
COMPLEX WAVE-NUMBER DISPERSION ANALYSIS
OF STABILIZED FINITE ELEMENT METHODS

FOR ACOUSTIC FLUID – STRUCTURE INTERACTION

Lonny L. Thompson, Sridhar Sankar, and Yuhuan Tong
Department of Mechanical Engineering

Clemson University
Clemson, South Carolina, 29634

Email: lonny.thompson@ces.clemson.edu

ABSTRACT
The application of � nite element methods to problems in

structural acoustics ( the vibration of an elastic body coupled to
an acoustic �

uid
medium) is considered. New stabilized meth-

ods based on the Hellinger-Reissner variational principle with
a generalized least-squares modi�cation are developed which
yield improvement in accuracy over the standard Galerkin �-
nite element method for both in vacuo and acoustic � uid-loaded
Reissner-Mindlin plates. Through judicious selection of design
parameters this formulation provides a consistent framework for
enhancing the accuracy of mixed Reissner-Mindlin plate ele-
ments that have no shear locking or spurious modes. Combined
with Galerkin Least-Squares (GLS) methods for the acoustic
�
uid,

the method presents a new framework for accurate model-
ing of acoustic � uid-loaded structures. The technique of complex
wave-number dispersion analysis is used to examine the accu-
racy of the discretized system in the representation of free-waves
for � uid-loaded plates. Improved methods are designed such
that the � nite element dispersion relations closely match each
branch of the complex wavenumber loci for � uid-loaded plates.
Comparisons of � nite element dispersion relations demonstrate
the superiority of the new hybrid least-squares (HLS) plate ele-
ments combined with GLS methods for the � uid over standard
Galerkin and Galerkin Gradient Least-Squares (GGLS) �nite el-
ement methods.

INTRODUCTION
When modeling the steady-state response of coupled struc-

tural acoustics problems, plate and shell elements are needed
to accurately represent both propagating, leaky, and evanescent
wave types in the solution. In this paper, the stabilized hybrid
plate element developed in (Thompson, 1999) is combined with
a Galerkin Least-Squares (GLS) treatment of the acoustic region
developed in (Thompson, 1995) for accurate response of � uid-
loaded Reissner-Mindlin plates. The inclusion of shear deforma-
tion and rotary inertia effects in this theory is important for high-
frequency response for � exural waves in plates. The hybrid plate

element is based on the Hellinger-Reissner variational principle
with a modi�catio n consisting of a residuals of the plate equa-
tions of motion in a weighted generalized least-squares operator
integrated over element interiors. Through judicious selection of
the design parameters inherent in the least-squares modi�cation,
this formulation provides a consistent framework for enhancing
the accuracy of mixed Reissner-Mindlin plate elements which
have no shear locking or spurious modes.

Weighted residuals of the governing Euler-Lagrange equa-
tions in least-squares form were � rst used to stabilize the patholo-
gies exhibited by the classical Galerkin method for the numer-
ical solution of advection-diffusion problems (Hughes, 1989).
These so-called Galerkin Least-Squares (GLS) stabilized meth-
ods have been successfully employed in a wide variety of ap-
plications where enhanced stability and accuracy properties are
needed. These ideas have since been extended in (Harari, 1992),
and (Thompson, 1995) for the GLS � nite element solution to
the scalar Helmholtz equation governing wave propagation in
acoustic � uids. In (Thompson, 1995; Harari, et.al., 1996), � nite
element dispersion analysis was used to select optimal weight-
ing parameters in the least-squares modi� cations to the standard
Galerkin method, resulting in improved phase accuracy for both
two- and three- dimensional problems.

The � rst use of residual based methods for static analysis
of plate structures can be found in (Hughes, 1988), where sym-
metric forms of the equilibrium equations were appended to the
standard Galerkin equations to improve accuracy. Later, (Grosh,
1996) applied the Galerkin Gradient Least-Squares (GGLS)
method of (Franca, 1989) to improve the accuracy of Timo-
shenko beam elements for steady-state vibration. In (Grosh,
1998), the GGLS Timoshenko beam element is combined with
the one-dimensional GLS method of (Harari, 1992) to study
acoustic-� uid loaded plates. As expected, the combined use of
stabilized methods for both the plate and acoustic � uid, yielded
improved accuracy over standard Galerkin methods. However,
the extension of the GGLS formulation to Reissner-Mindlin plate
elements based on bi-linear displacement interpolation failed to
produce a general 4-node quadrilateral element which is free
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from shear locking (Grosh, 1996), limiting the use of this ap-
proach for most realistic applications.

In this work, complex-wavenumber dispersion analysis is
used to examine the accuracy of free-waves in the HLS plate
elements developed in (Thompson, 1999), coupled with opti-
mal GLS methods for the fluid (Thompson, 1995). The use
of finite element dispersion analysis for fluid-loaded plate sys-
tems was first performed by (Jasti, 1992), where real-valued free
waves in Galerkin based plate elements using Kirchoff’s theory
and Mindlin’s theory, coupled with a Galerkin fluid were stud-
ied. Later, (Grosh, 1994) extended his work to include imagi-
nary wavenumbers, and helped to clarify the significance of each
wavenumber branch. Dispersion analysis provides a tool for pre-
dicting the general trends in behaviour of the elements when used
to model boundary value problems with fixed boundaries.

REISSNER-MINDLIN PLATE EQUATIONS
Consider a plate of thicknesst, defined on the domainΩs

such that,

Ωs =
n
(x;y;z) 2 R3; z2 [� t

2
;

t
2
] ; (x;y) 2 Γ� R2

o
(1)

whereΓ is a two-dimensional midsurface andz is the coordinate
transverse to this plane. Furthermore, loadingq(x;y) is restricted
to the direction normal to the midsurface defined aseeez.

Mindlin’s approximate theory for flexural waves in plates
includes shear deformation and rotary inertia effects which are
important for high-frequency excitation. The deformation at
any point is given by the three-dimensional displacement vec-
tor defined by the kinematic relation,uuu = �zθθθ(x;y)+w(x;y)eeez,
whereθθθ = (θx ; θy) denotes the two-dimensional vector of ro-
tations, such thatθθθ ? eeez. The componentsθx and θy are the
rotations of the transverse line elements (perpendicular fibers to
the midsurface) about they andx axes respectively. As a con-
sequence of the kinematic assumptions, the in-plane bending
strains(εxx;εyy;γxy), are linearly related to curvatures by,

κκκ = [κxx; κyy; κxy] = [θx;x ; θy;y ; θx;y+θy;x] (2)

while the transverse shear strains are defined by the angle be-
tween the slope of the midsurface after deformation and the fiber
orientation,

γγγ = [γxz; γyz] = [w;x�θx ; w;y�θy] (3)

For a homogeneous plate with linear elastic material prop-
erties, the constitutive relation for the bending and twisting mo-
mentsMMM = [Mx ; My ; Mxy] and shear forcesQQQ= [Qx ; Qy] is given

by,MMM = DDDb κκκ, andQQQ= DDDsγγγ, where for isotropyDDDs = DsIII ; Ds =
κGt, and:

DDDb = Db

2
4 1 ν 0

ν 1 0

0 0 (1�ν)
2

3
5 ; Db =

Et3

12(1�ν2)
(4)

with Young’s modulusE, Poisson’s ratioν, shear modulusG,
andκ is a shear correction factor.

For time-harmonic motion, the coupled equations of motion
for the Reissner-Mindlin plate are,

L1[uuu
�;σσσ�] := Qx;x+Qy;y�mω2w = q (5)

L2x[uuu
�;σσσ�] := Mx;x+Myx;y�Qx+ρI ω2 θx = 0 (6)

L2y[uuu
�;σσσ�] := Mxy;x+My;y�Qy+ρI ω2 θy = 0 (7)

whereuuu� = [w;θx;θy], σσσ� = [MMM;QQQ], andm= ρt is the mass den-
sity per unit area,I = t3=12, andω is the circular frequency mea-
sured in rad/sec.

In the absence of an applied loadq, the the plate equations
of motion admit solutions of the form,

uuu� =

8<
:

Aw

Aθx

Aθy

9=
;e(ikkk�xxx) =

8<
:

Aw

Aθ cosϕ
Aθ sinϕ

9=
;e(ikx x)e(iky y) (8)

with i =
p�1 and wavenumber components,

kkk=

�
kx

ky

�
= k

�
cosϕ
sinϕ

�
; k=

q
k2

x +k2
y (9)

Conditions for the allowed waves are obtained by substituting the
assumed exponential (8) foruuu� into the homogeneous equations
of motion. Two independent characteristic equations associated
with transverse deflection and rotation result:

�
Dsk2�ρt ω2 �iDsk

iDsk Dbk2+Ds�ρIω2

��
Aw

Aθ

�
=

�
0
0

�
(10)

Nontrivial solutions for the wave amplitudesAw andAθ are ob-
tained by setting the determinant of the characteristic matrix to
zero. The result is the dispersion relation relating frequencyω to
wavenumberk,

ak4�bk2+c= 0 (11)

wherea;b;c are frequency dependent parameters. Considered as
a function ofk2, solutions to the plate dispersion relation (11)
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occur in pairs:�k1 and�k2. At frequencies below a cut-off fre-
quency, the wavenumber pair�k1 occurs as purely real while
the pair�k2 is purely imaginary. The real wavenumber pair
corresponds to propagating waves while the imaginary pair cor-
responds to evanescent waves characterized by exponential de-
cay. The influence of the evanescent waves are localized near
drivers and discontinuities in the plate, e.g., near boundary lay-
ers. In (Thompson, 1999) the discrete counterpart to this con-
tinuous dispersion relation was used as a tool for the design of
improved finite element methods for steady-state vibration of
Reissner-Mindlin plates.

HYBRID LEAST SQUARES FORMULATION
In (Thompson, 1999) a new Hybrid Least Squares (HLS)

finite element method based on a modified Hellinger-Reissner
functional with independent stress and displacement approxima-
tions was developed. The Hellinger-Reissner functional is modi-
fied by adding weighted differential operators acting on the resid-
uals of the governing equations of motion for the plate written in
least-squares form. This approach may be considered an exten-
sion of Galerkin Least Squares (GLS) methods to mixed/hybrid
methods. The functional given in (Thompson, 1999) can be writ-
ten as:

ΠHLS(uuu
�;σσσ�) = ΠH(uuu

�;σσσ�)

+
1
2

Z
Γ̃

τ1

(�
∂
∂x

[L1�q]

�2

+

�
∂
∂y

[L1 �q]

�2
)

dΓ

+
1
2

Z
Γ̃

τ2

(�
∂
∂x

[L2x]

�2

+

�
∂
∂y

[L2y]

�2
)

dΓ

(12)

In the above,Γ̃ = [eΓe is the sum of element interiorsΓe,
andΠH(uuu�;σσσ�) defines the Hellinger-Reissner functional for the
plate equations of motion,

ΠH(uuu
�;σσσ�) =

Z
Γ

σσσ�T εεε�dΓ� 1
2

Z
Γ

σσσ�T DDD�1 σσσ�dΓ

�ω2

2

Z
Γ

uuu�T CCCuuu�dΓ (13)

and,

εεε� =
�

κκκ
γγγ

�
; DDD =

�
DDDb 0
0 DDDs

�
; CCC=

2
4ρt 0 0

0 ρI 0
0 0 ρI

3
5 :

The frequency dependent parametersτ1 = τ1(ω) andτ2 =
τ2(ω) are local mesh parameters determined from dispersion

analysis and designed to improve the accuracy of the finite ele-
ment solution (Thompson, 1999). Settingτ1 = τ2 = 0, reverts to
the underlying Hybrid formulation. The use of residuals main-
tains the consistency of the resulting finite element variational
equation. Integration of the residuals over element interiorsΓ̃ is
required to maintainC0 continuity between adjacent elements.

Using a mixed/hybrid finite element approach, independent
approximations are used for the displacement variables and stress
resultants – a compatible displacement field and a stress field de-
fined in the interior of the element:uuu� = NNN ddd, σσσ� = PPPβββ, whereNNN
andPPP are arrays of polynomial basis functions andddd andβββ are
the unknown element nodal degrees-of-freedom (dof) and stress
parameters, respectively. Any of several existing mixed finite el-
ement approximation fields which produce elements which are
free from shear locking and pass the static patch test may be
used. In (Thompson, 1999) we used the assumed displacement
and stress fields proposed by Aminpour (Aminpour, 1992) to de-
velop a 4-node Hybrid Least Squares (HLS) quadrilateral plate
element. The transverse displacement interpolation is bi-linear
in the nodal parameterswi , enriched with linked quadratic func-
tions expressed in terms of the nodal rotationsθxi andθyi. The
transverse displacement is approximated by polynomials of one
order higher than the rotations, as a result, the shape functions
are constructed to have a constant curvature and transverse shear
along each side of the element, so that the element is automati-
cally free from shear locking. The assumed moment and shear
force fields are formulated in element natural coordinates and
then transformed into physical coordinates by means of the con-
travariant tensor transformation evaluated at the center of the el-
ement. The shear resultant field is assumeda priori to satisfy the
static equilibrium equations defined in natural coordinates,

Imposing stationary conditions with respect touuu� and σσσ�,
and eliminatingβββ from the resulting discrete Euler-Lagrange
equations results in the dynamic stiffness matrix for each ele-
ment:

ssse = kkke�ω2mmme+kkke
LS (14)

composed of the element stiffness and mass matrices,

kkke = TTTT HHH�1TTT; mmme =
Z

Γe

NNNT CCCNNN dΓ (15)

and the frequency dependent, generalized least-squares contri-
butionkkke

LS= kkke
LS(ω). The stiffness matrix is computed from the

arrays,

TTT =
Z

Γe

PPPTBBBdΓ; HHH =
Z

Γe

PPPT DDD�1PPPdΓ (16)

For general 4-node quadrilateral finite elements with the
stress and displacement fields defined by (Aminpour, 1992), the
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Figure 1. Comparison of analytic and finite element dispersion curves for steel

plate in vacuowith h=t = 1:0. Real and Imaginary wavenumber pairs for

Hybrid Least Squares (HLS), Hybrid (HYB), and Galerkin with Selectively Re-

duced Integration (SRI).

stabilization matrixkkke
LS is determined from a square element with

lengthh and constant element jacobianJe = h2

4 , i.e.,

kkke
LS = r1

Z 1

�1

Z 1

�1

�
dNNNT

w

dξ
dNNNw

dξ
+

dNNNT
w

dη
dNNNw

dη

�
dξdη+

r2

Z 1

�1

Z 1

�1

 
dNNNT

θx

dξ
dNNNθx

dξ
+

dNNNT
θy

dη
dNNNθy

dη

!
dξdη (17)

whereNNNw(ξ;η), NNNθx(ξ;eta) and NNNθy(ξ;η) are row vectors of
polynomial basis functions defined by finite element approxima-
tions in natural coordinates(ξ;η): w=NNNwddde; θx =NNNθxddd

e; ; θy =
NNNθxddd

e. The scaled mesh parametersr1 = τ1(mω2)2 and r2 =
τ2(ρIω)2 are defined based on an average element lengthh. In
(Thompson, 1999), optimal values forr1 andr2 are determined
such that finite element wavenumber pairs�k1 and�k2 match
the analytical wavenumber pairs for a given wave orientation an-
gleϕ on a uniform mesh.

Figure 1 shows a comparison of finite element and analyt-
ical dispersion curves for the propagating and evanescent wave
numbers for a steel platein vacuo. Results are given for a uni-
form mesh with waves directed along mesh lines. The dispersion
curves are compared for elements based on standard Galerkin
methods with Selective-Reduced Integration (SRI), the Hybrid
element (HYB) of (Aminpour, 1992), and the Hybrid-Least-
Squares element (HLS), (Thompson, 1999). The properties for
the plate are taken as:E = 210� 1010 dynes/cm2, ν = 0:29,
ρ = 7:8 g/cm2, andκ = 5=6. The ratio of the element length
to plate thickness ish=t = 1:0. For reference, the frequency is
normalized with respect to the element lengthh, and the speed

of sound in water,c0 = 148100 cm/s. The diagonal dashed
line shows the sonic wavenumberk0 = ω=c0. The coincident
frequencyfor the fluid-loaded plate is located at the intersec-
tion where the in vacuo wavenumber for the platek1 matches
the sonic wavenumberk0. The SRI element under-estimates
the propagating real wavenumber pair while overestimating the
imaginary wavenumber. The HYB element matches the analyti-
cal propagating wavenumber much better, suggesting significant
improvement in phase accuracy. The HLS element matches the
analytical dispersion curves exactly by design.

COUPLED ACOUSTIC FLUID - PLATE EQUATIONS
For the fluid loaded plate, the acoustic pressurep(x;y;z) ap-

pears as a surface traction in the vertical equation of motion for
the plate:

Qx;x+Qy;y�mω2w(x;y) = q(x;y)� p(x;y;0); (x;y) 2 Γ (18)

The fluid domainΩ f is defined by the semi-infinite regionz� 0.
The bottom of the plate is assumed to bein vacuo. The acoustic
pressure satisfies the Helmholtz equation,

(∇2+k2
0)p(x;y;z) = 0; (x;y;z) 2Ω f (19)

wherek0 = ω=c0, andc0 = K=ρ0 is the acoustic wave speed. To
ensure outgoing waves, the acoustic pressure is also subject to
the Sommerfeld radiation condition at infinity. The continuity of
normal acceleration on the wet surfacez= 0, is expressed as the
Neumann condition,

∂p
∂z

����
z=0

= ρ0ω2w(x;y); on Γ (20)

Assume free plane waves propagating in thex-direction
within the fluid-loaded plate with no sourcesq = 0. The plate
vertical deflectionw and rotationθ = θx is sought in the follow-
ing form:

w= w0eikxx; θ = θ0eikxx (21)

Then, the acoustic pressure field satisfies the boundary condition,

∂p
∂z

����
z=0

= ρ0ω2w0eikxx (22)

With these conditions, the functionsw, θ, andp are independent
of y, so that the governing equations can be simplified to,

Qx;x�mω2w(x) = � p(x;z)jz=0 (23)

Mx;x�Qx+ρIω2θ(x) = 0 (24)
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Eliminatingθ in favor ofw gives the single equation:

w;xxxx+λ2
s w;xx�λ4

bw=� 1
Ds

[F1p+ p;xx]jz=0 (25)

with frequency dependent functions,λ2
s = [k2

p�k2
s], λ4

b = [k2
pk2

s +

k4
b=Ds], F1 = [k2

p + 1=Db]. Here, kp = (ρI=Db)
1=2 ω, ks =

(m=Ds)
1=2 ω, andkb = (mω2=Db)

1=4 is the classical plate bend-
ing wavenumber forin vacuoflexural waves in the Kirchoff the-
ory.

Assuming a plane wave solution for acoustic pressure:

p(x;z) = p0ei(kxx+kzz) (26)

then to satisfy (22) and (19),

p(x;z) =
ρ0ω2

ikz
w0ei(kxx+kzz) (27)

with kz defined by,

k2
0 = k2

x +k2
z: (28)

The dispersion equation for the fluid-loaded plate is obtained
by introducing (21) and (27) into the plate equation (25), with the
result:

D(kx) = ikzDs(k
4
x�λ2

sk
2
x�λ4

b)+ρ0ω2(F1�k2
x) = 0 (29)

The roots of this equation give the possible wavenumberskx and
kz of the free plane waves. Squaring both sides of (29) and using
(28) to eliminatekz in terms ofkx, the dispersion equation can be
replaced by,

D2
s(k

2
0�k2

x)(k
4
x�λ2

sk2
x�λ4

b)
2�ρ2

0ω4(F1�k2
x)

2 = 0 (30)

Considered as an equation ink2
x, the dispersion equation has five

roots. The absolute value for the real and imaginary parts of
the kx roots are plotted in Figure 2 using the fluid-loaded plate
properties given earlier, and with fluid densityρ0 = 1:0g= cm3.
The componentskz are computed from (28) and plotted in Figure
3. There is one realkx root over all frequencies with modulus
larger than the acoustic wavenumberk0. Sincekx > k0, this root
is interpreted as asubsonicfree-wave. For frequencies above
the cutoff frequency, the subsonic wavenumber asymptotes to the
the sonic linek0 = ω=c0. For this root,k2

z = k2
0� k2

x < 0, so

that the componentkz = i
q

k2
x�k2

0 is purely imaginary, and the
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Figure 2. Analytical dispersion relations for rootskx. (Top) Real Part, (Bottom)

Imaginary Part.

pressure decreases exponentially with respect to the variablez.
The energy associated with this wave is trapped in the acoustic
near-field of the plate. The leaky wavenumbers are characterized
by the roots where the imaginary part ofkx is much smaller than
the real part, i.e., Re(kx)� Im(kx). In the regionk0 < k1, thekx

component of the leaky wavenumbers initially occur as complex
conjugate pairs and then quickly bifurcate into two paths of pure
real roots such thatk0 < kx < k1. As the frequency increases, the
paths rejoint to form a complex conjugate pair. The evanescent
wavenumbers occur as complex conjugate pairs over the entire
frequency range, with Im(kx)� Re(kx).
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Figure 3. Analytical dispersion relations for rootskz. (Top) Real Part, (Bottom)
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FINITE ELEMENT FORMULATION
The variational equation for the coupled fluid-structure

problem is,

δ(Πs+Π f ) = δW (31)

where the structural partΠs=ΠHLS(uuu�;σσσ�) is the Hybrid-Least-
Squares functional defined earlier for the plate, and the fluid part
Π f = ΠGLS(p) is defined by a Galerkin functional modified by a
least-squares term:

ΠGLS(p) = ΠG(p)+
1
2

Z
Ω̃ f

τ(∇2p+k2
0)

2dΩ (32)

ΠG(p) =
1
2

Z
Ω f

(∇p)2dΩ+
1
2

k2
0

Z
Ω f

p2dΩ (33)

The right-hand-side is the ‘virtual work’ given by,

δW =
Z

Γ
δw(q� p)dΓ�ρ0ω2

Z
Γ

δpwdΓ (34)

In the above,τ is the optimal GLS design parameter for the un-
coupled acoustic fluid problem given in (Thompson, 1995). For
τ = 0 the formulation reverts to Galerkin. Introducing finite ele-
ment approximations for the acoustic pressurep= ψψψ ppp, together
with the displacement and stress approximations for the plate dis-
cussed earlier, and imposing stationary conditions with respect
to p, and(uuu�;σσσ�), leads to the coupled system of equations for
fluid-loaded plate elements,

�
ssse qqqe

qqqeT hhhe

��
ddde

pppe

�
=

�
fff e

0

�
(35)

wherehhhe= (kkkf �k2
0mmmf +kkkf

LS)=(ρ0ω2), is the fluid dynamic stiff-
ness matrix composed of standard fluid stiffness and mass matri-
ces and a least-squares stabilization matrix described in (Thomp-
son, 1995). The matrixqqqe defines the coupling matrix resulting
from (34). For waves restricted to thexz-plane it is sufficient
to consider two-dimensional 4-node bilinear acoustic elements.
In this case, the optimalτ for the uncoupled fluid is given by
(Thompson, 1995):

τk2
0 = 1� 6(4� fx� fz�2 fx fz)

(k0h)2(2+ fx)(2+ fz)
(36)

where fx = cos(k0hcosπ=8), fz = cos(k0hsinπ=8), and k0 =
ω=c0.

FINITE ELEMENT DISPERSION ANALYSIS
Finite element dispersion relations for the fluid-loaded plate

are obtained by assembling a patch of elements from a uniform
mesh with grid spacing∆x= ∆z= h, (Jasti, 1992; Grosh, 1994).
The result is three repetitive stencils associated with solutions
vvvn = [wn ; θn ; pn;0 ; pn;1]

T , at a typical noden:

1

∑
l=�1

BBBl vvvn+l = 0 (37)

HereBBBl are(3�4) matrix partitions which depend on frequency
and the element dynamic stiffness coefficients. The notationpn;0

denotes pressure solutions at a node lying on the plate boundary
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at z= 0, while pn;1 denotes solutions at a typical node along the
first row of grid points in the fluid defined byz= h.

Wave solutions in the plate are assumed to be directed in the
x-direction,

�
wn

θn

�
=

�
w0

θ0

�
e(ikx nh) (38)

while the pressure solutions take exponential form in thexz-
plane,

pn;m = p0e(ikx nh)e(ikznh) (39)

The dispersion relations for the fluid-loaded plate are obtained by
substituting (38) and (39) into the stencils (37) and using the GLS
dispersion relation for the uncoupled fluid relating wavenum-
ber componentskx and kz, to frequencyk0 = ω=c0 given by
(Thompson, 1995):g2cz + g1 = 0, whereg2 = (cxh13+ h14),
g1 = (cxh12+ h11), andcx = cos(kxh), andcz = cos(kzh), and
sx = sin(kxh).

The result are the coupled relations,

2
4 S11 �iS12 Q1

iS12 S22 �iQ2

Q1 iQ2 H1

3
5
8<
:

w0

θ0

p0

9=
;=

8<
:

0
0
0

9=
; (40)

with the Fourier transform of the difference operator associated
with: the plate equations,S11 = s13cx + s11, S22 = s24cx + s22,
S12= s23sx; the coupling equations,Q1 = q12cx+q11 Q2 = q41cx;

and fluid equations,H1 =�
q

g2
1�g2

2=(ρ0ω2). Heresi j = [ssse]i j ,

hi j = [hhhe]i j , andqi j = [qqqe]i j , are coefficients of the element dy-
namic stiffness arrays. The fluid-loaded plate dispersion rela-
tion is obtained by rooting the characteristic polynomial obtained
from the determinant of (40).

Figure 4 (Top) shows the relative dispersion error in the
subsonic finite element wavenumberkh

x divided by the analytic
wavenumberkx. This real wavenumber component correspond-
ing to propagating waves, often plays a dominant role in fluid-
loaded plates. Thus by reducing the percent error in the real
wavenumber, even if by a small amount, the overall accuracy
of the numerical solution can increase significantly. The results
show that the SRI plate element with a Galerkin approximation
for the fluid (SRI-Gal) gives very large errors, both below and
above the coincident frequency. In contrast, the Hybrid plate el-
ement with Galerkin Least-Squares approximation for the fluid
(HYB-GLS) reduces the error significantly. The Hybrid Least-
Squares plate element together with GLS for the fluid (HLS-
GLS) improves the accuracy even further, closely matching the
analytical wavenumber. The Galerkin Gradient-Least-Squares
(GGLS) plate element developed in (Grosh, 1996), coupled with
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Figure 4. Relative error for real part of wavenumberkx with h=t = 1. (Top)

Subsonic, (Bottom) Leaky.

GLS fluid elements with theτ given in (36) is also compared. We
note that this GGLS plate element is restricted to rectangular el-
ements only. Below coincidence, GGLS-GLS shows significant
error and then approaches the HYB-GLS solution for frequencies
higher than coincidence.

Figure 4 (Bottom) shows the relative dispersion error in the
real part of the leaky wavenumberkx. In the bifurcation re-
gion, the HYB-GLS solution matches the analytical wavenum-
ber closely. However, after rejoining to form a pair of com-
plex conjugate roots, HYB-GLS under-estimates the analytical
wavenumbers. The HLS-GLS solution matches the analytical
leaky component over the entire frequency range. The spike in
the error nearωh=c0 = 0:6 is a result of missing the bifurcation
point by a small amount. Similar to the subsonic wavenumber
results, the leaky wavenumber solutions for GGLS-GLS show
significant error prior to coincidence. The solution using SRI
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Figure 5. Relative error for imaginary part of wavenumberkx with h=t = 1.

(a) HYB-GLS, (b) GGLS-GLS, (c) SRI-Gal.
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Figure 6. Relative error for real part of wavenumberky with h=t = 1. (a)

HYB-GLS, (b) GGLS-GLS.

completely misrepresents the leaky wavenumbers both in the bi-
furcation and complex conjugate regions.

Figure 5 shows the relative error for Im(kx). Results
show significant error in the evanescent wavenumber using SRI-
Gal. In contrast, both HLS-GLS and GGLS-GLS evanescent
wavenumbers match the analytical value over the entire range of
frequencies. The similarities in the evanescent wavenumbers is
explained by the dominant influence of the common GLS treat-
ment for the fluid region. The error in the leaky wavenumber is
largest for the GGLS-GLS method. The relative error of Re(ky),
producing propagating waves in the fluid are shown in Figure
6. Evanescent solutions for HYB-GLS and GGLS-GLS are very
similar, again showing the significance of the common GLS
fluid treatment. The phase error in theky component of leaky
wavenumbers is slightly smaller using the GGLS-GLS method.
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CONCLUSIONS
A complex-wavenumber dispersion analysis of fluid-loaded

Reissner-Mindlin plates based on the hybrid least squares
method (HLS) developed in (Thompson, 1999) is performed.
Through judicious selection of the design parameters inherent in
the least-squares modification, this formulation provides a con-
sistent framework for enhancing the accuracy of mixed Reissner-
Mindlin plate elements. Improvement in accuracy for the fluid-
loaded plate is provided by the GLS method (Thompson, 1995)
applied to the acoustic fluid region. The least-squares modifica-
tions are simple to implement with negligible increase in com-
putational cost and memory. We note that high-order accuracy
may also be achieved by ‘brute-force’ using higher-order finite
element approximations such as p-version or spectral extensions
(Thompson, 1993), but with substantial extra cost and memory
requirements.

Dispersion analysis provides a tool for comparing the free-
waves in different finite element formulations for fluid-loaded
plates. The analysis of free-waves in an infinite mesh allows
us to predict the trends in behaviour of the elements when used
to model boundary value problems with fixed boundaries. Re-
sults from our finite element dispersion relations demonstrate the
improved accuracy of the hybrid least-squares (HLS) plate ele-
ment together with the GLS fluid treatment, compared to the un-
derlying hybrid (HYB) element (Aminpour, 1992), and standard
displacement-based elements based on selectively reduced inte-
gration (SRI). Results show that the SRI plate element coupled
with a Galerkin fluid approximation performs poorly for both
subsonic, evanescent, and leaky wavenumber components. The
accuracy of the assumed-stress hybrid element (HYB), coupled
with a GLS fluid treatment, is dramatically improved compared
to SRI and performs well. Using the least-squares modification
for the hybrid plate (HLS), together with GLS fluid elements, the
performance of the hybrid element is enchanced further, yielding
a highly accurate fluid-loaded plate model.

In general, the ability to accurately represent all wavenum-
ber components is important. However, for many classes of prob-
lems, the subsonic wavenumber plays a dominant role. The HLS
approach has a lower error than the GGLS approach for the im-
portant subsonic wavenumber. The error for HLS is lower than
GGLS for thekx leaky wavenumber component, yet higher for
theky leaky wavenumber. Both HLS and GGLS give similar re-
sults for evanescent wavenumbers. Further research is needed to
determine the relative importance of the finite element wavenum-
bers when boundary conditions are included in the analysis.

ACKNOWLEDGMENT
Support for this work was provided by the National Sci-

ence Foundation under Grant CMS-9702082 in conjunction with
a Presidential Early Career Award for Scientists and Engineers
(PECASE), and is gratefully acknowledged.

REFERENCES
L.L. Thompson and Y. Tong, ‘Hybrid Least Squares Finite

Element Methods for Reissner-Mindlin Plates’,Proceedings of
the ASME Noise Control and Acoustics Division – 1999, 1999
ASME International Mechanical Engineering Congress and Ex-
position, Symposium on Innovative Experimental and Numeri-
cal Techniques for Structural Vibration and Acoustics Problems,
ASME, NCA-Vol.26, (1999), 77-89.

L.L. Thompson, and P.M. Pinsky, ‘A Galerkin least squares
finite element method for the two-dimensional Helmholtz equa-
tion’, Internat. J. Numer. Methods Engrg.38, (1995) 371-397.

T.J.R. Hughes, L.P. Franca, and G.M. Hulbert, ‘A new finite
element formulation for computational fluid dynamics: VIII. The
Galerkin least squares method for advective-diffusive equations’,
Comp. Meth. in Appl. Mech. Eng., 73 (1989), 173-189.

I. Harari and T.J.R. Hughes, ‘Galerkin/least-squares finite
element methods for the reduced wave equation with non-
reflecting boundary conditions in unbounded domains’,Comp.
Meth. in Appl. Mech. Eng., 98 (1992), 411-454.

I. Harari, K. Grosh, T.J.R. Hughes, M. Malhotra, P.M. Pin-
sky, J.R. Stewart, L.L. Thompson, ‘Recent Developments in
Finite Element Methods for Structural Acoustics’,Archives of
Computational Methods in Engineering,3, pp. 132-311, 1996.

T.J.R. Hughes and L.P. Franca, ‘A mixed finite element
method formulation for Reissner-Mindlin plate theory: uniform
convergence of all higher-order spaces’,Comput. Meths. Appl.
Mech. Engrg., 67 (1988), 223-240.

K. Grosh and P.M. Pinsky, ‘Galerkin Generalized Least
Squares Methods for Timoshenko Beams’,Comp. Meth. in Appl.
Mech. Eng., 132 (1996) 1-16.

L. P. Franca and D. G. Dutra do Carmo, ‘The Galerkin gradi-
ent least-squares method’,Comput. Meths. Appl. Mech. Engrg.,
74 (1989), 44-54.

K. Grosh and P.M. Pinsky, ‘Galerkin Generalized Least
Squares Methods for time-harmonic structural acoustics’,Comp.
Meth. in Appl. Mech. Eng., 154 (1998) 299-318.

R. Jasti, ‘Mixed shell finite elements with applications in
structural acoustics’, Chapter 8, PhD dissertation, Stanford Uni-
versity, 1992.

K. Grosh and P.M. Pinsky, ‘Complex wave-number disper-
sion analysis of Galerkin and Galerkin least-squares methods
for fluid-loaded plates’,Comp. Meth. in Appl. Mech. Eng., 113
(1994) 67-98.

M.A. Aminpour, ‘An assumed-stress Hybrid 4-node shell
element with drilling degrees of freedom’,Internat. J. Numer.
Methods Engrg.33, (1992) 19-38.

L.L. Thompson and P.M. Pinsky, ‘Complex wavenumber
Fourier analysis of the p-version finite element method’,Com-
putational Mechanics, Vol. 13, No. 4 (1994), 255-275.

9


