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Abstract

We formulate an optimal stopping problem for a variant of Shepp’s urn
model in which it is possible to sample more than one item at each stage.
Using a Markov decision process model, we establish monotonicity of the
optimal value function and show that the optimal policy is a monotone
threshold policy that prescribes either not sampling, or sampling the max-
imum number of items permitted. A special case exhibits convexity and
submodularity, but these properties do not hold in general.
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1. Introduction

Motivated by an optimal stopping problem introduced by Breiman [1]
and expanded upon by Chow and Robbins [2], Teicher and Wolfowitz [3],
and Dvoretzky [4], Shepp [5] examined a related discrete-time stopping prob-
lem that can be described as follows. Consider an urn initially consisting of
p perfect and i imperfect items, where p and i are finite, positive integers
that are known a priori. A single item is sampled randomly from the urn
sequentially (without replacement) until some appropriate stopping time.
The item type (perfect or imperfect) is revealed only after it is drawn; for
each imperfect item drawn, a reward of +1 is received, and for each perfect
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item drawn, a reward (or cost) of -1 is incurred. At each step, the deci-
sion maker may decide not to draw any item at all. Shepp addressed the
question of when to stop sampling from the urn to ensure that the total
expected return is positive. He showed that the optimal policy for this stop-
ping problem has a threshold structure and then asymptotically identified
the boundary of the continuation region by employing a Brownian bridge
approximation to the problem. Specifically, for a given number of imperfect
items i, there is a threshold β(i) such that if p ≤ β(i), it is optimal to draw
from the urn; if p > β(i), it is optimal not to draw. (A similar optimal
threshold-type policy holds when p and i are interchanged.) Additionally,
Shepp showed that limi→∞(β(i) − i)(2i)−0.5 = α ≈ 0.83992. The optimal
stopping problem that we examine here can be viewed as a generalization of
Shepp’s urn scheme in that we allow sampling multiple items at each step
and use a different cost/reward structure of which Shepp’s is a special case.

Optimal stopping problems similar to Shepp’s have been analyzed over
the past several decades with the models of Boyce [6, 7] being most rele-
vant to our work here. Boyce [6] investigated a bond-selling problem for
which there exist short-term price fluctuations and mid-term price informa-
tion. Using a pinned Brownian motion process, he considered the problem of
finding the optimal time to sell a bond. Specifically, he derived the optimal
selling time under the somewhat restrictive condition that the Brownian mo-
tion is pinned to a Gaussian distribution at a certain time. Subsequently,
he considered Shepp’s urn model as a finite approximation of the pinned
Brownian motion. This approximation relaxes the Gaussian restriction and
is more computationally appealing. Boyce further refined this approxima-
tion by generalizing Shepp’s urn model to a random urn model in which the
total number of items in the urn is deterministic and known, while the num-
ber of imperfect items is known only through a probability distribution. A
recursive algorithm was devised to compute the optimal value function and
optimal policy. Boyce [7] established structural properties of the optimal
value function, including the optimality of a threshold-type policy which
had been established by Shepp [5], by a recursive method. Boyce developed
an efficient algorithm to compute the threshold values and corroborated
Shepp’s asymptotic result that α ≈ 0.83992. We devise and analyze an op-
timal stopping problem similar to Shepp’s urn model but from a stochastic
optimization point of view. Some of the key differences are as follows:

• The urn model we analyze allows for sampling multiple items at once
rather than a single item. Shepp’s model can be viewed as a special
case of ours in which the maximum number of drawn items is c = 1;
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• The cost/reward structure of our model is less restrictive in that a
reward of r is received for each sampled imperfect item, but no cost is
incurred for drawing a perfect item;

• This sequential decision problem is addressed via a Markov decision
process (MDP) model to establish important structural properties of
the optimal value function and optimal policy. We prove that it is
optimal to either (1) sample none of the items (thereby stopping the
process), or (2) sample the maximum number possible. Hence, for
any state, if it is optimal to sample, then it is optimal to sample
the maximum number allowable (full inspection policy). This optimal
policy is one of monotone thresholds. By contrast, Shepp provided
an asymptotic continuation region by employing a continuous-time
approximation and a scaled process;

• We examine in detail the case with c = 1 (Shepp’s model with a modi-
fied cost/reward structure) and establish the convexity and submodu-
larity of the optimal value function. Interestingly, these properties do
not necessarily hold for c > 1 as demonstrated via a counterexample.

The remainder of the paper is organized as follows. Section 2 provides
the detailed problem formulation and our MDP model. Section 3 estab-
lishes properties of the optimal value function and optimal policy. Section
4 provides convexity and submodularity results for the special case c = 1.
Finally, in Section 5, we illustrate the behavior of the optimal value func-
tion by way of a numerical example and demonstrate that the convexity and
submodularity results do not necessarily hold when c > 1.

2. Problem Description and MDP Formulation

Consider an urn initially containing I imperfect and P perfect items,
respectively (I, P ∈ N). At each decision epoch, the current number of
imperfect and perfect items within the urn is known, and one must decide the
number of items to randomly sample from the urn (without replacement).
This number can be selected from the set {0, 1, . . . , c}, where c is a finite,
positive integer. However, if fewer than c items are contained in the urn,
then we are limited by the number in the urn. The type of each item (perfect
or imperfect) is revealed only when it is drawn. If at any decision epoch it
is optimal to sample 0 items, the process is stopped, no cost is incurred and
no reward is gained; however, if at least one item is drawn, then a fixed
reward (cost) of -1 is incurred, irrespective of the number of items drawn.
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For each imperfect item drawn, a reward of r (r > 0) is received, and for
each perfect item drawn, no reward is earned and no cost is incurred. This
sequential sampling process continues until the decision is to sample none of
the items from the urn with the objective of maximizing the total expected
profit accrued until the process is stopped.

Next, we introduce notation and formulate this sequential decision prob-
lem using an MDP model. Let Z+ = {0, 1, . . .} be the set of nonnegative
integers and N = {1, 2, . . .} the set of natural numbers. For any n ∈ N, Cn

m

denotes the number of ways to select m items from a collection of n items,
and we adopt the convention that C−1

n = 0. We also assume sums of the
form

∑−1
0 (·) = 0. We consider an infinite horizon MDP model in which the

decision epochs are the elements of N. The time interval between any two
consecutive decision epochs, n and n+1, is called the nth period. The state
of the MDP model is an ordered pair (i, p), where i and p denote the current
number of imperfect and perfect items in the urn, respectively, at the start
of the current period. Let V (i, p) be the maximum total expected profit
accrued until stopping when starting in state (i, p) over all non-anticipative
policies (i.e., those that depend on the past and present but not the future),
and similarly let V [(i, p), j] be the maximum total expected profit over all
such policies, provided that j ≥ 1 items are drawn in the current period.
We pause here to note that V (i, p) exists and is finite, as the state and
action spaces are finite and bounded, the one-stage costs/rewards are finite
and bounded, and the number of decision epochs before stopping, under
each non-anticipative policy, is bounded. Hence, the value function of each
non-anticipative policy is well-defined, finite and bounded. Furthermore,
the set of non-anticipative policies is finite, so V (i, p) exists and is finite for
each state (i, p). Theorems 7.1.7 and 7.1.9 of [8] establish the existence of a
stationary, deterministic optimal policy that satisfies Bellman’s optimality
equation, which is described in what follows.

For any state (i, p), let Sip := {1, . . . ,min{c, i+ p}}. Therefore, for each
state (i, p), Bellman’s optimality equation is

V (i, p) = max

{
max
j∈Sip

{V [(i, p), j]} , 0
}
, (1)

where, for each j ∈ Sip,

V [(i, p), j] = −1 +

j∑
k=0

Ci
kC

p
j−k

Ci+p
j

(
kr + V (i− k, p− j + k)

)
. (2)

The index k in (2) denotes the number of imperfect items drawn in the
current period. For any state (i, p), the least that can be drawn is zero,
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and the most that can be drawn is j ∈ Sip. The zero term in equation (1)
represents the reward for stopping the process.

In our model, drawing no item is equivalent to stopping the process.
Alternatively, one can devise a model in which the action space includes
the option of sampling 0 items (at no cost) and allowing the process to
continue. However, the revised model has an optimal value function and
optimal policy that coincide with our model. To see this, couple any policy
in the revised model with an admissible policy to the original model that
follows the same sequence of actions except that the action of sampling no
item is eliminated wherever it appears. The value functions of these two
policies coincide; hence, the optimal policy of the revised model can be
obtained by only searching over the set of policies that never choose the
action ‘sample 0 items and continue to the next decision epoch’.

Remark 1. If c = 1 and r = 2, the optimality equation is as follows:

V (i, p) = max

{
−1 +

p

i+ p
V (i, p− 1) +

i

i+ p
(2 + V (i− 1, p)) , 0

}
= max

{
p

i+ p
(−1 + V (i, p− 1)) +

i

i+ p
(1 + V (i− 1, p)) , 0

}
, (3)

which is identical to the one derived by Boyce [7] for Shepp’s urn model. In
this sense, our model can be viewed as a generalization of Shepp’s model.

3. Structural Properties

In this section, we establish important properties of the optimal value
function and characterize the optimal policy. However, before doing so, we
require the following lemma.

Lemma 1. For each state (i, p− 1) ∈ Z2
+,

V (i+ 1, p− 1)− V (i, p) ≤ r. (4)

Proof. We will prove the result by induction on i + p. It is clear that
inequality (4) holds for i + p = 1. For the induction hypothesis, assume
the same holds for i + p = n > 1; we proceed to show that it holds for
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i+ p = n+ 1. Note that,

j∑
k=0

Ci
kC

p
j−k

(
kr + V (i− k, p− j + k)

)
=

j+1∑
k=1

Ci
k−1C

p
j−k+1

(
(k − 1)r + V (i− k + 1, p− j + k − 1)

)
(5a)

=

j+1∑
k=1

Ci
k−1C

p
j−k+1

(
kr + V (i− k + 1, p− j + k − 1)

)
(5b)

−
j+1∑
k=1

Ci
k−1C

p
j−k+1r

=

j+1∑
k=1

Ci
k−1C

p
j−k+1

(
kr + V (i− k + 1, p− j + k − 1)

)
− Ci+p

j r,

(5c)

where (5a) and (5c) follow from a simple index transformation and Vander-
monde’s identity, respectively. Therefore,

V [(i+ 1, p− 1), j]− V [(i, p), j]

=
1

Ci+p
j

{ j∑
k=0

Ci+1
k Cp−1

j−k

(
kr + V (i− k + 1, p− j + k − 1)

)
−

j∑
k=0

Ci
kC

p
j−k

(
kr + V (i− k, p− j + k)

)} (6a)

=
1

Ci+p
j

{ j+1∑
k=0

Ci+1
k Cp−1

j−k

(
kr + V (i− k + 1, p− j + k − 1)

)
−

j+1∑
k=0

Ci
k−1C

p
j−k+1

(
kr + V (i− k + 1, p− j + k − 1)

)
− Ci+p

j r

} (6b)

=

j+1∑
k=0

(
Ci+1

k Cp−1
j−k − Ci

k−1C
p
j−k+1

)(
kr + V (i− k + 1, p− j + k − 1)

)
Ci+p

j

+ r,
(6c)

where (6b) follows from (5a)–(5c) and the fact that Cn
−1 := 0 for all n ∈ Z+.

It is sufficient to show that the summation on the right-hand side (rhs) of (6c) is
nonpositive. Note that Ci+1

k Cp−1
j−k ≥ Ci

k−1C
p
j−k+1 if and only if k ≤ k, where

k :=

⌊
(i+ 1)(j + 1)

i+ p+ 1

⌋
.
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From Vandermonde’s identity, it follows that

k∑
k=0

Ci+1
k Cp−1

j−k +

j+1∑
k=k+1

Ci+1
k Cp−1

j−k =

k∑
k=0

Ci
k−1C

p
j−k+1 +

j+1∑
k=k+1

Ci
k−1C

p
j−k+1 = Ci+p

j .

Therefore,

k∑
k=0

Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1 =

j+1∑
k=k+1

Ci
k−1C

p
j−k+1 − Ci+1

k Cp−1
j−k . (7)

By the induction hypothesis, for each k ∈ {0, . . . , k},

kr + V (i− k + 1, p− j + k − 1) ≤ kr + V (i− k + 1, p− j + k − 1), (8a)

and for each k ∈ {k + 1, . . . , j + 1},

kr + V (i− k + 1, p− j + k − 1) ≥ kr + V (i− k + 1, p− j + k − 1). (8b)

Hence,

j+1∑
k=0

(Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1)

(
kr + V (i− k + 1, p− j + k − 1)

)
=

k∑
k=0

(Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1)

(
kr + V (i− k + 1, p− j + k − 1)

)
(9a)

+

j+1∑
k=k+1

(Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1)

(
kr + V (i− k + 1, p− j + k − 1)

)
≤

k∑
k=0

(Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1)

(
kr + V (i− k + 1, p− j + k − 1)

)
(9b)

+

j+1∑
k=k+1

(Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1)

(
kr + V (i− k + 1, p− j + k − 1)

)
=
(
kr + V (i− k + 1, p− j + k − 1)

) j+1∑
k=0

(Ci+1
k Cp−1

j−k − Ci
k−1C

p
j−k+1) (9c)

=0, (9d)

where (9b) follows from (8a)–(8b) and the definition of k, and (9d) follows from

Vandermonde’s identity. We conclude from (9a)-(9d) that the summation on the

rhs of (6c) is nonpositive, which completes the proof.

Starting in state (i, p) and choosing j ≥ 1 items to draw in this period,
kr + V (i − k, p − j + k) − 1 is the total expected profit under the realiza-
tion that k of the j drawn items are imperfect. Lemma 1 implies that the
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function kr + V (i− k, p− j + k) is nondecreasing in k; therefore, it is more
advantageous to detect imperfect items earlier rather than later. The next
theorem establishes monotonicity of the value function.

Theorem 1. For each (i, p) ∈ Z2
+,

(i) V (i+ 1, p) ≥ V (i, p),

(ii) V (i, p+ 1) ≤ V (i, p).

Proof. For part (i), we again employ induction on i+ p. The inequality
in Theorem 1(i) certainly holds for i+ p = 0. For the induction hypothesis,
assume that it holds for i + p = n > 1. Setting k := ⌈(i+ 1)j/(i+ p+ 1)⌉,
we see that

Ci+1
k Cp

j−k

Ci+p+1
j

≥
Ci
kC

p
j−k

Ci+p
j

if and only if k ≥ k. Therefore,

V [(i+ 1, p), j]− V [(i, p), j]

=
1

Ci+p
j Ci+p+1

j

{ j∑
k=0

Ci+p
j Ci+1

k Cp
j−k

(
kr + V (i− k + 1, p− j + k)

)
−

j∑
k=0

Ci+p+1
j Ci

kC
p
j−k

(
kr + V (i− k, p− j + k)

)}
,

(10a)

and the bracketed expression in (10a) can be expressed as

k−1∑
k=0

Ci+p
j Ci+1

k Cp
j−k

(
V (i− k + 1, p− j + k)− V (i− k, p− j + k)

)
+

j∑
k=k

Ci+p+1
j Ci

kC
p
j−k

(
V (i− k + 1, p− j + k)− V (i− k, p− j + k)

)

−
k−1∑
k=0

(
Ci+p+1
j Ci

kC
p
j−k − Ci+p

j Ci+1
k Cp

j−k

)(
kr + V (i− k, p− j + k)

)
+

j∑
k=k

(
Ci+p
j Ci+1

k Cp
j−k − Ci+p+1

j Ci
kC

p
j−k

)(
kr + V (i− k + 1, p− j + k)

)
.

(10b)
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By the induction hypothesis, the first and second summations of (10b) are
nonnegative. Hence, it suffices to show that the third summation does not
exceed the fourth. By Lemma 1, it follows that for each k ∈ {0, . . . , k − 1},

kr + V (i− k, p− j + k) ≤ kr + V (i− k, p− j + k), (11)

and for each k ∈ {k, . . . , j} ,

kr + V (i− k + 1, p− j + k) ≥ kr + V (i− k + 1, p− j + k). (12)

By reasoning similar to that used to establish (7), it can be shown that

k−1∑
k=0

Ci+p+1
j Ci

kC
p
j−k − Ci+p

j Ci+1
k Cp

j−k =

j∑
k=k

Ci+p
j Ci+1

k Cp
j−k

− Ci+p+1
j Ci

kC
p
j−k. (13)

Therefore,

j∑
k=k

(Ci+p
j Ci+1

k Cp
j−k − Ci+p+1

j Ci
kC

p
j−k)

(
kr + V (i− k + 1, p− j + k)

)

−
k−1∑
k=0

(Ci+p+1
j Ci

kC
p
j−k − Ci+p

j Ci+1
k Cp

j−k)
(
kr + V (i− k, p− j + k)

)
≥

j∑
k=k

(Ci+p
j Ci+1

k Cp
j−k − Ci+p+1

j Ci
kC

p
j−k)

(
kr + V (i− k + 1, p− j + k)

)
(14a)

−
k−1∑
k=0

(Ci+p+1
j Ci

kC
p
j−k − Ci+p

j Ci+1
k Cp

j−k)
(
kr + V (i− k, p− j + k)

)
=

j∑
k=k

(Ci+p
j Ci+1

k Cp
j−k − Ci+p+1

j Ci
kC

p
j−k) (14b)

×
(
V (i− k + 1, p− j + k)− V (i− k, p− j + k)

)
≥0, (14c)

where inequality (14a) follows from (11)–(12) and the definition of k, (14b)
follows from (13), and (14c) follows from the induction hypothesis and the
definition of k. This completes the proof of part (i).
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For part (ii), let k := ⌊ij/(i+ p+ 1)⌋ and note that
Ci

kC
p+1
j−k

Ci+p+1
j

≥ Ci
kC

p
j−k

Ci+p
j

if

and only if k ≤ k. The remainder of the proof mirrors that of part (i).

Remark 2. For Shepp’s urn scheme, Boyce [7] showed that the last item
drawn is imperfect. Theorem 1 (ii) implies that our last draw must include
at least one imperfect item.

Theorem 2. For each (i, p) and 1 ≤ j ≤ c− 1, V [(i, p), j+1] ≥ V [(i, p), j].

Proof. There is an integer k such that given i, p, and j,

Ci
kC

p
j+1−k

Ci+p
j+1

≥
Ci
kC

p
j−k

Ci+p
j

if and only if k ≥ k. Next, we note that

V [(i, p), j + 1]− V [(i, p), j]

=
1

Ci+p
j Ci+p

j+1

{ j+1∑
k=0

Ci+p
j Ci

kC
p
j+1−k

(
kr + V (i− k, p− j − 1 + k)

)
−

j∑
k=0

Ci+p
j+1C

i
kC

p
j−k

(
kr + V (i− k, p− j + k)

)}
,

(15a)

and the bracketed expression on the rhs of (15a) can be written as

k−1∑
k=0

Ci+p
j Ci

kC
p
j+1−k

(
V (i− k, p− j − 1 + k)− V (i− k, p− j + k)

)
+

j+1∑
k=k

Ci+p
j+1C

i
kC

p
j+1−k

(
V (i− k, p− j − 1 + k)− V (i− k, p− j + k)

)

−
k−1∑
k=0

(
Ci+p
j+1C

i
kC

p
j−k − Ci+p

j Ci
kC

p
j+1−k

)(
kr + V (i− k, p− j + k)

)
+

j+1∑
k=k

(
Ci+p
j Ci

kC
p
j+1−k − Ci+p

j+1C
i
kC

p
j−k

)(
kr + V (i− k, p− j − 1 + k)

)
.

(15b)

The proof is completed in a manner similar to that of Theorem 1.
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Corollary 1. For each state (i, p) ∈ Z2
+, the optimal action is to either (a)

draw no item at all, or (b) draw the maximum possible number of items,
min{c, i+ p}. That is, the optimality equations can be expressed as

V (i, p) = max {V [(i, p),min{c, i+ p}], 0} , (i, p) ∈ Z2
+. (16)

If i + p ≤ c, the one-stage expected profit of drawing i + p items is equal
to −1 + ir/(i + p), so the optimality equation can simply be rewritten as
V (i, p) = max {−1 + ir/(i+ p), 0}. Moreover, V (0, p) = 0 for all p ∈ Z+.
Using this initialization, we can use the recursive formula (16) to compute
V (i, p) for each (i, p) ∈ Z2

+. Indeed, we adopt such an approach to present
a numerical illustration of our model in Section 4.

The next theorem characterizes the optimal policy, which is of threshold
type. Let a∗(i, p) be the optimal action in state (i, p).

Theorem 3. The optimal policy is one of monotone thresholds. That is,
for a given i ∈ Z+, there exists a number p∗(i) such that

a∗(i, p) =

{
min{i+ p, c}, p < p∗(i),

0, p ≥ p∗(i),
(17)

and the threshold p∗(i) is nondecreasing in i. Furthermore, for a given
p ∈ Z+, there exists a number i∗(p) such that

a∗(i, p) =

{
min{i+ p, c}, i ≥ i∗(p),

0, i < i∗(p),
(18)

and the threshold i∗(p) is nondecreasing in p.

Proof. To establish (17), let

p∗(i) := min{p ∈ Z+ : V (i, p) ≤ 0}. (19)

If the set defined in (19) is empty, then put p∗(i) = +∞. Note that V (i, p) ≤
0 is identical to V [(i, p), j] ≤ 0 for all j ≥ 1. Now p < p∗(i) implies that
V (i, p) > 0; hence, it is optimal to draw min{i+p, c} items in state (i, p) by
equation (16). On the other hand, if p ≥ p∗(i), then

V (i, p) ≤ V (i, p∗(i)) ≤ 0, (20)

where the first inequality follows from Theorem 1 (ii), and the second in-
equality follows from the definition of p∗(i). Thus, it is optimal in state (i, p)
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not to draw any items by (16). It remains to show that the threshold p∗(i)
is nondecreasing in i. By Theorem 1 and the definition of p∗(i), we see that

V (i+ 1, p∗(i)− 1) ≥ V (i, p∗(i)− 1) > 0.

This implies that p∗(i+ 1) ≥ p∗(i). The proof for (18) is similar.
The optimal policy of Theorem 3 can be described as full inspection since,

if it is optimal to draw, then it is optimal to draw the maximum allowable
number of items. It differs from the policy described by Shepp in that we
do not explicitly determine p∗(i) or i∗(p), whereas Shepp characterizes the
continuation region using a continuous approximation. It may be instructive
in future work to examine the asymptotic behavior of p∗(i) as i → ∞ in
our generalized setting. In Section 4, we prove additional properties of the
optimal value function for the special case when c = 1.

4. Convexity and Submodularity

Here we establish that the optimal value function is convex and sub-
modular when c = 1. This case includes, but is not limited to, Shepp’s urn
scheme for which convexity was established by Chen and Hwang [9]. While
similar results exist for a different model (see [10]), we provide a counterex-
ample in Section 5 demonstrating that these properties do not necessarily
hold if c > 1 for our model setting. Next, we present the definition of sub-
modularity, and then Theorem 4, which is our main result in this section.

Definition 1. [8] A function f : Z2
+ → R is said to be submodular if for

each (n,m) ∈ Z2
+,

f(m+ 1, n+ 1) + f(m,n) ≤ f(m+ 1, n) + f(m,n+ 1).

Theorem 4. If c = 1, then the following inequalities hold:

(i) V (i+ 1, p) + V (i− 1, p) ≥ 2V (i, p),

(ii) V (i, p+ 1) + V (i, p− 1) ≥ 2V (i, p),

(iii) V (i+ 1, p)− V (i, p) ≤ V (i+ 1, p− 1)− V (i, p− 1).

Proof. To prove parts (i)–(iii), we will use induction on i+ p. Note that
(i)–(iii) certainly hold for i + p = 1. For the induction hypothesis, assume
that they each hold for i+ p = n > 1.

First, we establish part (i) for i + p + 1. If it is optimal to draw no
item in state (i, p) (i.e., if V (i, p) = 0), Theorem 4 (i) follows from the
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nonnegativity of the optimal value function. Otherwise, it follows from the
optimality equation (1) that:

(i+ p+ 1)V (i+ 1, p) ≥ −(i+ p+ 1) + (i+ 1)
(
r + V (i, p)

)
+ pV (i+ 1, p− 1), (21a)

(i+ p+ 1)V (i− 1, p) ≥ −(i+ p− 1) + (i− 1)
(
r + V (i− 2, p)

)
+ pV (i− 1, p− 1) + 2V (i− 1, p), (21b)

2(i+ p+ 1)V (i, p) = −2(i+ p) + 2i
(
r + V (i− 1, p)

)
+ 2pV (i, p− 1) + 2V (i, p). (21c)

Hence,

(i+ p+ 1) [V (i+ 1, p) + V (i− 1, p)− 2V (i, p)]

= (i− 1) [V (i, p) + V (i− 2, p)− 2V (i− 1, p)]

+ p [V (i+ 1, p− 1) + V (i− 1, p− 1)− 2V (i, p− 1)]

≥ 0,

where the inequality follows from the induction hypothesis. This completes
the proof of part (i).

Next, to prove part (ii), write inequalities for (i + p + 1)V (i, p + 1),
(i+p+1)V (i, p−1), and 2(i+p+1)V (i, p) similar to those for (21a)–(21c),
and follow the same steps.

Finally, we show that part (iii) holds for i + p + 1. If V (i + 1, p) = 0,
then the desired result immediately follows from Theorem 1 (i). Otherwise,
by Theorem 1 (i), it is sufficient to show that the following expression is
nonpositive:

V [(i+ 1, p), 1]− V (i, p)− [V [(i+ 1, p− 1), 1]− V (i, p− 1)]

=
(i+ 1)r + p [V (i+ 1, p− 1)− V (i, p)]

i+ p+ 1

−
(i+ 1)r + (p− 1)

(
V (i+ 1, p− 2)− V (i, p− 1)

)
i+ p

(22a)

=
1

(i+ p)(i+ p+ 1)
{−(i+ 1)r + p(i+ p) [V (i+ 1, p− 1)− V (i, p)]

−(p− 1)(i+ p+ 1)
(
V (i+ 1, p− 2)− V (i, p− 1)

)}
.

(22b)
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The bracketed expression in (22b) can be rearranged as follows:

p(i+ p) [V (i+ 1, p− 1)− V (i, p)− V (i+ 1, p− 2) + V (i, p− 1)]

+ (i+ 1) [V (i+ 1, p− 2)− V (i, p− 1)− r] . (22c)

The expression on the first line of (22c) is nonpositive since

V (i+ 1, p− 1)− V (i+ 1, p− 2) ≤ V (i, p− 1)− V (i, p− 2) (23a)

≤ V (i, p)− V (i, p− 1), (23b)

where (23a) follows from the induction hypothesis, and (23b) follows from
Theorem 4 (ii). The expression on the second line of (22c) is nonpositive
by Lemma 1; therefore, (22c) is nonpositive and the proof is complete.

5. Numerical Example

The purpose of this section is to provide a counterexample demonstrating
that convexity and submodularity do not necessarily hold if c > 1. Table
1 provides the optimal value function for a problem instance with r = 2
and c = 2. The following inequalities demonstrate that convexity/concavity
and submodularity/supermodularity of the optimal value function cannot
be definitively asserted when c > 1:

V (3, 1)− V (2, 1) > V (2, 1)− V (1, 1) > V (4, 1)− V (3, 1), (24)

V (1, 1)− V (1, 0) > V (1, 3)− V (1, 2) > V (1, 2)− V (1, 1), (25)

V (1, 1) + V (2, 2) > V (1, 2) + V (2, 1), (26)

V (1, 2) + V (2, 3) < V (1, 3) + V (2, 2). (27)

Specifically, (24)–(25) show that V (i, p) is neither convex nor concave in
i and p. Similarly, (26)–(27) show that V (i, p) is neither submodular nor
supermodular.
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