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Abstract

We examine necessary and sufficient conditions for recurrence and positive

recurrence of a class of irreducible, level-dependent quasi-birth-and-death

(LDQBD) processes with a block tridiagonal structure that exhibits asymptotic

convergence in the rows as the level tends to infinity. These conditions are

obtained by exploiting a multidimensional Lyapunov drift approach, along with

the theory of generalized Markov group inverses. Additionally, we highlight

analogies to well-known average drift results for level-independent quasi-birth-

and-death (QBD) processes.
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1. Introduction

In this paper, we examine necessary and sufficient conditions for recurrence and

positive recurrence of a class of multidimensional Markov processes, namely level-

dependent quasi-birth-and-death processes. These conditions are established by way of

Lyapunov (potential) functions and variants of Foster’s criterion [17]. Additionally, we

demonstrate a correspondence between these conditions and similar results for related

Markov processes.

The quasi-birth-and-death (QBD) process is a bivariate, continuous-time Markov

process {(Xt, Yt) : t ≥ 0} with countable state space S = {(i, j) : i ≥ 0, j = 1, . . . ,Ki},

where i is called the level of the process, j is the phase and Ki is the number of phases

in level i. Generally speaking, Ki can be either a finite, positive integer or infinity

for each i. The process is restricted in level jumps only to its nearest neighbors but

is unrestricted in the phase dimension. That is, from state (i, j) ∈ S the process

may transition to the states (i, k), (i − 1, k) or (i + 1, k), but not to states of the

form (i ± n, k) where n ≥ 2. It extends the standard birth-and-death process, whose

state space consists only of the level i. If the transition rates of a QBD process are

independent of i, it is termed a homogeneous or level-independent QBD process; if the

rates change with i, it is termed a nonhomogeneous or level-dependent QBD (LDQBD)

process. The broad class of LDQBD processes is widely applicable to stochastic

models arising in queueing theory, computer and communications systems, reliability

theory, inventory theory and many other areas. The level-independent version has been

studied extensively in the applied probability literature and is given a comprehensive

treatment by Latouche and Ramaswami [24]; the level-dependent version has received

comparatively less attention.

For the class of LDQBD models examined here, it is assumed that Ki = K for all

i, where K is a finite, positive integer. Since important attributes (e.g., recurrence

and transience) of an irreducible continuous-time Markov chain can be ascertained

via its embedded discrete-time Markov chain (DTMC) at jump epochs, we analyze

this chain and denote it by Φ := {(Xn, Yn) : n ∈ Z
+
}. This process has state space

S = {(i, j) : i ≥ 0, j = 1, . . . ,K}, and its one-step transition probability matrix (P )

possesses the classical block tridiagonal form of a QBD process:



LDQBD processes 3

P =



A
(0)

1 A
(0)

0 0 0 0 · · ·

A
(1)

2 A
(1)

1 A
(1)

0 0 0 · · ·

0 A
(2)

2 A
(2)

1 A
(2)

0 0 · · ·

0 0 A
(3)

2 A
(3)

1 A
(3)

0 · · ·

0 0 0 A
(4)

2 A
(4)

1 · · ·
...

...
...

...
...

. . .


.

The structure of P indicates that the process is skip-free in the level in both

directions. For general LDQBD processes, the blocks along the main diagonal of P

(A
(i)

1 for i ≥ 0) are square matrices, while those on the secondary diagonals (A
(i)

0

and A
(i)

2 for i ≥ 0) can be rectangular. The model we examine here assumes that

all rows of P contain only square matrices of order K. Therefore, for each i ≥ 0

and m = 0, 1, 2, A
(i)
m is a nonnegative square matrix of order K, and the row sums

of A(i) := A
(i)
2 + A

(i)
1 + A

(i)
0 for i ≥ 1 are equal to 1, as are those of A

(0)
1 + A

(0)
0 .

When it exists, denote the limiting distribution of Φ by a positive row vector x that

uniquely solves the linear system xP = x and xe = 1, where e is a column vector of

ones. The vector x is partitioned by levels into subvectors so that x = (x0,x1,x2, . . .),

and xi contains the limiting probabilities for states in level i, namely those in the set

Li := {(i, 1), (i, 2), . . . , (i,K)}. If Φ is irreducible, aperiodic and positive recurrent,

then there exist matrices {Ri : i ≥ 1} such that xi = xi−1Ri, where {Ri : i ≥ 1} is the

minimal nonnegative solution of the set of equations

Ri = A
(i−1)
0 +RiA

(i)
1 +RiRi+1A

(i+1)
2 , i ≥ 1 (1)

(see Theorem 12.1.1. of [24]). Solving the system of equations (1) is typically relegated

to numerical techniques, such as those described in [8]. The LDQBD process is positive

recurrent if and only if there exists a positive solution to the system of equations

(Theorem 12.1.4, [24])

x0 = x0

(
A

(0)
1 +A

(0)
0 G1

)
subject to the normalization condition

x0

( ∞∑
n=0

n∏
i=1

Ri

)
e = 1,
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where G1 contains the probabilities of reaching level 0 in finite time starting from

level 1, and the empty product (when n = 0) results in the identity matrix. Although

the matrices G1 and {Ri : i ≥ 1} can be obtained to any desired accuracy using, for

example, the algorithms of Bright and Taylor [8], our primary aim here is to determine

analytical necessary and sufficient conditions for a special class of LDQBD processes.

Level-independent QBD processes arise frequently in the context of queueing models

with nonstandard arrival and/or service mechanisms (e.g., randomly-varying arrival

and/or service rates). One such example is the M/M/1 queue in a two-state en-

vironment [14, 50] in which the level i corresponds to the number of customers in

the system, and the phase j is the state of an exogenous environment process that

modulates the arrival and/or service rates. These early models were later extended by

Neuts [34, 35, 36] and Purdue [40] to consider environment transitions not restricted

to service completion epochs. Neuts [38] formally categorized Markov-modulated

queueing systems as homogeneous QBD processes and provided an average drift con-

dition for this class of stochastic processes. Latouche and Taylor [25] provided a

general proof for drift conditions of homogeneous QBD processes, which are also

applicable to general matrix-analytic models. The emergence of retrial queueing models

spawned variants of the homogeneous QBD process, including the LDQBD process in

which the block tridiagonal structure varies over an infinite number of levels. Some

representative examples of such models include [1, 2, 3, 5, 7, 23, 26, 33, 46]. Bright and

Taylor [8] developed an efficient row-truncation algorithm to approximate the limiting

distribution of an LDQBD process when it exists; however, the method does not readily

yield information about the recurrence characteristics of the LDQBD process. Some

models possess special properties to facilitate analysis of stability criterion, as in [4],

whereas improvements in numerical algorithms such as ETAQA [9] for computing the

stationary distribution of LDQBD processes have made the numerical approach more

tenable for queueing applications (see [6, 10, 32]).

For one-dimensional Markov chains with infinitely denumerable state spaces, it is

well-known that Lyapunov functions, along with Foster’s criterion [17], can be used

to establish sufficient conditions for the ergodicity of irreducible chains. As a special

case of Foster’s criterion, Pakes’ lemma [39, Theorem 2] is perhaps most useful in

that it generalized to conditions on the subsequential upper bound of drift terms, and
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it uses the identity function as the Lyapunov (potential) function. Other extensions

considering broader classes of Markov processes, including continuous-time Markov

chains (CTMCs), appear in [29, 30, 43, 48, 49]. Nonergodicity was first studied first

by Kaplan [19] and subsequently by Sennott, et al. [44, 45]. However, the analysis

of LDQBD processes falls more appropriately within the realm of multidimensional

Markov processes, which have been studied extensively over the past several decades.

Tweedie [49] approached the problem from the vantage point of general state spaces,

followed by Szpankowsky [47], Rosberg [42], and Sennott [44]. To the best of our

knowledge, the first appearance of a necessary and sufficient Foster-Lyapunov recur-

rence criterion appears in Mertens, et al. [30]. A corresponding necessary and sufficient

criterion for the positive recurrence of Markov chains over countable state spaces is

proved in [27]. This result, along with those of Mertens, et al. [30], are incorporated in

the monograph by Fayolle, et al. [16] on the constructive theory of countable Markov

chains.

Due to the difficulties associated with analyzing general, multidimensional Markov

processes with nonhomogeneous transition matrices, attention has shifted to classes

of structured chains that become homogeneous at a finite level of the state space.

One important example is the class of LDQBD processes for which there exists a level

L above which the process behaves as a homogeneous QBD process. Such models

are termed LDQBDs with a large number of boundary states (see [8, 38]) and are

relevant to our work here in that their recurrence properties can be determined by

examining the behavior of the process beyond level L. Bright and Taylor [8] showed

how to construct a stochastically-dominating LDQBD process whose recurrence is

sufficient to guarantee the recurrence of the process it dominates. Klimenok and

Dudin [21] defined and analyzed the so-called asymptotically quasi-Toeplitz Markov

chain (AQTMC). The AQTMC is the nonhomogeneous, asymptotically row-convergent

form of the multidimensional QTMC introduced in [12], which was motivated by their

previous work on a retrial queue whose input is a batch Markovian arrival process

(BMAP) [11, 13, 20]. The QTMC is more widely known as an M/G/1-type Markov

chain [37], as its structure mirrors that of the system size process of an M/G/1 queue

embedded at service completion epochs.

It is well-known that the LDQBD process is a subclass of nonhomogeneous M/G/1-
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type Markov chains. Furthermore, if it is assumed that the blocks of the transition

probability matrix converge (as i → ∞), then the LDQBD process can be viewed as

a discrete-time AQTMC. While the AQTMC analyzed in [21] is more general, they

provide only sufficient conditions for ergodicity and non-ergodicity of these types of

chains. Koukoutsidis, et al. [22] devised a nonhomogeneous QBD model for admission

control of a WCDMA system. They conjectured an ergodicity condition for the case in

which the blocks of the infinitesimal generator matrix converge asymptotically to those

of a homogeneous QBD process. For chains that satisfy such convergence properties,

the LDQBD process is ergodic if the QBD process to which it converges is ergodic;

conversely, if the LDQBD process is nonergodic, then so too is the QBD process. The

sketch of their proof uses stochastic dominance concepts.

The primary aim of the present paper is to provide necessary and sufficient con-

ditions for the recurrence and positive recurrence of a class of discrete-time LDQBD

processes whose block matrices converge as i → ∞. More specifically, we consider a

continuous-time LDQBD process whose embedded jump chain satisfies the convergence

criteria

lim
i→∞

A
(i)
k = A∗k, k = 0, 1, 2 and lim

i→∞
A(i) = A∗,

where the above limits hold element-wise. This class of processes encompasses the class

of LDQBD processes with a large number of boundary states. It can also be viewed as a

special case of the asymptotically quasi-Toeplitz Markov chains; however, our approach

and results differ in two important ways. First, we employ a Foster-Lyapunov drift

approach to derive positive recurrence (and hence, ergodicity) conditions for this special

type of LDQBD without the use of transforms. Second, we show that this condition is

not only sufficient, but also necessary, and demonstrate an analogy between our results

and the average drift conditions for level-independent QBD processes.

The remainder of the paper is organized as follow. Section 2 first reviews LDQBD

processes and some preliminaries related to drift functions and Foster’s criterion for

one-dimensional Markov chains. In Section 3, we derive the generalized drift function

for a specific form of Lyapunov function and employ a modified version of Foster’s

criterion to provide sufficient conditions for recurrence, and necessary and sufficient

conditions for positive recurrence, of the embedded DTMC Φ. Section 4 establishes the
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existence of a limiting average drift and characterizes necessary and sufficient conditions

for recurrence, null recurrence, positive recurrence and transience using this drift term.

Additionally, we highlight analogies between the homogeneous QBD process and the

LDQBD process. A few concluding remarks are provided in Section 5.

2. Preliminaries

Although the LDQBD process is generally a continuous-time, discrete-state stochas-

tic process, we analyze its discrete-time counterpart (as the continuous-time version

can be analyzed via embedding at transition epochs). Throughout the manuscript, we

shall adopt the following notation and conventions: Let R be the set of real numbers,

R+ = [0,∞) the set of nonnegative reals, N = {1, 2, . . .} the set of natural numbers and

Z
+

= {0, 1, . . .} the set of nonnegative integers. The vector e = (1, 1, . . . , 1)′ denotes

a column vector of ones, and 0 shall denote the zero column vector (or zero matrix),

as needed. Finally, for any two column vectors x,y ∈ Rn, we write x ≤ y to indicate

that the inequality holds componentwise.

Let Φ := {(Xn, Yn) : n ≥ 0} be a time-homogeneous, irreducible and aperiodic

discrete-time Markov chain (DTMC) on the countable state space

S :=
{

(i, j) : i ∈ Z
+
, j ∈P

}
,

where P := {1, . . . ,K} for some K ∈ N. The components i and j of the state are

termed the level and phase of the process, respectively. The DTMC Φ is a discrete-

time quasi-birth-and-death (QBD) process because its one-step transition probability

matrix (P ) exhibits the block-tridiagonal form

P =



A
(0)

1 A
(0)

0 0 0 0 · · ·

A
(1)

2 A
(1)

1 A
(1)

0 0 0 · · ·

0 A
(2)

2 A
(2)

1 A
(2)

0 0 · · ·

0 0 A
(3)

2 A
(3)

1 A
(3)

0 · · ·

0 0 0 A
(4)

2 A
(4)

1 · · ·
...

...
...

...
...

. . .


. (2)

The time-homogeneity of Φ implies that P is independent of time n. For each i ∈ Z+ ,

the entries A
(i)

0 , A
(i)

1 and A
(i)

2 are nonnegative K ×K matrices comprised of transition
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probabilities between phase states and levels. As P is a one-step transition probability

matrix, we note that

A
(i)

:=

A
(i)

1 +A
(i)

0 , i = 0,

A
(i)

2 +A
(i)

1 +A
(i)

0 , i ≥ 1,

is a stochastic matrix. The structure of P shows that the process is skip-free in the

level in both directions. More precisely, for i ∈ N and any j, j′ ∈P,[
A

(i)

0

]
jj′

= P(Xn+1 = i+ 1, Yn+1 = j′|Xn = i, Yn = j ) ,[
A

(i)

1

]
jj′

= P(Xn+1 = i, Yn+1 = j′|Xn = i, Yn = j ) ,[
A

(i)

2

]
jj′

= P(Xn+1 = i− 1, Yn+1 = j′|Xn = i, Yn = j ) .

If A
(i)

k = A
(i′)

k for every i, i′ ∈ Z
+

(except possibly for the boundary level i = 0) and

for each k ∈ {0, 1, 2}, then Φ is called a level-independent QBD (or simply QBD)

process. However, if A
(i)

k 6= A
(i′)

k for two or more nonzero levels i 6= i′, then Φ is called

a level-dependent QBD (LDQBD) process.

Our aim is to establish necessary and sufficient conditions for the positive recurrence

(and thus, ergodicity) of the LDQBD Φ by analyzing the drift of the process. To that

end, we first review drift functions, as well as an extension of Foster’s criterion [17]

for a one-dimensional irreducible, aperiodic DTMC ξ := {Xn : n ≥ 0} on a countable

state space S. We begin with the following definition.

Definition 1. Let ν : S → (0,∞) be a positive function, and for each x ∈ S let

δ
ν
(x) := E(ν (Xn+1)− ν (Xn) |Xn = x) .

The function ν is called a Lyapunov (or potential) function, and δν (x) is the generalized

drift of ξ in state x. Furthermore, if v(Xn) = Xn for each n, then δ
ν
(x) is simply the

drift in state x.

Foster [17] provided a sufficient condition for the positive recurrence of a one-

dimensional, irreducible DTMC on the state space Z
+

. Fayolle et al. [16] extended

Foster’s result by proving necessity of the drift condition and expanding its applicability

to DTMCs with general countable state spaces. For convenience, we restate Theorem

2.2.3 of Fayolle et al. [16] here as Theorem 1.
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Theorem 1. (Fayolle et al. [16].) An irreducible, aperiodic DTMC {Xn : n ≥ 0} on

a countable state space S is positive recurrent if and only if there exist a function

ν : S → (0,∞), a number ε > 0 and a finite set B ⊂ S such that

δ
ν
(x) ≤ −ε, x /∈ B and E(ν(Xn+1)|Xn = x) <∞, x ∈ B. (3)

If we take S = Z
+

, condition (3) can be equivalently restated as follows: For some

number ε > 0, there exists an Nε ∈ N such that

δ
ν
(i) ≤ −ε, i ≥ Nε and E(ν(Xn+1)|Xn = i) <∞, i < Nε.

In Section 3 we derive the generalized drift function for a specific form of the

Lyapunov function ν and employ a modified version of Theorem 1 to establish suf-

ficient conditions for recurrence, and necessary and sufficient conditions for positive

recurrence, of the LDQBD process Φ.

3. Component and Average Drift Conditions

For the results that follow, we consider a specific class of Lyapunov functions for

the LDQBD process Φ and its associated drift function. For each (i, j) ∈ S, define

ν : S → (0,∞) as follows:

ν(i, j) =

k0j , i = 0, j ∈P,

i+ kij , i ≥ 1, j ∈P,

(4)

where the constant k0j > 0 for any j ∈ P and kij is a nonnegative constant for each

i ∈ N and j ∈ P. We denote by k = [kij ] the matrix comprised of these constants,

and let k(i) = (ki1, ki2, . . . , kiK)′ denote the transpose of the ith row of k with the

requirement that k(0) > 0. Let

δν (i, j) := E(ν (Xn+1, Yn+1)− ν (Xn, Yn) |(Xn, Yn) = (i, j)) (5)

be the generalized drift in state (i, j) and define the column vector

∆(i) = (δν (i, 1), . . . , δν (i,K))′

as the level-i drift vector. The following proposition shows how to obtain ∆(i) for each

i ∈ Z+ .
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Proposition 1. Let Φ be the discrete-time LDQBD process with state space S and one-

step transition probability matrix given by (2). For the Lyapunov function of equation

(4), the generalized level-i drift vector is

∆(i) =


A

(0)

0 e+A
(0)

0 k
(1) +A

(0)

1 k
(0) − k(0), i = 0,

(
A

(i)

0 −A
(i)

2

)
e+

(
A

(i)

0 k
(i+1) +A

(i)

1 k
(i) +A

(i)

2 k
(i−1)

)
− k(i), i ≥ 1.

(6)

Proof. For notational brevity, let x = (i, j) and x′ = (i′, j′) be two states in S,

and denote by pxx′ the one-step transition probability from x to x′. First we consider

the case when i ≥ 1. Applying equations (4) and (5), the generalized drift in state

x = (i, j) is

δ
ν
(x) =

∑
x′∈S

pxx′ [ν(x′)− ν(x)] =
∑
x′∈S

pxx′ [(i
′ + ki′j′)− (i+ kij)] . (7)

For each i ∈ N, consider the ith-level partition (S−i , S
◦
i , S

+
i ) of S, where

S−i = {(i− 1, j) : j ∈P} , S◦i = {(i, j) : j ∈P} , S+
i = {(i+ 1, j) : j ∈P} ,

which allows us to decompose the summation in (7) as follows:

δ
ν
(x) =

∑
x′∈S

pxx′ [(i
′ + ki′j′)− (i+ kij)]

=
∑
x′∈S−i

pxx′(ki−1,j′ − kij − 1) +
∑
x′∈S◦i

pxx′(kij′ − kij)

+
∑
x′∈S+

i

pxx′(ki+1,j′ − kij + 1). (8)

Equation (8) can be equivalently expressed as

δ
ν
(x) =

∑
j′∈P

[
A

(i)

2

]
jj′

(ki−1,j′ − kij − 1) +
∑
j′∈P

[
A

(i)

1

]
jj′

(kij′ − kij)

+
∑
j′∈P

[
A

(i)

0

]
jj′

(ki+1,j′ − kij + 1)

=
∑
j′∈P

([
A

(i)

0

]
jj′
−
[
A

(i)

2

]
jj′

)
− kij

∑
j′∈P

[
A(i)

]
jj′

+
∑
j′∈P

ki−1,j′
[
A

(i)

2

]
jj′

+ kij′
[
A

(i)

1

]
jj′

+ ki+1,j′

[
A

(i)

0

]
jj′
,
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which in matrix-vector form gives

∆(i) =
(
A

(i)

0 −A
(i)

2

)
e+

(
A

(i)

0 k
(i+1) +A

(i)

1 k
(i) +A

(i)

2 k
(i−1)

)
− k(i).

Second, for the boundary case i = 0, noting that there are no downward jumps from

level 0, we can repeat the derivation for the case i ≥ 1 and exclude all terms containing

A
(i)

2 . Doing so yields

∆(0) = A
(0)

0 e+A
(0)

0 k
(1) +A

(0)

1 k
(0) − k(0),

and the proof is complete. �

We now consider the generalized drift vector ∆(i) restricted to the class of Lyapunov

functions (4) for which k has identical rows, i.e., k(i) = c ≥ 0 for all i ∈ N. In this

case, we obtain a simplified (homogeneous) version of the drift vector given by

∆
(i)
h =

(
A

(i)

0 −A
(i)

2

)
e+A(i)c− c, i ∈ N. (9)

The relationship between ∆
(i)
h and ∆(i) is critical to our analysis. We will establish the

fact that, under suitable conditions, the existence of solutions c that satisfy ∆
(i)
h ≤ −ε

imply the existence of solutions {k(i−1),k(i),k(i+1)} that satisfy ∆(i) ≤ −ε, where

ε = (ε, ε, . . . , ε)′ for some ε > 0.

Our first result, Theorem 2, follows immediately by applying Foster’s criterion to the

homogeneous drift vector ∆
(i)
h . Before stating this result, we impose a partial ordering

(≤s) on the state space S. For any two states (i, j) and (i′, j′) in S, let

(i, j) ≤s (i′, j′) if and only if i ≤ i′, (10)

for any j, j′ ∈P (i.e., S is ordered according to the level of each state). This ordering

allows us to apply results suited for processes whose state space is Z
+

.

Theorem 2. Suppose that Φ is an irreducible, aperiodic discrete-time LDQBD process.

Then,

1. Φ is recurrent if there exists a constant vector ĉ ∈ RK
+

such that, for some N ∈ N,(
A

(i)

0 −A
(i)

2

)
e ≤

(
I −A(i)

)
ĉ, for all i ≥ N.
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2. Φ is positive recurrent if there exists a constant vector ĉ ∈ RK
+

such that, for

some ε > 0, there exists an Nε ∈ N such that(
A

(i)

0 −A
(i)

2

)
e ≤

(
I −A(i)

)
ĉ− ε, for all i ≥ Nε.

where ε = (ε, ε, . . . , ε)′.

Proof. For recurrence, we first note that ν(i, j) = i + ĉj → ∞ as i → ∞ for all

j ∈P due to the partial ordering (10) and nonnegativity of ĉj . By supposition, there

exists ĉ ∈ RK
+

and some N ∈ N such that the level-i drift vector

∆
(i)
h =

(
A

(i)

0 −A
(i)

2

)
e+A(i)ĉ− ĉ ≤ 0, for all i ≥ N,

or equivalently, (
A

(i)

0 −A
(i)

2

)
e ≤

(
I −A(i)

)
ĉ, for all i ≥ N.

This condition holds for all (i, j) /∈ B := {0, 1, . . . , N − 1} × P, where |B| < ∞.

Therefore, by Theorem 2.1 of [15], the process is recurrent.

For positive recurrence, suppose there exists a constant vector ĉ ∈ RK
+

, a number

ε > 0 and a positive integer Nε such that

∆
(i)
h =

(
A

(i)

0 −A
(i)

2

)
e+A(i)ĉ− ĉ ≤ −ε, for all i ≥ Nε,

or equivalently, (
A

(i)

0 −A
(i)

2

)
e ≤

(
I −A(i)

)
ĉ− ε, for all i ≥ Nε.

Thus, we let Bε := {0, 1, . . . , Nε−1}×P be a finite subset of S and see that δ
ν
(i, j) ≤

−ε for all (i, j) /∈ Bε. It remains to show that

µij := E(ν(Xn+1, Yn+1)|(Xn, Yn) = (i, j)) <∞

for all (i, j) ∈ Bε. In fact, we will show that µij is finite for all (i, j) ∈ S, since level

jumps are bounded in a LDQBD. Fixing x = (i, j) and letting x′ = (i′, j′), we observe

that

µij ≤ |µij | =

∣∣∣∣∣∑
x′∈S

pxx′(i
′ + ki′j′)

∣∣∣∣∣ ≤ ∑
x′∈S
|pxx′ | · |i′ + ki′j′ |. (11)
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To see that the right-most term of inequality (11) is finite, we note that pxx′ = 0 for

any state x′ ∈ Scij , where for each (i, j) ∈ S,

Sij :=

{(i
′, j′) ∈ S : i′ ∈ {i, i+ 1}, j′ ∈P}, i = 0,

{(i′, j′) ∈ S : i′ ∈ {i− 1, i, i+ 1}, j′ ∈P}, i ≥ 1.

Noting that |Sij | <∞, and by inequality (11),

µij ≤
∑
x′∈S
|pxx′ | · |i′ + ki′j′ | ≤

∑
x′∈Sij

1 · |i′ + ki′j′ | =
∑
x′∈Sij

ν(i′, j′) <∞. (12)

Therefore, by Theorem 2.2.3 of [16], the process is positive recurrent. �

Next we state our main results, namely necessary and sufficient conditions for

recurrence and positive recurrence, respectively, based on an average drift criterion.

Before stating the main results, we first state the following assumption, which describes

the specific class of LDQBD processes under consideration.

Assumption 1. For the discrete-time LDQBD process Φ, there exist K × K sub-

stochastic matrices, A∗2, A∗1, and A∗0 whose sum

A∗ = A∗2 +A∗1 +A∗0

is stochastic and which are related to the process Φ via the limit

lim
i→∞

A
(i)
k = A∗k, k = 0, 1, 2,

where the limit holds element-wise.

Assumption 1 asserts that, if the level is sufficiently large, then the LDQBD process

evolves in a manner similar to that of a level-independent QBD process. The class of

models satisfying this condition is quite large, encompassing many models arising in

queueing, reliability, inventory and telecommunications settings.

Theorem 3. Let Φ be an irreducible, aperiodic discrete-time LDQBD process satisfy-

ing Assumption 1 and define the scalar quantities

D(i) = π(i)
(
A

(i)

0 −A
(i)

2

)
e, (13)

where π(i) is the invariant row vector of A(i) = A
(i)

0 + A
(i)

1 + A
(i)

2 for each i ∈ Z+ .

Then,
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(i) Φ is recurrent if and only if there exists an N ∈ N such that

D(i) ≤ 0, for all i ≥ N .

(ii) Φ is positive recurrent if and only if, for some positive number ε, there exists an

Nε ∈ N such that

D(i) < −ε, for all i ≥ Nε.

Before proving Theorem 3, let us define an operator Γ(i) : RK → RK by

Γ(i)(c) =
(
A

(i)

0 −A
(i)

2

)
e+A(i)c− c

such that Γ(i)(c) = ∆
(i)
h . Additionally, for each i ∈ Z+ , define the null sets for Γ(i) by

N (Γ(i)) =
{
c ∈ RK : Γ(i)(c) = 0

}
and N+(Γ(i)) = N (Γ(i)) ∩ RK

+
.

The proof of Theorem 3 requires two technical lemmas.

Lemma 1. D(i) = 0 if and only if N+(Γ(i)) 6= ∅.

Proof. (⇐) Fix the level i and suppose there exists some c ∈ N+(Γ(i)). Then

Γ(i)(c) =
(
A

(i)

0 −A
(i)

2

)
e+A(i)c− c = 0,

which implies (
A

(i)

0 −A
(i)

2

)
e = −A(i)c+ c. (14)

Left-multiplying both sides of (14) by π(i) yields

D(i) = π(i)
(
A

(i)

0 −A
(i)

2

)
e = −π(i)A(i)c+ π(i)c = −π(i)c+ π(i)c = 0.

(⇒) Now suppose D(i) = 0. We seek to show the existence of a c ∈ RK
+

such that

Γ(i)(c) =
(
A

(i)

0 −A
(i)

2

)
e+

(
A(i) − I

)
c = 0. (15)

To this end, we employ two related Theorems of Alternative – one due to Farkas and

the other due to Gordan – both of which are summarized in [28] and restated without

proof in the Appendix. Using (15), we can write the linear system of equalities(
A(i) − I

)
c = −

(
A

(i)

0 −A
(i)

2

)
e. (16)
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Setting c = e, we note that
(
A(i) − I

)
e = 0; hence, e is a nonnegative, nonzero

solution to the linear system of equations(
A(i) − I

)
c = 0.

Therefore, Alternative (ii) of Gordan’s theorem [18] cannot be satisfied; hence,

y′
(
A(i) − I

)
≯ 0, for all y ∈ RK .

This implies that the system in Alternative (ii) of Farkas’s lemma, namely y′
(
A(i) − I

)
≥

0, can only be satisfied in equality. Because A(i) is finite and irreducible, the unique

solution at equality is y′ = π(i) (up to a multiplicative constant), since π(i)
(
A(i) − I

)
=

0. However,

−y′
(
A

(i)

0 −A
(i)

2

)
e = −π(i)

(
A

(i)

0 −A
(i)

2

)
e = −D(i) = 0.

Hence, there does not exist y ∈ RK satisfying Alternative (ii) of Farkas’s lemma, which

implies that Alternative (i) of Farkas holds. That is, there exists a c ≥ 0 that solves

(16), from which we conclude that N+(Γ(i)) 6= ∅. �

We next demonstrate the relationship of the average drift D(i) to the solution c of

the system of inequalities Γ(i)(c) ≤ −ε, where ε = (ε, ε, . . . ε) > 0. For each i ∈ Z+ ,

define the cones

Cε(Γ(i)) =
{
c ∈ RK : Γ(i)(c) ≤ −ε

}
and C+ε (Γ(i)) := Cε(Γ(i)) ∩ RK

+
.

Lemma 2. For some positive number ε, D(i) ≤ −ε if and only if C+ε (Γ(i)) 6= ∅.

Proof. (⇐) Suppose there exists some c ∈ C+ε (Γ(i)). That is, for such a solution,

Γ(i)(c) =
(
A

(i)

0 −A
(i)

2

)
e+

(
A(i) − I

)
c ≤ −ε.

Left-multiplying by the stochastic vector π(i) yields

π(i)Γ(i)(c) = π(i)
[(
A

(i)

0 −A
(i)

2

)
e+

(
A(i) − I

)
c
]
≤ −π(i)ε = −ε.

However, note that π(i)Γ(i)(c) = D(i)+0 = D(i); therefore, we conclude thatD(i) ≤ −ε.

(⇒) Conversely, suppose that D(i) ≤ −ε for some ε > 0, which implies that D(i)e ≤

−ε. Our aim is to show the existence of a nonnegative vector ĉ such that(
A

(i)

0 −A
(i)

2

)
e+

(
A(i) − I

)
ĉ = D(i)e,
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or equivalently, (
A(i) − I

)
ĉ = D(i)e−

(
A

(i)

0 −A
(i)

2

)
e. (17)

To simplify notation, let M := A(i) − I and b := D(i)e−
(
A

(i)

0 −A
(i)

2

)
e. As shown in

the proof of Lemma 1, the system y′M ≥ 0 can only be satisfied in equality, and the

unique solution is y′ = π(i) up to a multiplicative constant. Therefore, it remains to

show that y′b ≮ 0. We see that

y′b = π(i)b = π(i)
[
D(i)e−

(
A

(i)

0 −A
(i)

2

)
e
]

= π(i)D(i)e− π(i)
(
A

(i)

0 −A
(i)

2

)
e

= D(i) −D(i) = 0.

Hence, there does not exist a y ≥ 0 satisfying y′b < 0. Therefore, by Farkas’ lemma,

there is a nonnegative solution ĉ to the system (17). Noting that D(i)e ≤ −ε, we see

that C+ε (Γ(i)) 6= ∅. �

Equipped with Lemmas 1 and 2, we are now prepared to prove the main result,

Theorem 3.

Proof of Theorem 3. Part (i): Recurrence. To prove the first result, we will establish

that the conditions required by Theorem 2.2.1 of [16] are met, i.e., ν(i, j) → ∞ as

i→∞ and ∆(i) ≤ 0 for i sufficiently large. Under the partial ordering (10), it is clear

that, for each j ∈P, ν(i, j) = i+ kij →∞ as i→∞ due to the nonnegativity of kij .

Hence, it remains to show that, for i sufficiently large, D(i) ≤ 0 if and only if there

exists a sequence of constant vectors {k(i) : i ∈ Z+} such that ∆(i) ≤ 0. To this end,

for each i ∈ Z
+

, define the operator Λ(i) such that

Λ(i)(k(i)) :=
(
A

(i)

0 −A
(i)

2

)
e+

(
A

(i)

0 k
(i+1) +A

(i)

1 k
(i) +A

(i)

2 k
(i−1)

)
− k(i) = ∆(i).

(⇒) Suppose there is some N ∈ N such that D(i) ≤ 0 for each i ≥ N . Our aim is to

show that there exists a number N∗ ≥ N and a sequence of vectors

K =
{
k(i) ∈ RK

+
: i ∈ Z+

}
such that Λ(i)(k(i)) ≤ 0 whenever i ≥ N∗. To this end, we first show that the

component-wise limits

`g = lim
i→∞

Γ(i)(k(i)) and `l = lim
i→∞

Λ(i)(k(i))
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exist for a certain choice of K . Next, we will show that `g and `l are equal, and when

it has been shown that `g ≤ 0, we will have demonstrated the sufficiency of part (i) of

Theorem 3.

To establish the existence of K , we first obtain a solution to the inequality

Γ(i)(k(i)) =
(
A

(i)
0 −A

(i)
2

)
e+

(
A(i) − I

)
k(i) ≤ 0. (18)

By supposition, we have that D(i) ≤ 0 for each i ≥ N ; hence, we can satisfy (18) by

solving the system of linear equalities Γ(i)(k(i)) = D(i)e. That is,

Γ(i)(k(i)) =
(
A

(i)
0 −A

(i)
2

)
e+ (A(i) − I)k(i) = D(i)e.

By rearranging the terms in the above expression, we obtain(
A(i) − I

)
k(i) = D(i)e−

(
A

(i)
0 −A

(i)
2

)
e. (19)

Since A(i) − I is singular, an explicit solution of (19) can alternatively be obtained

by employing the theory of group inverses. By Theorem 2.1 of [31], the existence and

uniqueness of the group inverse(
T (i)

)#

=
(
I −A(i)

)#

of the matrix T (i) = I − A(i) is guaranteed, as each A(i) is the transition matrix of

an irreducible, time-homogeneous Markov chain. Theorem 2.2 of [41] shows that every

possible solution k(i) of (19) is of the form

k(i) = −
(
T (i)

)# (
D(i)e−

(
A

(i)
0 −A

(i)
2

)
e
)

+

(
I −

(
T (i)

)#

T (i)

)
zi, (20)

where zi ∈ RK is arbitrary for each i ≥ 1. Equation (20) can be further refined by

noting the equivalence

Π(i) = I −
(
T (i)

)#

T (i), (21)

where Π(i) ∈ RK×K is the matrix whose rows are all the stationary probability vector

π(i) (see Theorem 2.3 of [31]), from which we obtain

k(i) = −
(
T (i)

)# (
D(i)e−

(
A

(i)
0 −A

(i)
2

)
e
)

+ Π(i)zi. (22)

For some nonnegative scalar mi, let zi := mi e ∈ RK , the column vector consisting of

nonnegative scalar entries mi. Equation (22) then reduces to

k(i) = −
(
T (i)

)# (
D(i)e−

(
A

(i)
0 −A

(i)
2

)
e
)

+mie. (23)
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Next, we show that there exists a positive sequence {mi : i ∈ N} that induces the

solutions k(i) to be nonnegative in (23). To this end, it is necessary to show that(
T (i)

)#

=
(
I −A(i)

)#

and D(i) = π(i)
(
A

(i)

0 −A
(i)

2

)
e

converge as i → ∞. By Assumption 1, the convergence of sequences
{
A

(i)

j

}
for j =

0, 1, 2 ensures convergence of I − A(i). Next, we use this convergence, along with

(21), to show that if the generalized inverse
{(
T (i)

)#}
converges, then the sequence

of stationary vectors
{
π(i)

}
likewise converges. Lemma 3 of the Appendix establishes

that

lim
i→∞

(
T (i)

)#

= (T ∗)
#

,

ensuring that all terms on the right-hand side of (23) (with the exception of mi) form

convergent sequences. We will now choose an appropriate sequence of numbers {mi}.

Define the limits

D∗ := lim
i→∞

D(i) T ∗ := lim
i→∞

T (i) π∗ := lim
i→∞

π(i)

and the function κ : R→ RK by

κ(x) := − (T ∗)
#

[D∗e− (A∗0 −A∗2)e] + xe. (24)

As the first summand on the right-hand side of (24) is a real constant vector, we may

choose a sufficiently large number M > 0 such that κ(M) ≥ 0 componentwise. The

convergence of
{
k(i)
}

in (23) when mi := M ensures there is an integer J ∈ N such

that k(i) ≥ 0 for every i ≥ J . We may thus set

K :=
{
k(i) : i = 0 . . . J − 1

}
∪
{
k(i) : i ≥ J, mi = M

}
⊂ RK

+
,

where vectors
{
k(i) : i = 0 . . . J − 1

}
⊂ RK

+
may be chosen arbitrarily. In this way,

we obtain a sequence K of feasible solutions to Γ(i)(k(i)) ≤ 0 that converges to some

vector k∗ ∈ RK
+

. Now, the existence of k∗ = limi→∞ k
(i) ensures convergence of the

sequences
{
A

(i)

j k
(i) : i ∈ Z+

}
for j = 0, 1, 2, and hence of

{
A(i)k(i) : i ∈ Z+

}
. Conse-

quently, we obtain the convergence of
{

Γ(i)(k(i)) : i ∈ Z
+

}
and

{
Λ(i)(k(i)) : i ∈ Z

+

}
with the additional property that, as i→∞,

Γ(i)(k(i))→ (A∗0 −A∗2) e+ (A∗ − I)k∗ ≤ 0.
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We now show that
{

Γ(i)(k(i)) : i ∈ Z
+

}
and

{
Λ(i)(k(i)) : i ∈ Z

+

}
converge to the

same limit. To this end, let ‖B‖ be any matrix norm of a square matrix of K dimensions

with real entries and let ‖B‖op be the operator norm of a bounded linear transformation

RK → RK whose operator matrix is B. Observe that for any ε > 0 and i sufficiently

large,∥∥∥Λ(i)(k(i)) − Γ(i)(k(i))
∥∥∥

=
∥∥∥(A(i)

0 k
(i+1) −A

(i)

0 k
(i)
)

+
(
A

(i)

1 k
(i) −A

(i)

1 k
(i)
)

+
(
A

(i)

2 k
(i−1) −A

(i)

2 k
(i)
)∥∥∥

≤
∥∥∥A(i)

0 k
(i+1) −A

(i)

0 k
(i)
∥∥∥+

∥∥∥A(i)

2 k
(i−1) −A

(i)

2 k
(i)
∥∥∥ (25)

≤
∥∥∥A(i)

0

∥∥∥
op

∥∥∥k(i+1) − k(i)
∥∥∥+

∥∥∥A(i)

2

∥∥∥
op

∥∥∥k(i−1) − k(i)∥∥∥
≤ η0

∥∥∥k(i+1) − k(i)
∥∥∥+ η2

∥∥∥k(i−1) − k(i)∥∥∥
≤ η(ε/2) + η(ε/2) = ηε,

where η = max{η0, η2}, since convergent sequences are Cauchy convergent in finite-

dimensional Euclidean space. Thus, there exists an N∗ > N such that Λ(i)(k(i)) ≤ 0

for each i ≥ N∗; hence, the process Φ is recurrent.

(⇐) Conversely, suppose that Φ is recurrent. By [15, Thm. 2.2.1], there exists some

N∗ > 0 and some sequence K =
{
k(i) : i ∈ Z

+

}
⊂ RK

+
of vectors such that

Λ(i)(k(i)) ≤ 0, i ≥ N∗. (26)

It is possible to construct a convergent K ′ from the elements of K that satisfies

(26). Indeed, due to Assumption 1, each A
(i)

k for k = 0, 1, 2 converges element-wise,

thereby ensuring the existence of some N ′ ≥ N∗ such that (26) holds for the convergent

sequence

K ′ =
{
k(i) : i ∈ Z+ , k

(i) = k(N
′) for i ≥ N ′

}
.

Then, from Assumption 1 and the convergence of sequence K ′, we obtain the inequality

(25) over the sequence K ′ whenever i ≥ N ′′, for some N ′′ > N ′. This, together with

the fact that (26) holds over K ′ shows that Γ(i)(k(i)) ≤ 0 must likewise hold over K ′

for i sufficiently large. By Lemmas 1 and 2, it must be the case that D(i) ≤ 0 for all

such i. This completes the proof of part (i).
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Part (ii): Positive Recurrence. The assertion of part (ii) follows directly from the

proof of part (i) by invoking Theorem 2.2.3 of [16] in place of Theorem 2.2.1 of the

same reference. �

4. Connections to Level-Independent QBD Processes

In this section, we draw parallels between established drift conditions for level-

independent QBD processes and conditions derived in Section 3. In Proposition 2 we

establish the existence of the limiting drift D∗ and show that it can be computed in

a manner that is analogous to computing the average drift of its level-independent

counterpart.

Proposition 2. Suppose that the assumptions of Theorem 3 hold for the discrete-time

process Φ. Then the limiting drift D∗ exists and is given by

D∗ := lim
i→∞

D(i) = π∗ (A∗0 −A∗2) e,

where π∗ is the unique solution to the system of equations

xA∗ = x and xe = 1, (27)

A∗ = A∗2 +A∗1 +A∗0, and the matrices A∗j , j = 0, 1, 2 are defined in Assumption 1.

Proof. First we establish that the K-dimensional vector π∗ := limπ(i) is a solution

to (27). For each i ∈ N, π(i)A(i) = π(i) and π(i)e = 1; therefore,

lim
i→∞

π(i)A(i) = lim
i→∞

π(i) = π∗ and 1 = lim
i→∞

π(i)e = π∗e. (28)

Next we show that π(i)A(i) → π∗A∗ as i→∞. For each phase j ∈P,

lim
i→∞

[
π(i)A(i)

]
j

= lim
i→∞

∑
m∈P

π(i)
m A

(i)
m,j =

∑
m∈P

lim
i→∞

π(i)
m A

(i)
m,j =

∑
m∈P

(π∗m)
(
A∗m,j

)
= [π∗A∗]j .

As the left- and right-hand sides are equal for every j, it follows that

lim
i→∞

π(i)A(i) = π∗A∗. (29)



LDQBD processes 21

By equations (28) and (29), π∗A∗ = π∗ and π∗e = 1. To see that π∗ is the unique

solution to (27), note that

e = lim
i→∞

A(i)e =
(

lim
i→∞

A(i)
)
e = A∗e,

demonstrating that A∗ is stochastic. The irreducibility and finite dimensionality of A∗,

along with (28) and (29), prove that π∗ uniquely solves (27). Finally, the existence of

π∗, along with Assumption 1, establish the existence of

D∗ = lim
i→∞

π(i)
(
A

(i)

0 −A
(i)

2

)
e =

(
lim
i→∞

π(i)
)(

lim
i→∞

(
A

(i)

0 −A
(i)

2

)
e
)

= π∗ (A∗0 −A∗2) e,

and the proof is complete. �

For the embedded DTMC of irreducible, level-independent QBD processes in which

A0, A1 and A2 are constant matrices over the levels i, it is well-known that the average

drift of the process is

D = π(A0 −A2)e,

where π is the unique solution of the system of equations π(A0 + A1 + A2) = π and

πe = 1. Furthermore, it can be shown that the process is positive recurrent if and

only if D < 0, null recurrent if and only if D = 0, and transient if D > 0 (see [24, 38]).

Proposition 3 asserts that similar conditions can be stated for the level-dependent

process Φ considered herein.

Proposition 3. Suppose the assumptions of Theorem 3 hold. Then the discrete-time

LDQBD process Φ is

(i) recurrent if and only if D∗ ≤ 0 and D(i) > 0 for at most finitely many i,

(ii) positive recurrent if and only if D∗ < 0,

(iii) null recurrent if and only if D∗ = 0 and D(i) > 0 for at most finitely many i,

(iv) transient if and only if D∗ ≥ 0 and D(i) > 0 for infinitely many i.

Proof. For part (i), suppose first that D∗ ≤ 0 and D(i) > 0 for at most a finite

number of terms i. Then there must be some N > 0 such that the terms D(i) ≤
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0 for every i ≥ N , by existence of D∗ = limi→∞D(i). Thus, there is a finite

number ε = infi≥N
(
−D(i)

)
≥ 0. So by Lemmas 1 and 2, there is a sequence

K =
{
k(i) ∈ RK

+
: i ∈ Z

+

}
such that

Γ(i)(k(i)) ≤ −ε for i ≥ N. (30)

It was shown in the proof of Theorem 3 that K is convergent and, furthermore, that

there exists an N∗ > N such that

Λ(i)(k(i)) ≤ −ε, i ≥ N∗,

thus establishing the recurrence of Φ. Conversely, if Φ is recurrent, then by Theorem

3, there exists an ε ≥ 0 and N > 0 such that D(i) ≤ −ε for all i ≥ N . As D(i) → D∗,

we must have that the limit point D∗ ≤ −ε, which completes the proof of part (i).

For part (ii), assuming the strict inequality D∗ < 0 implies the existence some

N > 0 such that the terms D(i) < 0 for every i > N . This further implies the existence

of a finite number ε = infi≥N
(
−D(i)

)
> 0. By Lemma 2, we then obtain a sequence

K =
{
k(i) ∈ RK

+
: i ∈ Z

+

}
such that

Γ(i)(k(i)) ≤ −ε < 0 for i ≥ N.

As in the proof of part (i), we may then infer the existence of an N∗ > N such that

Λ(i)(k(i)) ≤ −ε < 0, i ≥ N∗,

which establishes the positive recurrence of Φ. On the other hand, if Φ is positive

recurrent, then Theorem 3 gives the existence of an ε > 0 and N > 0 such that

D(i) ≤ −ε < 0 for all i ≥ N . As D(i) → D∗, we must have that the limit point

D∗ ≤ −ε < 0, which completes the proof of part (ii).

Part (iii) follows immediately from parts (i) and (ii), since the region of null

recurrence indicated by D∗ must be the complement of the set {D∗ ∈ R : D∗ < 0}

within the indicated region of recurrence.

Finally, part (iv) follows from part (i) due to the fact that the regions of transience

and recurrence must be complementary. �
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5. Conclusion

In this paper, we have provided both necessary and sufficient conditions for the

recurrence and positive recurrence of a class of LDQBD processes that exhibit conver-

gence in the rows by employing a Foster-Lyapunov approach. For such processes, a

limiting drift term D∗ was shown to exist, and this term provides an analytical means

by which to characterize the recurrence properties of the process. The parallels to the

level-independent QBD process are apparent, namely that a negative average drift is

necessary and sufficient to ensure positive recurrence. The analysis contained herein

provides a simpler means by which to perform stability analysis for broad classes of

queueing models with nonstandard input and output processes.

Appendix

Theorem 4. (Farkas’s Lemma.) Let M ∈ Rm×n be an m × n matrix and b ∈ Rm a

column vector of dimension m. Then exactly one of the statements (i) or (ii) is true:

(i) There exists some x ∈ Rn with x ≥ 0 such that Mx = b, or

(ii) There exists some y ∈ Rm such that y′M ≥ 0 and y′b < 0.

Theorem 5. (Gordan’s Theorem.) Let M ∈ Rm×n be an m×n matrix. Then exactly

one of the statements (i) or (ii) is true:

(i) There exists some x ∈ Rn with x ≥ 0 and x 6= 0 such that Mx = 0, or

(ii) There exists some y ∈ Rm such that y′M > 0.

Proposition 4. For n ∈ N, let {Mi} be a sequence of elements in Rn×n that converges

elementwise to an invertible limit M∗. Then

lim
i→∞

M−1i = M−1∗ .

Proof. From rudimentary linear algebra, it is known that diagonalizable invertible

matrices Mi may be expressed in terms of the decompositions Mi = PiDiP
−1
i , where

Di is a diagonal matrix whose nonzero entries are the (possibly repeated) real and

complex eigenvalues of Mi, and is unique up to ordering of the eigenvalues. Otherwise,
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if Mi is not diagonalizable, then one may still decompose the matrix as Mi = PiJiP
−1
i ,

where Ji is the corresponding Jordan canonical form (JCF) of Mi. Likewise, one may

also write M∗ = P∗D∗P
−1
∗ or M∗ = P∗J∗P

−1
∗ , where D∗ is a diagonal matrix and J∗

is a JCF, depending upon whether or not M∗ is diagonalizable.

For the special case in which each Mi = PiDiP
−1
i is a diagonalizable matrix, the

fact that Mi → M∗, together with the uniqueness of the diagonal decomposition and

the invertibility of Pi, guarantees the convergence Pi → P∗, P
−1
i → P−1∗ , and hence

Di → D∗. This shows that M∗ must likewise be diagonalizable. Setting

Di := diag (λi1, λi2, . . . , λin) , D∗ = diag (λ∗1, λ∗2, . . . λ∗n) ,

we see that λik → λ∗k must hold for each k = 1 . . . n. Consequently, we must also have

1/λik → 1/λ∗k for each k, which proves that D−1i → D−1∗ , and thus M−1i →M−1∗ .

For the case in which each Mi is non-diagonalizable, we may express each Ji for

large enough i as Ji = diag (Ji1, Ji2, . . . , Jir) and J∗ = diag (J∗1, J∗2, . . . , J∗r) for some

r ≥ 1. For a fixed k ∈ Z+ and complex eigenvalues λik and λ∗k, the corresponding

block entries Jik and J∗k, both of which are of the dimension nk × nk, appear in the

form

Jik =


λik 1

λik 1

. . .
. . .

λik 1

 , J∗k =


λ∗k 1

λ∗k 1

. . .
. . .

λ∗k 1

 .

The dimensions of these matrices must obey the relation n =
∑r
k=1 nk. By the

uniqueness of the JCF decomposition (up to ordering of the eigenvalues in the JCF

matrix), together with the invertibility of Pi, the convergence Mi → M∗ implies that

Pi → P∗, P
−1
i → P−1∗ , and thus Ji → J∗. In particular, Jik → J∗k implies that

λik → λ∗k for each k = 1 . . . r.

We will now show that M−1i →M−1∗ , where

M−1i = P−1i J−1i Pi and M−1∗ = P−1∗ J−1∗ P∗.

Based on the properties of JCF decompositions, it is sufficient to demonstrate the

convergence J−1i → J−1∗ . In order to do this, we will consider Ji for large i. Since
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J−1i = diag
(
J−1i1 , J

−1
i2 , . . . , J

−1
ir

)
, we will choose an arbitrary fixed k and note that

J−1ik =



µik µ2
ik µ3

ik . . . µnkik

µik µ2
ik . . . µnk−1ik

µik . . . µnk−2ik

. . .
...

µik


, µik = 1/λik.

Due to the triangular shape of the matrix, it is possible to find some nilpotent matrix

Nik such that Nnk+1
ik = 0 for some nk ≥ 1, and for which

J−1ik = I − µikNik + µ2
ikN

2
ik − · · · ± µ

nk
ik N

nk
ik = µik (I + µikNik)

−1
. (31)

Applying the convergence λik → λ∗k to Equation (31) then gives µik → µ∗k = 1/λ∗k,

which in turn produces J−1ik → J−1∗k for each k = 1, . . . , r. Consequently, J−1i → J−1∗

and

M−1∗ = P−1∗ J−1∗ P∗ = lim
i→∞

P−1i J−1i Pi,

and the proof is complete. �

Lemma 3. Suppose that Assumption 1 holds. Then

lim
i→∞

(
T (i)

)#

= (T ∗)
#

,

where T (i) = I − A(i), T ∗ = limi→∞ T (i) and B
#

denotes the generalized inverse of a

matrix B ∈ RK×K defined in [31].

Proof. To prove the assertion, we will appeal to the Jordan canonical forms (JCF)

of the operator T (i) and its group inverse
(
T (i)

)#
. The irreducibility of A(i) for every

i allows us to invoke Corollary 2.1 of [31], which states that

T (i) =
(
S(i)

)−1 0 0

0 I − U (i)

S(i),
(
T (i)

)#

=
(
S(i)

)−1 0 0

0
(
I − U (i)

)−1
S(i),

where S(i) ∈ RK×K and U (i) ∈ R(K−1)×(K−1) are invertible matrices. By Assumption

1, we know that T ∗ = I − A∗ = limi→∞ I − A(i) exists. Thus, from the same result,

we obtain the JCF decompositions

T ∗ = (S∗)
−1

 0 0

0 I − U∗

S∗, (T ∗)
#

= (S∗)
−1

 0 0

0 (I − U∗)−1

S∗, (32)
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where S∗ ∈ RK×K and U∗ ∈ R(K−1)×(K−1) are invertible matrices. It is well-known

that the JCF decomposition is unique up to ordering of the distinct eigenvalues, as

explained in the proof of Proposition 4. We will assume that the eigenvalues in each

I − U (i) are ordered in such a way that the element-wise convergence
(
I − U (i)

)
→

(I − U∗) makes sense, should it occur.

For notational brevity, we will label the following JCFs as

J (i) :=

 0 0

0 I − U (i)

 and J∗ :=

 0 0

0 I − U∗

 .

The known convergence of T (i) = S(i)J (i)
(
S(i)

)−1 → T ∗, together with the invertibility

of S(i) and the uniqueness of the JCF decomposition, allows us to assert the convergence

of S(i) → S∗, U (i) → U∗, J (i) → J∗, and
(
S(i)

)−1 → (S∗)
−1

. The convergence

U (i) → U∗ further implies that J (i) → J∗. In summary, we obtain the convergence of{
T (i)

}
to the limiting JCF decomposition

T ∗ = lim
i→∞

T (i) = lim
i→∞

(
S(i)

)−1
J (i)S(i) = (S∗)

−1
J∗S∗. (33)

We may now apply the convergence S(i) → S∗, U (i) → U∗, J (i) → J∗, and
(
S(i)

)−1 →
(S∗)

−1
that were determined in the course of formulating Equation (33), to the se-

quence
{(
T (i)

)#}
in order to obtain

lim
i→∞

(
T (i)

)#

= (S∗)
−1

 0 0

0 (I − U∗)−1

S∗ = (T ∗)
#

,

where
{(
I − U (i)

)−1}→ (I − U∗)−1 results from Proposition 4. �
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