
ec

is
io

n 
at

 b
us

 2
 (

in
 k

W
-h

)

(a) Optimal storage decisions at bus 1 (u1∗
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(b) Optimal storage decisions at bus 2 (u2∗
t ).

Figure 6: Optimal storage decisions in stage t = 17 when w17 = (30, 4.5, 4.5).

Finally, we compared the operational costs of the pooled storage (PS), 2-bus storage (CS), and

decentralized storage (DS) networks for different storage capacities. For the sake of comparison,

we fixed α2 = 10 kW-h and varied α1 from 1 to 15 kW-h in intervals of 1 kW-h. Figure 7 depicts

the relative magnitudes of the optimal operational costs of the three network configurations as

functions of α1, illustrating Theorem 2. As the optimal policies of single-storage models exhibit

a dual-threshold structure [20, 50], the pooled and the decentralized storage models were solved

using the monotone value iteration algorithm (see [40]). It is evident from Figure 7 that, for all

three networks, the operational cost decreases with increasing storage capacity but with decreasing

marginal benefit. Moreover, the differences between the operational costs of each decreases rapidly

as the storage capacity at bus 1 increases. This behavior stems from the increased flexibility of

using stored energy to satisfy demand locally at each bus without having to transmit much energy

between them. Although Theorem 2 establishes the relative magnitudes of these operational costs,

it is clear from Figure 7 that the bounds are not tight, especially at low storage capacities.
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Figure 7: Comparison of the optimal operational costs in PS, CS, and DS networks.

This is indicative of non-negligible line-loss costs in energy networks with capacitated lines and

storage systems. Hence, optimal policies derived from single-storage models are not suitable for

distribution networks, as they do not adequately capture interactions between distinct storage

devices in a networked environment.

5 Conclusions

We have examined optimal energy storage and flow strategies in a 2-bus distribution network

with storage devices and line losses. The network operator’s objective is to minimize the total

expected discounted costs incurred over a finite planning horizon by optimally selecting the amount

of energy to charge to, or discharge from, the storage devices, the amount of energy to buy from,

or sell to, the grid and the amount of energy to transmit between the buses. By way of a finite-

horizon, discounted cost MDP model, we established the monotonicity of the optimal policy with

respect to the storage levels. Moreover, we proved the multimodularity of the value function in the

storage levels and that the optimal storage decisions at each stage exhibit bounded sensitivities.

Significantly, we also established bounds that compare the cost of the 2-bus network to the costs of

two comparable networks with pooled and decentralized storage configurations, respectively. The

results of the 2-bus network were extended to more general multi-bus network topologies. The

usefulness of the main results was illustrated by way of a numerical example using real pricing and

wind generation data. Our results highlighted the benefits of using the network model over those of

single-storage models that do not account for interactions between buses in a distribution network.

While the model and main structural results are useful, they can be improved in a few im-

portant ways. First, it is important to note that the structural results were established without

accounting for reactive power flow and voltage level constraints in distribution networks. It will

be necessary to examine more rigorous power-flow models (cf. [9, 54]) and extend our results to

more realistic distribution networks. Second, it will be instructive to examine models that consider
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multiple value-adding uses of storage (e.g., arbitrage, ancillary support, or backup energy). Third,

it will be instructive to develop easily computable, tighter bounds for the optimal operational cost,

similar to those established in Theorem 2.
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Appendix

Proof of Proposition 4

Proof. We first consider the set L that is characterized by the following constraints:

0 ≤ r1 − b ≤ α1, (23a)

0 ≤ r2 − v1 ≤ α2, (23b)

−β ≤ r3 − r2 ≤ β, (23c)

0 ≤ v1 − b ≤ α1, (23d)

0 ≤ v2 − v1 ≤ α2. (23e)

Define a ≡ (v, b, r) ∈ L. It is noted that each constraint in L has exactly two variables with the

coefficients +1 and −1, while the remaining coefficients are equal to zero. Thus, each constraint in L

defines an affine half-space of the form Ai,j = {a ∈ R
6 : ai−aj ≤ h, ak = 0, i 6= j, k 6= i, j}. We show

that each such Ai,j is a lattice. Consider two points a,a′ ∈ Ai,j. For the cases a ≤ a′ and a′ ≤ a, it

is easy to verify that a ∨ a′ ∈ Ai,j and a∧ a′ ∈ Ai,j . Next, consider the case when ai ≥ a′i, a
′
j ≥ aj ,

and ak = a′k = 0 for all k 6= i, j. Then, the ith and jth components of a∧a′ and a∨a′ are (a′i, aj) and

(ai, a
′
j), respectively. As a ∈ Ai,j , ai ≤ aj+h. But a

′
i ≤ ai, and therefore, a′i ≤ aj+h⇒ a′i−aj ≤ h,

which implies that a ∧ a′ ∈ Ai,j. Similarly, ai ≤ h + aj ≤ h + a′j ⇒ ai − a′j ≤ h as a′ ∈ Ai,j and

a′j ≥ aj , and therefore, a ∨ a′ ∈ Ai,j . Similar arguments are valid when ai ≤ a′i, a
′
j ≤ aj and

ak = a′k = 0 for all k 6= i, j; therefore, Ai,j is a lattice. As a finite intersection of lattices is also a

lattice (see Lemma 2.2.2 of [49]), L is a lattice. Following similar lines of reasoning, we can show

that V, defined by constraints (23d)–(23e), is also a lattice. For a fixed (v, b) ∈ V, L(v, b) is defined

by the constraints (23a)–(23c). Because L(v, b) is a section of L at (v, b), it is also a lattice by

Lemma 2.2.3 of [49].

Proof of Theorem 1

Proof. To prove part (i), we use backward induction on Vt(w̄t,yt). The result clearly holds for

stage N . For the induction hypothesis, suppose Vt+1(wt+1,yt+1) is multimodular in yt+1 ∈ Y for

any wt+1 ∈ Wt+1. We seek to show that Vt(w̄t,yt) is multimodular in yt ∈ Y. This is equivalent

to showing that the function

Ψ(w̄t,v, b) = Vt(w̄t, v1 − b, v2 − v1),

= min
ut,qt

{

ct(w̄t,ut, qt) + δE(Vt+1(W t+1, v1 − b+ u1t , v2 − v1 + u2t ))
}

,

= min
r

{ct(w̄t, r1 − v1, r2 − v2, r3 − r2) + δE (Vt+1(W t+1, r1 − b, r2 − v1))} , (24)

is submodular in (v, b) ∈ V, such that (r1 − v1, r2 − v2, r3 − r2) ∈ Xt(v1 − b, v2 − v1) and r ∈ R
3.

First, we establish that the objective function of (24) is submodular in (v, b, r) ∈ L, where L is

defined in (16). The post-decision value function V x
t (w̄t,yt+1) is

V x
t (w̄t,yt+1) =

∑

wt+1∈Wt+1

δPπ
∗

(wt+1|w̄t)Vt+1(wt+1,yt+1).
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As δPπ
∗

(wt+1|w̄t) ≥ 0, and a nonnegative affine combination of multimodular functions is multi-

modular by Lemma 2 (i) of [31], V x
t is multimodular in yt+1. Note that yt+1 = yt + ut = (u1t +

y1t , y
2
t + u2t ). Using Lemma 2 (vii) in [31], we conclude that V x

t is multimodular in (u1t , y
1
t , y

2
t , u

2
t ),

or equivalently that V x
t is submodular in (v, b, r). The one-step cost in (24) is

ct(w̄t, r1 − v1, r2 − v2, r3 − r2) = k + θ1t (r1 − v1)+θ
2
t (r2 − v2) + ϕ(|r1 − v1|+ |r2 − v2|)

+ νξ(r1 − v1, r2 − v2, r3 − r2), (25)

where k is a constant that depends on w̄t. As the absolute value function and ξ are convex, by

Theorem 2.2.6 (b) of [45], we have that the terms |r1 − v1|, |r2 − v2| and ξ(r1 − v1, r2 − v2, r3 − r2)

in (25) are submodular in (v, b, r). Moreover, the linear terms in (25) are submodular in (v, b, r)

by Lemma 2.2.3 in [45]. As the sum of two submodular functions is submodular by Lemma 2.6.1

in [49], the objective function of (24) is also submodular in (v, b, r) ∈ L. It is noted that problem

(24) involves minimizing a submodular function in (v, b, r) along a section L(v, b) of L at some

(v, b) ∈ V. Also, Ψ(w̄t,v, b) > −∞ because L(v, b) is a polyhedron. Then, using Theorem 2.7.6 in

[49], we establish that Ψ(w̄t,v, b) is submodular in (v, b) ∈ V. Therefore, Vt(w̄t,yt) is multimodular

in yt ∈ Y.

To prove Theorem 1 (ii), the dependence of Vt and Ψ on w̄t is suppressed to simplify notation.

Let ǫ > 0 and note that

∆2,3Ψ(v, b) = Ψ(v1, v2 + ǫ, b+ ǫ)−Ψ(v1, v2 + ǫ, b)−Ψ(v1, v2, b+ ǫ) + Ψ(v1, v2, b),

= Vt(y
1
t − ǫ, y2t + ǫ)− Vt(y

1
t , y

2
t + ǫ)− Vt(y

1
t − ǫ, y2t ) + Vt(y

1
t , y

2
t ),

= −∆1,2Vt(yt), (26)

where the last equality stems from successive forward and backward finite difference operations

on Vt w.r.t. y
2
t and y1t , respectively. As submodularity implies decreasing differences by Theorem

2.2.2 in [45], we have ∆2,3Ψ(v, b) ≤ 0 ⇒ ∆1,2Vt(yt) ≥ 0 by equation (26). Next, we show that

∆2,2Vt(yt) ≥ ∆1,2Vt(yt). By definition,

∆1,3Ψ(v, b) = Ψ(v1 + ǫ, v2, b+ ǫ)−Ψ(v1 + ǫ, v2, b)−Ψ(v1, v2, b+ ǫ) + Ψ(v1, v2, b),

= Vt(y
1
t , y

2
t − ǫ)− Vt(y

1
t + ǫ, y2t − ǫ)− Vt(y

1
t − ǫ, y2t ) + Vt(y

1
t , y

2
t ). (27)

Similarly, successive forward and backward finite difference operations on Vt yield

∆1,2Vt(yt) = Vt(y
1
t + ǫ, y2t )− Vt(y

1
t + ǫ, y2t − ǫ)− Vt(y

1
t , y

2
t ) + Vt(y

1
t , y

2
t − ǫ), (28)

∆1,1Vt(yt) = Vt(y
1
t + ǫ, y2t )− 2Vt(y

1
t , y

2
t ) + Vt(y

1
t − ǫ, y2t ). (29)

Subtracting (29) from (28), we see that ∆1,2Vt(yt) − ∆1,1Vt(yt) = ∆1,3Ψ(v, b) by (27). But

∆1,3Ψ(v, b) ≤ 0, as Ψ is a submodular function. Therefore,

0 ≤ ∆1,2Vt(yt) ≤ ∆1,1Vt(yt). (30)

Likewise, it can be shown that

0 ≤ ∆2,1Vt(yt) ≤ ∆2,2Vt(yt). (31)
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Inequalities (30) and (31) imply that Vt has increasing differences and component-wise convexity.

To prove Theorem 1 (iii), we note that L is a sublattice of V × R
3, both of which are lattices.

Hence, for any (v, b) ∈ V, the section L(v, b) is also a sublattice by Lemma 2.2.3 (a) of [49].

Let ⊑ denote the strong set order defined for subsets of a lattice, where for any A′, A′′ ⊆ A,

A′ ⊑ A′′ ⇒ a′ ∧ a′′ ∈ A′ and a′ ∨ a′′ ∈ A′′ for all a′ ∈ A′ and a′′ ∈ A′′ (see Section 2.4 of [49]).

As L(v, b) is a sublattice, it is also an increasing set function in (v, b) ∈ V with respect to ⊑ by

Theorem 2.4.5(a) of [49]. It is easy to verify that L(v, b) is nonempty for any (v, b) ∈ V. Therefore,

we conclude that x∗
t is monotone decreasing in yt ∈ Y by using Theorem 2.8.2 in [49]. Next, we

derive the bounds on ∆1u
1∗
t and ∆2u

1∗
t (their dependence on (w̄t,yt) is suppressed for simplicity).

Let Jt(u
1
t , y

1
t , y

2
t , u

2
t ) be the objective function of (9) for a fixed qt ∈ [−β, β]. By definition,

Vt(y
1
t , y

2
t ) = min

u1
t
,u2

t

{

Jt(u
1
t , y

1
t , y

2
t , u

2
t ) : 0 ≤ u1t + y1t ≤ α1, 0 ≤ u2t + y2t ≤ α2

}

.

Next, Jt is minimized sequentially with respect to u2t and u1t , respectively. Minimizing Jt over the

set of feasible u2t values, and using arguments similar to those in the proof of part (i), we obtain

J̃t(u
1
t , y

1
t , y

2
t ) = min

u2
t

{

Jt(u
1
t , y

1
t , y

2
t , u

2
t ) : 0 ≤ u1t + y1t ≤ α1, 0 ≤ u2t + y2t ≤ α2

}

,

which is multimodular in (u1t , y
1
t , y

2
t ). Next, minimizing J̃t over the set of feasible u1t values gives

Vt(y
1
t , y

2
t ) = min

u1
t

{

J̃t(u
1
t , y

1
t , y

2
t ) : 0 ≤ u1t + y1t ≤ α1

}

,

which is multimodular in (y1t , y
2
t ). Applying Corollary 1 (ii) of [31], we obtain −1 ≤ ∆1u

1∗
t ≤

∆2u
1∗
t ≤ 0. Similar bounds on ∆1u

2∗
t and ∆2u

2∗
t are obtained by minimizing Jt over u

1
t , followed

by u2t , and applying Theorem 1 (ii) of [31].

Proof of Proposition 5

Proof. Consider three storage capacity vectors α1,α2 and α3, such that α1 < α2 < α3 and

α2 = ηα1 + (1 − η)α3, where η ∈ [0, 1]. We seek to show that zα2
≤ ηzα1

+ (1− η)zα3
. Consider

a state st = (wt,yt) ∈ St. Let xk∗
t = (uk∗

t , q
k∗
t ) be the optimal solution vector of (8) for α = αk,

where k ∈ {1, 2, 3}. Construct a policy π̃ = (x̃t : t ∈ T ′), such that ũt = ηu1∗
t + (1 − η)u3∗

t and

q̃t = ηq1∗t + (1 − η)q3∗t . Multiply both sides of the constraints in Xt(yt;α1) by η and those in

Xt(yt;α3) by (1− η), and add the corresponding constraints to obtain the inequalities

−min{τ d,yt} ≤ ηu1∗
t + (1− η)u3∗

t ≤ min{τ c,α2 − yt},

−β ≤ ηq1∗t + (1− η)q3∗t ≤ β,

which shows that π̃ is a feasible, but not necessarily optimal, policy of (8) for α = α2. Furthermore,

it can be verified that

ct(st, x̃t) = ηct(st,x
1∗
t ) + (1− η)ct(st,x

3∗
t ), t ∈ T ′. (32)
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Summing the one-step costs in (32) and taking the expectation of this sum gives

zα2
≤ Eπ̃

(

∑

t∈T ′

ct(st, x̃t)

)

= ηzα1
+ (1− η)zα3

,

which completes the proof of convexity.

Next, to show monotonicity, consider two storage capacity vectors α1 and α2, such that α2 =

α1 + Γ where Γ > 0. Let w = (wt : t ∈ T ) be a realization of the exogenous process, and π1 and

π2 denote the optimal policies of (8) for α = α1 and α = α2, respectively. Let zα1
(w) and zα2

(w)

be the total costs incurred by along the trajectory w using π1 and π2, respectively. Without loss

of generality, suppose y1 = 0 for both policies. Let s1t = (wt,y
1
t ) be the state of the process at

stage t under π1. Then, π1 is a feasible policy of (8) when α = α2, as u1
t ≤ α1 − y1

t ⇒ u1
t ≤

α1+Γ−y1
t = α2−y1

t as Γ > 0 and q1t ∈ [−β, β]; therefore, zα1
(w) ≥ zα2

(w). As w is any feasible

realization in W, we can conclude that

zα1
=
∑

w∈W

zα1
(w)P(W = w) ≥

∑

w∈W

zα2
(w)P(W = w) = zα2

,

which completes the proof.
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