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ABSTRACT
The application of nite element methods to problems in
structural acoustics ( the vibration of an elastic body coupled to
an acoustic medium) is considered. New stabilized meth-
ods based omidhe Hellinger-Reissner variational principle with
a generalized least-squares modi cation are developed which
yield improvement in accuracy over the standard Galerkin -
nite element method for both in vacuo and acoustic uid-loaded
Reissner-Mindlin plates. Through judicious selection of design
parameters this formulation provides a consistent framework for
enhancing the accuracy of mixed Reissner-Mindlin plate ele-
ments that have no shear locking or spurious modes. Combined
with Galerkin Least-Squares (GLS) methods for the acoustic
the method presents a new framework for accurate model-
md,of acoustic uid-loaded structures. The technique of complex
wave-number dispersion analysis is used to examine the accu-
racy of the discretized system in the representation of free-waves
for uid-loaded plates. Improved methods are designed such
that the nite element dispersion relations closely match each
branch of the complex wavenumber loci for uid-loaded plates.
Comparisons of nite element dispersion relations demonstrate
the superiority of the new hybrid least-squares (HLS) plate ele-
ments combined with GLS methods for the uid over standard
Galerkin and Galerkin Gradient Least-Squares (GGLS) nite el-
ement methods.

INTRODUCTION

When modeling the steady-state response of coupled struc-
tural acoustics problems, plate and shell elements are needed
to accurately represent both propagating, leaky, and evanescent
wave types in the solution. In this paper, the stabilized hybrid
plate element developed in (Thompson, 1999) is combined with
a Galerkin Least-Squares (GLS) treatment of the acoustic region
developed in (Thompson, 1995) for accurate response of uid-
loaded Reissner-Mindlin plates. The inclusion of shear deforma-
tion and rotary inertia effects in this theory is important for high-
frequency response for exural waves in plates. The hybrid plate

element is based on the Hellinger-Reissner variational principle
with a modi catio n consisting of a residuals of the plate equa-
tions of motion in a weighted generalized least-squares operator
integrated over element interiors. Through judicious selection of
the design parameters inherent in the least-squares modi cation,

this formulation provides a consistent framework for enhancing
the accuracy of mixed Reissner-Mindlin plate elements which
have no shear locking or spurious modes.

Weighted residuals of the governing Euler-Lagrange equa-
tions in least-squares form were rst used to stabilize the patholo-
gies exhibited by the classical Galerkin method for the numer-
ical solution of advection-diffusion problems (Hughes, 1989).
These so-called Galerkin Least-Squares (GLS) stabilized meth-
ods have been successfully employed in a wide variety of ap-
plications where enhanced stability and accuracy properties are
needed. These ideas have since been extended in (Harari, 1992),
and (Thompson, 1995) for the GLS nite element solution to
the scalar Helmholtz equation governing wave propagation in
acoustic uids. In (Thompson, 1995; Harari, et.al., 1996), nite
element dispersion analysis was used to select optimal weight-
ing parameters in the least-squares modi cations to the standard
Galerkin method, resulting in improved phase accuracy for both
two- and three- dimensional problems.

The rst use of residual based methods for static analysis
of plate structures can be found in (Hughes, 1988), where sym-
metric forms of the equilibrium equations were appended to the
standard Galerkin equations to improve accuracy. Later, (Grosh,
1996) applied the Galerkin Gradient Least-Squares (GGLS)
method of (Franca, 1989) to improve the accuracy of Timo-
shenko beam elements for steady-state vibration. In (Grosh,
1998), the GGLS Timoshenko beam element is combined with
the one-dimensional GLS method of (Harari, 1992) to study
acoustic- uid loaded plates. As expected, the combined use of
stabilized methods for both the plate and acoustic uid, yielded
improved accuracy over standard Galerkin methods. However,
the extension of the GGLS formulation to Reissner-Mindlin plate
elements based on bi-linear displacement interpolation failed to
produce a general 4-node quadrilateral element which is free



from shear locking (Grosh, 1996), limiting the use of this ap- by,M = DyK, andQ = DsY, where for isotropyDs = Dsl, Ds =

proach for most realistic applications. K Gt, and:
In this work, complex-wavenumber dispersion analysis is
used to examine the accuracy of free-waves in the HLS plate 1v 0 5
elements developed in (Thompson, 1999), coupled with opti- D,=Dy, |Vl O Dp = Et (4)
mal GLS methods for the fluid (Thompson, 1995). The use 00 (15\;) ’ 12(1-v?)

of finite element dispersion analysis for fluid-loaded plate sys-
tems was first performed by (Jasti, 1992), where real-valued free
waves in Galerkin based plate elements using Kirchoff’s theory With Young's modulusE, Poisson’s ratiov, shear modulus,
and Mindlin’s theory, coupled with a Galerkin fluid were stud- andk is a shear correction factor.
ied. Later, (Grosh, 1994) extended his work to include imagi- For time-harmonic motion, the coupled equations of motion
nary wavenumbers, and helped to clarify the significance of each for the Reissner-Mindlin plate are,
wavenumber branch. Dispersion analysis provides a tool for pre-
dicting the general trends in behaviou_r of _the elements when used Li[u",0%] := Qux+ Qyy — mw’w = q (5)
to model boundary value problems with fixed boundaries. - 5

LZX[U ,O']Z: Mx7x+Myx7y—Qx+p|0L) 6,=0 (6)

Loy[u",0"] = Myyx + Myy — Qy+pl 0’8, =0 (7)
REISSNER-MINDLIN PLATE EQUATIONS
Consider a plate of thickness defined on the domaifs whereu* = [w, 6y, 6y], 0 = [M,Q], andm = pt is the mass den-
such that, sity per unit areal, =t3/12, andwis the circular frequency mea-
sured in rad/sec.

t ot In the absence of an applied logdthe the plate equations
Qs = {(Xayv 2 R, z¢e [=5:51 (xy) el C Rz} 1) of motion admit solutions of the form,

whererl is a two-dimensional midsurface amib the coordinate i Aw (k) Aw (k) (ikyy)
transverse to this plane. Furthermore, loaditgy) is restricted u' =4 Ag, p€77 = Agcosh o eel (8)
to the direction normal to the midsurface define@das Ae, Ag sind

Mindlin’s approximate theory for flexural waves in plates
includes shear deformation and rotary inertia effects which are ity j = \/—1 and wavenumber components,
important for high-frequency excitation. The deformation at
any point is given by the three-dimensional displacement vec-
tor defined by the kinematic relation,= —z8(x,y) + w(x,y)€, k= { kx } — k{ cosp } . k=y/R+K 9)
where® = (6, 6y) denotes the two-dimensional vector of ro- ky sing
tations, such tha® L e,. The component§, and 6y are the
rotations of the transverse line elements (perpendicular fibers to Conditions for the allowed waves are obtained by substituting the
the midsurface) about theandx axes respectively. As a con-  assumed exponential (8) far into the homogeneous equations
sequence of the kinematic assumptions, the in-plane bendingof motion. Two independent characteristic equations associated

strains(&xx, &y, Yxy), are linearly related to curvatures by, with transverse deflection and rotation result;
Dsk? — pt P —iDgk Ay 0
K = [Kxx, Kyy, Kxy] = [Bxx, Byy, Oxy+ 0 2 s* S =
(K, Kyys Kxy] = [Bxxs Byy , Bxy + By () Dk Dbk2+Ds—pr2} { A } 0 (10)

while the transverse shear strains are defined by the angle be
tween the slope of the midsurface after deformation and the fiber
orientation,

Nontrivial solutions for the wave amplitudég, and Ag are ob-
tained by setting the determinant of the characteristic matrix to
zero. The result is the dispersion relation relating frequentty
wavenumbek,

Y= [Yxz; Yyzl = [Wx — Bx, Wy — 6] Q)
ak!—blké+c=0 (11)
For a homogeneous plate with linear elastic material prop-

erties, the constitutive relation for the bending and twisting mo- wherea, b, c are frequency dependent parameters. Considered as
mentsM = [My, My, M| and shear forceQ = [Qyx, Qy] is given a function ofk?, solutions to the plate dispersion relation (11)



occur in pairstk; and+tk,. At frequencies below a cut-off fre-
quency, the wavenumber paitk; occurs as purely real while
the pairtky is purely imaginary. The real wavenumber pair

analysis and designed to improve the accuracy of the finite ele-
ment solution (Thompson, 1999). Setting= 12> = 0, reverts to
the underlying Hybrid formulation. The use of residuals main-

corresponds to propagating waves while the imaginary pair cor- tains the consistency of the resulting finite element variational
responds to evanescent waves characterized by exponential deequation. Integration of the residuals over element intefidiss
cay. The influence of the evanescent waves are localized nearrequired to maintai€® continuity between adjacent elements.
drivers and discontinuities in the plate, e.g., near boundary lay- Using a mixed/hybrid finite element approach, independent
ers. In (Thompson, 1999) the discrete counterpart to this con- approximations are used for the displacement variables and stress
tinuous dispersion relation was used as a tool for the design of resultants — a compatible displacement field and a stress field de-
improved finite element methods for steady-state vibration of fined in the interior of the elementt* = Nd, o* = P, whereN
Reissner-Mindlin plates. andP are arrays of polynomial basis functions athdndp are
the unknown element nodal degrees-of-freedom (dof) and stress
parameters, respectively. Any of several existing mixed finite el-
HYBRID LEAST SQUARES FORMULATION ement approximation fields which produce elements which are
In (Thompson, 1999) a new Hybrid Least Squares (HLS) free from shear locking and pass the static patch test may be
finite element method based on a modified Hellinger-Reissner used. In (Thompson, 1999) we used the assumed displacement
functional with independent stress and displacement approxima- and stress fields proposed by Aminpour (Aminpour, 1992) to de-
tions was developed. The Hellinger-Reissner functional is modi- velop a 4-node Hybrid Least Squares (HLS) quadrilateral plate
fied by adding weighted differential operators acting on the resid- element. The transverse displacement interpolation is bi-linear
uals of the governing equations of motion for the plate written in in the nodal parameters, enriched with linked quadratic func-
least-squares form. This approach may be considered an extentions expressed in terms of the nodal rotati@psand6y;. The
sion of Galerkin Least Squares (GLS) methods to mixed/hybrid transverse displacement is approximated by polynomials of one
methods. The functional given in (Thompson, 1999) can be writ- order higher than the rotations, as a result, the shape functions
ten as: are constructed to have a constant curvature and transverse shear
along each side of the element, so that the element is automati-
cally free from shear locking. The assumed moment and shear
force fields are formulated in element natural coordinates and
then transformed into physical coordinates by means of the con-
travariant tensor transformation evaluated at the center of the el-
ement. The shear resultant field is assumedori to satisfy the
static equilibrium equations defined in natural coordinates,
Imposing stationary conditions with respectud and o*,
and eliminatingB from the resulting discrete Euler-Lagrange
equations results in the dynamic stiffness matrix for each ele-
ment:

(12)

In the above,[ = Uele is the sum of element interiorBe,
andly (u*,0*) defines the Hellinger-Reissner functional for the
plate equations of motion,

£ =k®—w’m+kg (14)
composed of the element stiffness and mass matrices,
1
My(u*,0") = /ro*Te*dr—é/ro*T Dlo*dr

m'= |/ NTCNdr
le

K=TTHIT, (15)

—ﬁ/u*TCu*dr (13)
2 Jr

and the frequency dependent, generalized least-squares contri-

and, butionkf’s = k's(w). The stiffness matrix is computed from the
arrays,
%V o [ 0) e |Saa
Myl T lops| “T 2P T=/ P'Bd, H= /[ P DPdr  (16)
0 0 pl Me e

The frequency dependent parameters= 11(w) andt, = For general 4-node quadrilateral finite elements with the
T2(w) are local mesh parameters determined from dispersion stress and displacement fields defined by (Aminpour, 1992), the

3
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Figure 1. Comparison of analytic and finite element dispersion curves for steel
platein vacuowith h/t = 1.0. Real and Imaginary wavenumber pairs for
Hybrid Least Squares (HLS), Hybrid (HYB), and Galerkin with Selectively Re-
duced Integration (SRI).

stabilization matrixfg is determined from asquare element with
lengthh and constant element jacobidh= 1 7, ie.,

keS = rl/ / <dc;\l; d(;\lzw
of (G

whereNw(&,n), Ne(§,eta) and Ng,(§,n) are row vectors of
polynomial basis functions defined by finite element approxima-
tions in natural coordinaté§, n): w= Nyd®, 6, = Ng,d°, , 6, =
Ng d®. The scaled mesh parameteis= 11 (mw?)? andry =
T2(plw)? are defined based on an average element lemgth
(Thompson, 1999), optimal values for andr, are determined
such that finite element wavenumber paitl; and +k, match
the analytical wavenumber pairs for a given wave orientation an-
gled on a uniform mesh.

Figure 1 shows a comparison of finite element and analyt-

dNJ, dNy,

an dn)cﬁdn+
dNg, dNg,
dn dn

) dgdn (17)

of sound in water,co = 148100 cm/s. The diagonal dashed
line shows the sonic wavenumbler = w/co. The coincident
frequencyfor the fluid-loaded plate is located at the intersec-
tion where the in vacuo wavenumber for the pletematches

the sonic wavenumbdf,. The SRI element under-estimates
the propagating real wavenumber pair while overestimating the
imaginary wavenumber. The HYB element matches the analyti-
cal propagating wavenumber much better, suggesting significant
improvement in phase accuracy. The HLS element matches the
analytical dispersion curves exactly by design.

COUPLED ACOUSTIC FLUID - PLATE EQUATIONS
For the fluid loaded plate, the acoustic presqu(rey,z) ap-
pears as a surface traction in the vertical equation of motion for
the plate:
QX,X"‘ Qy,y - mooZW(X, y) = q(X,y) - p(X7 Y, 0)7 (Xa y) er (18)
The fluid domaim; is defined by the semi-infinite regia> 0.
The bottom of the plate is assumed toib@acua The acoustic

pressure satisfies the Helmholtz equation,

(0 + k) p(x,y,2) =0, (19)

(X,y, Z) € Qf
whereky = w/co, andco = K/po is the acoustic wave speed. To
ensure outgoing waves, the acoustic pressure is also subject to
the Sommerfeld radiation condition at infinity. The continuity of
normal acceleration on the wet surface 0, is expressed as the
Neumann condition,

ap

r
oz on

= pOOOZW(X; y), (20)

z=0

Assume free plane waves propagating in thdirection
within the fluid-loaded plate with no sourcgs= 0. The plate
vertical deflectiorw and rotatiorB = 8y is sought in the follow-
ing form:

0 = Bpe

W = woek, (21)

ical dispersion curves for the propagating and evanescent waveThen, the acoustic pressure field satisfies the boundary condition,

numbers for a steel plaia vacua Results are given for a uni-

form mesh with waves directed along mesh lines. The dispersion
curves are compared for elements based on standard Galerkin

methods with Selective-Reduced Integration (SRI), the Hybrid
element (HYB) of (Aminpour, 1992), and the Hybrid-Least-

Squares element (HLS), (Thompson, 1999). The properties for

the plate are taken asE = 210x 10'°dynes/cr, v = 0.29,

p = 7.8 glcnt, andk = 5/6. The ratio of the element length
to plate thickness ib/t = 1.0. For reference, the frequency is
normalized with respect to the element lengttand the speed

ap

| = pow’wpe!
0z|,_,

(22)

With these conditions, the functioms 6, andp are independent
of y, so that the governing equations can be simplified to,

Qux— m(JL)ZW(X) = —
— Qx+plwB(x) =

(23)
(24)

p(X7 Z) |Z:O



Eliminating 6 in favor of w gives the single equation:

1
W xoxxx+ Agw,xx - )\ﬁW =D [F1p+ Pxdl,o (25)
S
with frequency dependent functiong,= k3 — k2], Afj = [k3k3 +
ki/Dg], F1 = [k3+1/Dp]. Here, ky = (pl/Dp)2w, ks =
(m/Ds)Y2w, andky = (mw?/Dyp)Y4 is the classical plate bend-
ing wavenumber foin vacuoflexural waves in the Kirchoff the-
ory.
Assuming a plane wave solution for acoustic pressure:

p(x,2) = poe ke (26)

then to satisfy (22) and (19),

p(x) Z) — %WOei(kxX+kzZ) (27)

V4

with k; defined by,
k3 = k2 + k2. (28)

The dispersion equation for the fluid-loaded plate is obtained
by introducing (21) and (27) into the plate equation (25), with the
result:

D (ky) = ik Ds(Kg — AZkZ — ) + pow?(FL—kZ) =0 (29)

The roots of this equation give the possible wavenumkeasd

k; of the free plane waves. Squaring both sides of (29) and using
(28) to eliminatek; in terms ofky, the dispersion equation can be
replaced by,

D2(k3 — k&) (kg — A2KZ — Ap)? — p§u*(FL—k&)2=0  (30)

Considered as an equationkfy the dispersion equation has five
roots. The absolute value for the real and imaginary parts of
the ky roots are plotted in Figure 2 using the fluid-loaded plate
properties given earlier, and with fluid densjiy = 1.0g/ cn.

The components;, are computed from (28) and plotted in Figure

3. There is one red root over all frequencies with modulus
larger than the acoustic wavenumigr Sinceky > ko, this root

is interpreted as aubsonicfree-wave. For frequencies above
the cutoff frequency, the subsonic wavenumber asymptotes to the
the sonic lineko = w/co. For this root,k? = k3 — k2 < 0, so

that the componerit, = iy/kZ — k?, is purely imaginary, and the
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Figure 2. Analytical dispersion relations for rodts (Top) Real Part, (Bottom)
Imaginary Part.

pressure decreases exponentially with respect to the vadable
The energy associated with this wave is trapped in the acoustic
near-field of the plate. The leaky wavenumbers are characterized
by the roots where the imaginary partiafis much smaller than

the real part, i.e., Ré) > Im(ky). In the regiorky < ki, theky
component of the leaky wavenumbers initially occur as complex
conjugate pairs and then quickly bifurcate into two paths of pure
real roots such thap < ke < ki. As the frequency increases, the
paths rejoint to form a complex conjugate pair. The evanescent
wavenumbers occur as complex conjugate pairs over the entire
frequency range, with ligiky) > Re(ky).
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FINITE ELEMENT FORMULATION
The variational equation for the coupled fluid-structure
problemis,

d(Ms+Mf) =W (31)

where the structural palits = My s(u*,0*) is the Hybrid-Least-

Squares functional defined earlier for the plate, and the fluid part

Mt = NgLs(p) is defined by a Galerkin functional modified by a
least-squares term:

. T(0?p+k3)2dQ
Q¢

nGLS(p):nG(p)"‘% (32)

1 1
n :_/ 0 2dQ+—2/ 240 33
e(P) =3 Qf( p) K0 o P (33)
The right-hand-side is the ‘virtual work’ given by,
&N:/éw(q—p)dr—powz/épwdr (34)
r r

In the abover is the optimal GLS design parameter for the un-
coupled acoustic fluid problem given in (Thompson, 1995). For
T = 0 the formulation reverts to Galerkin. Introducing finite ele-
ment approximations for the acoustic pressuee Y p, together
with the displacement and stress approximations for the plate dis-
cussed earlier, and imposing stationary conditions with respect
to p, and(u*,0"), leads to the coupled system of equations for
fluid-loaded plate elements,

RELEIEY

whereh® = (k" —kZmf + k[s)/(poooz), is the fluid dynamic stiff-
ness matrix composed of standard fluid stiffness and mass matri-
ces and a least-squares stabilization matrix described in (Thomp-
son, 1995). The matrig® defines the coupling matrix resulting
from (34). For waves restricted to theplane it is sufficient

to consider two-dimensional 4-node bilinear acoustic elements.
In this case, the optimal for the uncoupled fluid is given by
(Thompson, 1995):

(35)

6(4— fy— f,— 2f,f,)

W= 1= P2t b2t T

(36)

where fy = cogkohcosr/8), f; = cogkohsinty/8), andky =
w/Co.

FINITE ELEMENT DISPERSION ANALYSIS
Finite element dispersion relations for the fluid-loaded plate
are obtained by assembling a patch of elements from a uniform
mesh with grid spacingx = Az= h, (Jasti, 1992; Grosh, 1994).
The result is three repetitive stencils associated with solutions
Vn = [Wn, 8n, Pno, Pna]", at a typical node:

1
> Bivay =0
=t}

(37)

HereB, are(3 x 4) matrix partitions which depend on frequency
and the element dynamic stiffness coefficients. The notagien
denotes pressure solutions at a hode lying on the plate boundary



atz= 0, while pn 1 denotes solutions at a typical node along the
first row of grid points in the fluid defined kg/= h.
Wave solutions in the plate are assumed to be directed in the

x-direction,
Wh | _ ] Wo [ L(ikxnh)
tort={}e @

while the pressure solutions take exponential form insthe
plane,

Prm = poelixnh glikent) (39)

The dispersion relations for the fluid-loaded plate are obtained by
substituting (38) and (39) into the stencils (37) and using the GLS
dispersion relation for the uncoupled fluid relating wavenum-
ber component&y andk;, to frequencykg = w/co given by
(Thompson, 1995):g,¢; + g1 = 0, whereg, = (ckhiz + hia),
01 = (cxhi2+ h11), andcx = cogkgh), andc, = cogkzh), and
s« = sin(kgh).

The result are the coupled relations,

[ Si1 —iS12 Q1-| Wo 0
iS22 S —iQ2 Bop=<0 (40)
[ Q1 Q2 HlJ Po 0

with the Fourier transform of the difference operator associated
with: the plate equationsg1 = S13Cx + S11, 2 = S24Cx + 2,

S12 = 5235 the coupling equation§s = g12Cx+ 011 Q2 = Ga1Cx;

and fluid equationsily = +4/92 — g3/ (Pow?). Heresj = [s%;j,

hij = [h®]ij, andq;; = [%ij, are coefficients of the element dy-
namic stiffness arrays. The fluid-loaded plate dispersion rela-
tion is obtained by rooting the characteristic polynomial obtained
from the determinant of (40).

Figure 4 (Top) shows the relative dispersion error in the
subsonic finite element wavenumbérdivided by the analytic
wavenumbeky. This real wavenumber component correspond-
ing to propagating waves, often plays a dominant role in fluid-
loaded plates. Thus by reducing the percent error in the real
wavenumber, even if by a small amount, the overall accuracy
of the numerical solution can increase significantly. The results
show that the SRI plate element with a Galerkin approximation
for the fluid (SRI-Gal) gives very large errors, both below and
above the coincident frequency. In contrast, the Hybrid plate el-
ement with Galerkin Least-Squares approximation for the fluid
(HYB-GLS) reduces the error significantly. The Hybrid Least-
Squares plate element together with GLS for the fluid (HLS-
GLS) improves the accuracy even further, closely matching the
analytical wavenumber. The Galerkin Gradient-Least-Squares
(GGLS) plate element developed in (Grosh, 1996), coupled with
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Figure 4. Relative error for real part of wavenumbgrwith h/t = 1. (Top)
Subsonic, (Bottom) Leaky.

GLS fluid elements with thegivenin (36) is also compared. We
note that this GGLS plate element is restricted to rectangular el-
ements only. Below coincidence, GGLS-GLS shows significant
error and then approaches the HYB-GLS solution for frequencies
higher than coincidence.

Figure 4 (Bottom) shows the relative dispersion error in the
real part of the leaky wavenumb&g. In the bifurcation re-
gion, the HYB-GLS solution matches the analytical wavenum-
ber closely. However, after rejoining to form a pair of com-
plex conjugate roots, HYB-GLS under-estimates the analytical
wavenumbers. The HLS-GLS solution matches the analytical
leaky component over the entire frequency range. The spike in
the error neawh/cp = 0.6 is a result of missing the bifurcation
point by a small amount. Similar to the subsonic wavenumber
results, the leaky wavenumber solutions for GGLS-GLS show
significant error prior to coincidence. The solution using SRI
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HYB-GLS, (b) GGLS-GLS.

completely misrepresents the leaky wavenumbers both in the bi-
furcation and complex conjugate regions.

Figure 5 shows the relative error for (k). Results
show significant error in the evanescent wavenumber using SRI-
Gal. In contrast, both HLS-GLS and GGLS-GLS evanescent
wavenumbers match the analytical value over the entire range of
frequencies. The similarities in the evanescent wavenumbers is
explained by the dominant influence of the common GLS treat-
ment for the fluid region. The error in the leaky wavenumber is
largest for the GGLS-GLS method. The relative error ofkRg
producing propagating waves in the fluid are shown in Figure
6. Evanescent solutions for HYB-GLS and GGLS-GLS are very
similar, again showing the significance of the common GLS
fluid treatment. The phase error in tkg component of leaky
wavenumbers is slightly smaller using the GGLS-GLS method.
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