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ABSTRACT INTRODUCTION

The application of stabilized finite element methods to When modeling the steady-state response of structures cou-
model the vibration of elastic plates coupled with an acoustic pled with an acoustic fluid, plate and shell elements are needed
fluid medium is considered. New stabilized methods based on to accurately represent both propagating, leaky, and evanescent
the Hellinger-Reissner variational principle with a generalized wave types in the solution. This is especially important when
least-squares modification are developed which yield improve- modeling sound wave interaction in applications of structural
ment in accuracy over the Galerkin and Galerkin Generalized acoustics. Standard 4-node quadrilateral displacement based
Least Squares (GGLS) finite element methods for hotracuo plate and shell elements such as the mixed interpolation with
and acoustic fluid-loaded Reissner-Mindlin plates. Through ju- shear projection (MITC4), and selectively reduced integration
dicious selection of design parameters this formulation provides elements (SRI4) (Bathe,1985), while eliminating shear locking
a consistent framework for enhancing the accuracy of mixed problems for thin plates, exhibit poor accuracy at high frequen-
Reissner-Mindlin plate elements. Combined with stabilization cies. To solve this problem, new stabilized hybrid plate elements
methods for the acoustic fluid, the method presents a new frame-have been developed based on a generalized least-squares modi-
work for accurate modeling of acoustic fluid-loaded structures. fication to the underlying Hellinger-Reissner functional (Thomp-
The technigue of complex wave-number dispersion analysis is Son,1999). The least-squares operators are proportional to resid-
used to examine the accuracy of the discretized system in the rep-uals of the governing equations of motion for Reissner-Mindlin
resentation of free-waves for fluid-loaded plates. The influence plates. The inclusion of shear deformation and rotary inertia
of different finite element approximations for the fluid-loaded effects in this theory is important for high-frequency response
plate system are examined and clarified. Improved methods arefor flexural waves in plates. Use of independent displacements
designed such that the finite element dispersion relations closely and stress resultants in this Hybrid Least-Squares (HLS) method
match each branch of the complex wavenumber loci for fluid- provides a general framework for enhancing the accuracy of
loaded plates. Comparisons of finite element dispersion relations mixed/hybrid plate elements. In (Thompson,1999), complex-
demonstrate the superiority of the hybrid least-squares (HLS) wavenumber finite element dispersion analysis is used as a de-
plate elements combined with stabilized methods for the fluid sign criteria to select optimal tuning parameters in the HLS for-
over standard Galerkin methods with mixed interpolation and mulation so that the for a given wave propagation angle, the
shear projection (MITC4) and GGLS methods. plate elements match the analytical wavenumber-frequency re-

lations forin vacuoplates exactly. In this paper, our strategy

is to combine these HLS plate elements with stabilized treat-

ments for the acoustic fluid for accurate response of fluid-loaded
*Corresponding author. Reissner-Mindlin plates. The residual based Galerkin Least-
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Squares (GLS) methods developed in (Thompson,1995), and thefrom shear locking (Grosh,1996), limiting the use of this method
stabilized methods (STB) developed in (Oberai,1999), are con- for practical applications. Our approach for modeling fluid-
sidered. Both fluid stabilization treatments are residual based loaded structures is similar to that used in (Grosh,1998). Here,
methods which improve the accuracy of the finite element ap- instead of a Galerkin based displacement method, we use the
proximation to the sonic wavenumber. locking free, quadrilateral plate elements based on the Hybrid

Complex-wavenumber dispersion analysis is used to exam- Least-Squares (HLS) method developed in (Thompson,1999),
ine the accuracy of free-waves in the HLS plate elements de- combined with the improved acoustic fluid stabilization meth-
veloped in (Thompson,1999), coupled with stabilized methods ods developed in (Thompson,1995; Oberai,1999). Using a con-
for the fluid (Thompson,1995; Oberai,1999). We use complex- sistent combination of accurate HLS methods for the uncoupled
wavenumber dispersion analysis as a tool for quantifying the plate and GLS methods for the fluid problems, improved meth-
behavior of different combinations of stabilized methods for ods are obtained such that the finite element dispersion relations
acoustic-structure interaction. While based on the study of in- closely match each branch of the complex wavenumber loci for
finite plates, dispersion analysis provides a valuable tool for fluid-loaded plates.
predicting the general trends in behavior for finite element dis- In the following, we first summarize the analytical disper-
cretization of practical models with fixed boundaries. The use sion relation forin vacuoReissner-Mindlin plates. This disper-
of finite element dispersion analysis for fluid-loaded plate sys- sion relation is used to design Hybrid Least-Squares (HLS) plate
tems was first performed by (Jasti,1992), where real-valued free elements which for a given free-wave angle, exactly match the
waves in Galerkin based plate elements using both Kirchoff's analytical wavenumber-frequency relation fior vacuo plates.
theory and Mindlin’s theory, coupled with a Galerkin formula- Next, the analytical subsonic, leaky, and evanescent roots for the
tion for the fluid were studied. Later, (Grosh,1994) extended his fluid-loaded plate are derived, and then compared to the coupled
work to include imaginary wavenumbers, and helped to clarify finite element formulation with different stabilized fluid treat-
the significance of each wavenumber branch. ments. The accuracy of different finite element approximations

Weighted residuals of the governing Euler-Lagrange equa- for the fluid-loaded plate system are examined and clarified using
tions in least-squares form were first used to stabilize the patholo- complex-wavenumber dispersion analysis. Finally, conclusions
gies exhibited by the classical Galerkin method for the numer- are made and future work is discussed.
ical solution of advection-diffusion problems (Hughes,1989).

These so-called Galerkin Least-Squares (GLS) stabilized meth-

ods have been successfully employed in a wide variety of ap- REISSNER-MINDLIN PLATE EQUATIONS

plications where enhanced stability and accuracy properties are Consider a plate of thicknessdefined on the domaifg
needed. These ideas have since been extended in (Harari,1992)%uch that,

and (Thompson,1995) for the GLS finite element solution to the

scalar Helmholtz equation governing wave propagation in acous-

tic fluids. In (Thompson,1995; Harari,1996), finite element dis- Qs = {(Xaya 2 eR ze [_té: EZ]’ (xy)erc Rz} )
persion analysis was used to select optimal weighting parame-
ters in the least-squares modifications to the standard Galerkin
method, resulting in improved phase accuracy for both two- and
three- dimensional acoustic problems.

The first use of residual based methods for static analy-
sis of plate structures can be found in (Hughes,1988), where
symmetric forms of the equilibrium equations were appended
to the standard Galerkin equations to improve accuracy. Later,
(Grosh,1996) applied the Galerkin Gradient Least-Squares
(GGLS) method of (Franca,1989) to improve the accuracy
of Timoshenko beam elements for steady-state vibration. In
(Grosh,1998), the GGLS Timoshenko beam elementis combined
with the one-dimensional GLS method of (Harari,1992) to study
acoustic-fluid loaded beams. As expected, the combined use of
stabilized methods for both the beam and acoustic fluid, yielded
improved accuracy over standard Galerkin methods. However
the extension of the GGLS formulation to Reissner-Mindlin plate
elements based on bi-linear displacement interpolation failed to
produce a general 4-node quadrilateral element which is free K=L06=[0,6yy, ex7y+ey’x]T 2

whererl is a two-dimensional midsurface anis the coordinate
transverse to this plane. Furthermore, loadj(gy) is restricted
to the direction normal to the midsurface define®as

Mindlin’s approximate theory for flexural waves in plates
includes shear deformation and rotary inertia effects which are
important for high-frequency excitation. The deformation at
any point is given by the three-dimensional displacement vec-
tor defined by the kinematic relation,= —z0(x,y) + w(X,y)e;,
where® = [64, 8,]" denotes the two-dimensional vector of ro-
tations, such tha® L e,. The component§x and 6y are the
rotations of the transverse line elements (perpendicular fibers to
the midsurface) about theandx axes respectively. As a con-
sequence of the kinematic assumptions, the in-plane bending
strains(exx, £y, Yxy), are linearly related to curvatures through a
' differential operatolk., acting on the rotation8,
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Using first-order shear deformation theory, the transverse shearNontrivial solutions for the wave amplitudeg and8g are ob-

strains are defined by the angle between the slope of the midsur-tained by setting the determinant of the characteristic matrix to

face after deformation and the fiber orientation, zero. The result is the dispersion equation relating frequency
to wavenumbek,

y=0w—0=[wx—6y,wy—6]" 3)
D(k):=(K*=Ak2-M}) =0 (9)
For classical Kirchoff thin plate theory, the slope is assumed to be
equal to the fiber rotation so that= 0. The inclusion of nonzero  \4itn frequency dependent functions,
shear deformation in the Reissner-Mindlin model allows for a
more accurate representation of high-frequency behavior.
For a homogeneous plate with linear elastic material prop- A =[KE+K], A= [k —kaKs]. (10)
erties, the constitutive relation for the bending and twisting mo-
mentsM = [My, My, My]T and shear resultan@® = [Qx, Q,]"

is given by,M = Dy K, andQ = DsY, where for isotropy, Here,
{1v 0 '| El kp=0/Cp, ks=w/Cs, kp=(Mw?/Dp)"*.
Db:Db v 1 0 ) Db: (l—\)z)’ DS:GSt (4)
[0 0 (1;") J whereky, is the classical plate bending wavenumberifovacuo

flexural waves in the Kirchoff theory, and

with | = t3/12, Young’s modulus, Poisson’s ratiov, shear
modulusG, andk is a shear correction factdgs = KG. E 1/2 G\ /2

For time-harmonic motion, the coupled equations of mo- Cp= {7_ 2] v Gs= <—> .
. _ : T p(1-v) P
tion for thein vacuoReissner-Mindlin plate may be expressed
in terms of generalized displacements= [w, 64,0y], and stress
resultantss™ = [M, Q. Here we write the equilibrium equations ~ Considered as a function &f, solutions to the plate dispersion
as residualsR;, andR, = [RZX,Rzy]T, relation (9) occur in pairs:tk; and+ko. At frequencies below
a cut-off frequency, the wavenumber pdik; occurs as purely
real, while the paittk; is purely imaginary. The real wavenum-

Ri[u",0°] ;= 0-Q+muw+q=0 () ber pair corresponds to propagating waves while the imaginary
Ro[u’,6°] :=LTM+Q+plw’8=0 (6) pair corresponds to evanescent waves characterized by exponen-
tial decay. The influence of the evanescent waves are localized
In the abovem = pt is the mass density per unit areajs the near drivers and discontinuities.in the plate, e.g., near k_Joundgry
circular frequency measured in rad/sec, &nid the differential Iayers._ln the_next segtlon, the discrete counterpart to. this conth-
operator implied in (2). uous dispersion relation is used as a tool for the design of stabi-
In the absence of an applied logdthe plate equations of lized hybrid finite element methods, which for a given free-wave
motion admit solutions of the form, angle, match the exact wavenumber-dispersion relation defined
by (9).
w=woe™X 8 = gove X (7)

HYBRID LEAST SQUARES FORMULATION
In the abovej = /-1, k is the wavenumben = [cos}, sind] In (Thompson,1999) a new Hybrid Least Squares (HLS)
defines a unit vector in the direction of wave propagation, with finite element method based on a modified Hellinger-Reissner
wave vectok = kv = k[cosp, sing]. Conditions for the allowed functional with independent stress and displacement approxima-
waves are obtained by substituting the assumed exponentials (7)tions was developed. The Hellinger-Reissner functional is modi-
for u* into the homogeneous equations of motion. Two indepen- fied by adding weighted differential operators acting on the resid-
dent characteristic equations associated with transverse deflecuals of the governing equations of motion for the plate written in

tion and rotation result: least-squares form. This approach may be considered an exten-
sion of Galerkin Least Squares (GLS) methods to mixed/hybrid
Dsk? — pt w? iDk Wo 0 methods. For the Mindlin plate equations, the HLS functional
—iDek  Dpk?+Dg— plwz] { 0o } = { o} (8) is expressed in terms of the residuBls andR, = [Rox, Ryy], as
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(Thompson,1999), Q = PsB, fields are formulated in element natural coordinates
and then transformed into physical coordinates by means of the
contravariant tensor transformation evaluated at the center of the

Fuis(u’, 0%) = Fu(u’,07) + 3 FTl(DRl)zdr element. The shear resultant field is assumeiiori to satisfy
1 the static equilibrium equations defined in natural coordinates.
+5 /FTZ {(Roxx)?+ (Rayy)?} dr. (11) Imposing stationary conditions with respectub and o*,

and eliminatingf3 from the resulting discrete Euler-Lagrange

. ) o equations results in the dynamic stiffness matrix for each ele-
In the above,l’ = Uele is the sum of element interiorSe, ment:

andFy (u*, 0*) defines the Hellinger-Reissner functional for the
plate equations of motion,

=Kk — w?m®+ k5(w) (15)

Fu(u', 0" = Fb+Fs_w21/(mmF+p|ez)dr (12)
2J)r

The element stiffness matrix is constructed from,
with, K=TTH T, (16)

Fo(8, M) /MTKdr——/MT D;IMdr  (13)  where

_ T _ - T ~N—1
_/rder z/rQDstl' (14)

T= /rePngdw/rePgBSdr (17)
The frequency dependent parameters= 11(w) andt, = H= / P{ D, Pydr +/ P! D 1Psdr (18)
T2(w) are local mesh parameters determined from dispersion Fe Fe
analysis and designed to stabilize the finite element solution, thus
improving accuracy (Thompson,1999). Setting= 12 = 0, re- The consistent element ma®g is computed in standard form.
verts to the underlying Hybrid formulation. The use of residuals For general 4-node quadrilateral finite elements with the

maintains the consistency of the resulting finite element varia- stress fields defined by (Aminpour,1992), the least-squares terms

tional equation. Integration of the residuals over element inte- in the HLS functional simplify. In this case, we determine the

riors [ is required to maintail€® continuity between adjacent  frequency dependent stabilization matk¥ from a square el-

elements. ement with lengtt and constant element jacobidh= h?/4,
Using a mixed/hybrid finite element approaaijependent ie.,

approximations are used for the displacement variables and stress

resultants — a compatible displacement figld= Nd, and a lo-

T T
cal stress field defined within element interiars= P. Here, kés = r1/ / (dN ANw dN"" dNW) d&dn +
N andP are arrays of polynomial basis functions ahdndf are dg¢  dg dn dn
the unknown element nodal degrees-of-freedom (dof) and stress dNeX dNe, ngy dNpg,
parameters, respectively. Any of several existing mixed finite el- rZ/ / d&  dE dn dn dédn (19)

ement approximation fields which produce elements which are
free from shear locking and pass the static patch test may be
used. In (Thompson,1999), we used the field-consistent displace-where Ny (&,n), Ng,(&,n) and Ng (&,n) are row vectors of
ment and assumed stress fields proposed by Aminpour (Amin- polynomial basis functions defined by finite element approxima-
pour,1992) to develop a 4-node Hybrid Least Squares quadrilat- tions in natural coordinateg, n): w= Nyd®, 6, = Ng d®, 8, =

eral plate element (HLS4). The transverse displacement inter- Ng d®. The scaled mesh parameteis= 1, (mw?)? andr, =
polation is bi-linear in the nodal parametevs enriched with T2(plw)? are defined based on an average element lemgth
linked quadratic functions expressed in terms of the nodal rota- (Thompson,1999), optimal values for andr, are determined
tions By; andBy;. The transverse displacement is approximated such that finite element wavenumber pattlg and+k, match

by polynomials of one order higher than the rotations resulting the analytical wavenumber pairs for a given wave orientation an-
in a field consistent basis. The curvatures and shear strains aregle ¢ on a uniform mesh.

then formed byk = Byd, andy = Bsd, defined by (2) and (3), Figure 1 shows a comparison of finite element and analyt-
respectively. The assumed momdht= P, 3, and shear force ical dispersion curves for the propagating and evanescent wave
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3 p The fluid domaim; is defined by the semi-infinite regia> 0.

: The bottom of the plate is assumed toib&acua The acoustic
o sl o hnaytical ] pressure satisfies the Helmholtz equation,
o HLS-imag s
- - HYB -
e ) (P+K)PY2) =0,  (xY2) €Q (21)

whereky = w/co, andco = K/po is the acoustic wave speed. To
ensure outgoing waves, the acoustic pressure is also subject to
the Sommerfeld radiation condition at infinity. The continuity of
normal acceleration on the wet surface 0, is expressed as the
Neumann condition,

ap

9| R
0 0.5 1 15 2 25 3 0z, , PocW(X,Y), onf (22)
wh/co —
Figure 1. Comparison of analytic and finite element dispersion curves Here we assume free plane waves propagating inxthe
for steel plate in vacuowith h/t = 1.0. ki (Propagating) and k direction within the fluid-loaded plate with no sourcgs= 0.
(Evanescent) wavenumber pairs for Hybrid Least Squares (HLS), Hy- The plate vertical deflectiow and rotation® = 6y is sought in
brid (HYB), and (MITC). The sonic wavenumber Ko = /Cp, denoted the following form:
by dashed lines, is shown for reference.

W = woek, 0 = Bpe (23)
numbers for a steel plaie vacuo Results are given for a uni-  Then the acoustic pressure field satisfies the boundary condition,
form mesh with waves directed along mesh lines. The disper-
sion curves are compared for the Mixed Interpolation of Ten-
sorial Components element (MITC4) (Bathe,1985), the Hybrid a_p - pOQ)ZWOeikxx (24)
element (HYB4) of (Aminpour,1992), and the Hybrid-Least- 0Z |,

Squares element (HLS4), (Thompson,1999). For propagation

along mesh lines, results for MITC4 are equivalentto SRI4. The \wjith these conditions, the functioms 0, andp are independent

properties for the plate are taken &= 210x 10'° dynes/crf, of y, so that the governing equations can be simplified to,
v =029, p=7.8glcnf, andk = 5/6. The ratio of the el-

ement length to plate thickness ligt = 1.0. For reference, )
the frequency is normalized with respect to the element length Qxx +Mw™W(X) = p(X,2)|,_o (25)
h, and the speed of sound in wateg = 148100 cm/s. The My x + Qx+ plwze(x) =0 (26)
MITC element significantly under-estimates the propagating real
wavenumber pair while overestimating the imaginary wavenum-
ber. The HYB element matches the analytical propagating
wavenumber much better, suggesting significant improvementin
phase accuracy. The HLS element matches the analytical disper-
sion curvesxactlyby design.

Eliminating® in favor ofw gives the single equation:

z=0 (27)

1

W xxxx+ )\gw,xx - )\ﬁW = D- P‘% p+ p,XX] |
S

with frequency dependent functiohs, As, defined in (10), and

COUPLED ACOUSTIC FLUID - PLATE EQUATIONS
For the fluid loaded plate, the acoustic pressu(ey, z) ap- A3 = [k3 — Ds/Dp).
pears as a surface traction in the vertical equation of motion for

the plate: Assuming a plane wave solution for acoustic pressure:

Qux+ Qyy + ma?w(x,y) = p(x,y,0) — q(x,y), (xy) €T (20) p(x,2) = poe o+ke?) (28)
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then to satisfy (24) and (21),

Pow?
ik,

p(X, Z) — Woei (kxx+kz2) (29)

with k; defined by,

k3 = k2 + k2. (30)
The dispersion equation for the fluid-loaded plate is obtained

by introducing (23) and (29) into the plate equation (27), with the
result:

ikzDs D (ky) — pow?(A5 — kZ) = 0 (31)

In the aboveD (k) is the dispersion equation far vacuoplates
defined in (9). The roots of this equation give the possible
wavenumbergy andk; of the free plane waves. Squaring both
sides of (31) and using (30) to elimindtgin terms ofky, the
dispersion equation for fluid-loaded plates can be replaced by,

DZ(k§ — k) (Kx = Agks = Xp)? — pow (A — k9)? =0 (32)

Considered as an equation ki, the dispersion equation has
five roots; One Subsonic wavenumber (purely real), two Leaky

conjugate pairs and then quickly bifurcate into two paths of pure
real roots such thdp < ky < k1. As the frequency increases, the
paths rejoint to form a complex conjugate pair. For frequencies
beyond the intersection of the real part of the leaky fgpaind

the sonic rookp, then Réky) < ko. For these higher frequencies,
the energy associated with the leaky wave will propagate with
decay within the plate, while slowly ‘leaking’ energy into the
fluid with wave angle defined by = arctan Rékz/ky).

The two evanescent wavenumbers occur as complex conju-
gate pairs over the entire frequency range, witlikkgn>> Re(ky),
see Figure 4. This root represents a wave that decays rapidly in
the plate. For the steel plate in water, the evanescent wavenum-
ber closely matches the imaginary root of theracuoplate over
all frequencies, i.e., Iifk) ~ ko. The energy associated with
the evanescent wave is radiated nearly perpendicular to the plate
with a propagating wavenumber fkg) which asymptodes to a
line tangent to the sonic wavenumibgr

While not all of the roots can be considered free-waves over
all frequencies, the location of each root plays a role in asymp-
totic and numerical evaluations of analytical solutions for fluid-
loaded plates (Crighton,1979; Crighton,1988). Below coinci-
dence, the leaky roots to the dispersion relation (32) generally
have the least influence on analytical solutions, compared to sub-
sonic and evanescent roots (Crighton,1979). From these obser-
vations, while all roots of the fluid-loaded dispersion relation
have significance, we conjecture that the subsonic and evanes-
cent waves should be most closely matched by any finite element
approximation, with the subsonic the most important for accurate

wavenumbers, and two evanescent wavenumbers (occur as comPhase in structures with widely spaced discontinuities.

plex conjugate pairs). Once thgroots have been computed, the
componentg; are obtained from (30).

There is one redt, root over all frequencies with modulus
larger than the acoustic wavenumisgr Sinceky > ko, this root
is interpreted as aubsonidree-wave. The subsonic root is plot-
ted in Figure 2 using the fluid-loaded plate properties given ear-
lier, and with fluid densitypo = 1.0g/ cm®. Thecoincident fre-
quencywh/co = 1.19, for the fluid-loaded plate is located at the
intersection where thie vacuopropagating wavenumber for the
plate, ki, matches the sonic wavenumler= w/cp. Below co-

STABILIZED FINITE ELEMENT FORMULATION

The variational equation for the coupled fluid-structure
problem is,

O(Fs+Ff) =W (33)

incidence, the subsonic wave behaves as a modified propagatingvhere the structural pafs = Fyis(u®,0%,p) is the Hybrid-

wave in the plate. For frequencies above coincidence, the sub-
sonic wavenumber asymptotes to the sonic kne- wh/co. For

this root k2 = k§ — kZ < 0, so that the componekit=i/kZ — k2

is purely imaginary, and the acoustic pressure decreases expo
nentially with respect to the variable The energy associated
with this wave is trapped in the acoustic near-field of the plate,
and decays rapidly in the fluid.

The two leaky wavenumbers are characterized by the roots
where the real part d; is much larger than the imaginary part,
i.e., Reky) > Im(ky), see Figure 3. In the regidg < ki, thek
component of the leaky wavenumbers initially occur as complex

6

Least-Squares functional defined earlier for the plate, with the
residuaR;, modified for the fluid pressure loadimgon the plate,
i.e.,Ry = 0-Q+mMuw?W+q— p|—o. The fluid partFs = FgLs(p)

is defined by a Galerkin functional modified by a residual in
least-squares form over element interiors and a residual over
inter-element boundaries:

Fous(p) = Fo(p) +3 [ T((Pp+i@Pde (34

+ [ Blpal(D%p+iG)dr (35)

Copyright 0 2000 by ASME



—— Subsonic Re(Kx)
2.5 —e— Subsonic Re(Kz) 7
- - InVacuo Re(Kx)
- - Sonic (KO0)
2L Pt -
5 - -
Qo -
2 -
> e -
§1 5 P e B
T A
= i
1r “ ]

0.5 e i

od ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 25 3
wh/c
0
Figure 2. Fluid-loaded plate analytical dispersion relation for the sub-

sonic root. The propagating root for the in vacuo plate K1, and sonic
wavenumber Ko = wh/Cp, are plotted for reference. The coincident
frequencywh/co = 1.19, for the fluid-loaded plate is located at the
intersection where the k1 = Kp.
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Figure 3. Fluid-loaded plate analytical dispersion relation for the real
part of the two leaky roots.
Fep) = = [ (Op2da+ 22 [ p2do 36
c(p)=>5 [ (Op)dQ+ks | p (36)
2 Jo; 2 Qs

In the above,S’ = UgSe is the sum of inter-element bound-
ariesSe, [pn]l, denotes a jump in normal derivatives across el-
ement boundaries,andf3 are mesh parameters designed to sta-

bilize the uncoupled acoustic fluid problem (Thompson,1995;

7

—— Evanescent Re(Kx
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Figure 4. Fluid-loaded plate analytical dispersion relation for the com-
plex conjugate evanescent roots. The imaginary root for the in vacuo
plate K», and sonic wavenumber Kq, are plotted for reference.

Oberai, 1999).
Galerkin.

The right-hand-side is the ‘virtual work’ of the interface con-
ditions, coupling the structure to the fluid,

Fort = 0, = 0 the formulation reverts to

&N:/réw(q— p)dr—powZ/répwdF (37)

Introducing finite element approximations for the acoustic
pressurg = N, p, together with the displacement and stress ap-
proximations for the plate discussed earlier, and imposing sta-
tionary conditions with respect tp, and (u*,6*), leads to the
symmetric coupled system of equations for the stabilized fluid-
loaded plate elements,

REEISEY

whereh®, is the fluid dynamic stiffness matrix composed of stan-
dard fluid stiffness and mass matrices with a residual-based sta-
bilization matrix from (35) and the pressupeappearing in the
structural residuaR;. The matrixg® defines the coupling ma-
trix resulting from (37) andw, p) appearing in the stabilization
term associated with the residd&l. For waves restricted to the
xzplane it is sufficient to consider two-dimensional 4-node bi-
linear acoustic elements. In this case, the residuals simplify and
we consider two alternatives forandp.

In the first, we consider only the residual within an element
and sef3 = 0. In this case, the GLS parametékgh) is defined

(38)
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by (Thompson,1995): denotes pressure solutions at a node lying on the plate boundary
atz= 0, while pn1 denotes solutions at a typical node along the

6(4— fy— f,— 2fxfy) first row of grid points in the fluid defined = h.

(kon225 T2+ ) (39) The dispersion relation for the uncoupled fluid relating
wavenumber componenks andk;, to frequencykg = w/cp is

given by (Harari,1996):

w=1-

where fy = cogkghcosm/8), f, = cogkohsinT/8), ko = w/co,
andh represents an average element size.

In the second case, we consider both the least-squares resid- 02C;+01=0, (43)
ual within element interiors associated withand residuals de-
fined on inter-element boundaries associated @ittHere, the
values which produce a leading ord®((koh)”) correction to

the finite element approximation to the sonic wavenunier g2 = (Cxhiz+hya), (44)
are defined by (Oberai,1999): g1 = (cxhi2+ hig). (45)
81k3 = T1 + 12(8% +n?) — 90€%n? 40
kcz) 1+ 12(& 2+ n 2) 0gn (40) andc; = cogkzh), cx = cogkyh), s¢ = sin(k¢h).
8Bk5 = 20— 15(8*+n?) (41)

To obtain finite element dispersion relations, free-waves are
assumed at a typical node along thdirection of the plate,

{ord={emm )

where the coefficients; (koh) and 12(koh) have the following
dependence okph,

. 13 > 9 4
1 = 10— - (koh)? — = (koh)
9 , 67 4 Similarly, pressure solutions at a typical node are assumed in
T2 =30+ Z(koh) N ﬁg(k‘)h) exponential form in the&zplane,
In the aboveg,n, denote natural coordinates defined on a bi- Prum = poelikxnh) glikznh) (47)

unit reference element. Natural coordinates are used to parame-

terize general quadrilateral elements in physical coordinates. In

generaL the small amount of extra Computation required by in- The dispersion relations for the fluid-loaded plate are obtained by
cluding residuals on element boundaries with the parameters de-substituting (46) and (47) into the stencils (42) and using (43) to
fined above is worth the effort for acoustic problems, since the €liminatek,. The result are the coupled wavenumber-frequency
sonic wavenumber accuracy is improved compared to the first relations defined by the Hermitian matrix,

case withB = 0. However as discussed below, when combined
ecessarl superior for e fuicioaded pite problem. Su-iSe Qi fuo) (0
y sup plate p : iS12 $2-1Q2| 4 60 p=40 (48)
Qi Q2 Hi Po 0
FINITE ELEMENT DISPERSION ANALYSIS
Finite element dispersion relations for the fluid-loaded plate In the above, the coefficients are function&péndw. The func-
are obtained by assembling a patch of elements from a uniform tions associated with the structural and fluid difference equations
mesh with grid spacindx = Az = h, (Jasti,1992; Grosh,1994).  areS;j, andH; respectively. For the coupling equations,

The result is three repetitive stencils associated with solutions
Vi = [Wh, 6n, Pno, Pna]T, at a typical node:

Q1 =012Ck+ 011, Q2 =041Cx; (49)
1
Z BiVhy =0 (42) Hereq; = [q%);j, are coefficients of the element dynamic stiff-
I=-1 ness arrays; further details are given in (Sankar,2000). The fluid-

loaded plate dispersion equation relating wavenurkpéo fre-
HereB, are(3 x 4) matrix partitions which depend on frequency quencyw is obtained by rooting the characteristic polynomial
and the element dynamic stiffness coefficients. The notagien obtained from the determinant of (48).
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Figure 6. Relative error in imaginary part of wavenumber Ky with h/t =

Figure 5. Relative error in real part of wavenumber Ky with h/t =1
1. (Top) Evanescent, (Bottom) Leaky.

(Top) Subsonic, (Bottom) Leaky.

Figure 5 (Top) shows the relative phase error from the fi- The Galerkin Gradient-Least-Squares (GGLS) plate element de-
nite element subsonic wavenumbércompared with the ana-  veloped in (Grosh,1996), coupled with GLS fluid elements with
lytic subsonic wavenumbeg. The subsonic wavenumber of-  thet given in (39) is also compared. We note that this GGLS
ten plays a dominant role in fluid-loaded plates. Thus by re- plate element is restricted to rectangular elements only. Be-
ducing the percent error in the subsonic wavenumber, even if low coincidencewh/co = 1.19, GGLS-GLS shows significant
by a small amount, the overall accuracy of the numerical so- error and then approaches the HYB-GLS solution for frequen-
lution can increase significantly. Results for the MITC4 plate cies higher than coincidence. When the GLS fluid representa-
element with a Galerkin approximation for the fluid (MITC4- tion is replaced with the stabilized term defined by thend 3
Gal) gives very large errors, both below and above the coincident parameters defined in (40), and (41), which includes residuals
frequency. In contrast, the Hybrid plate element with Galerkin on the boundary, the phase accuracy is decreased below coinci-
Least-Squares approximation for the fluid (HYB-GLS) reduces dence. However, above coincidence, where the fluid properties
the error significantly. The Hybrid Least-Squares plate element dominate the behavior of the root, the stabilized fluid approxima-
together with GLS for the fluid (HLS-GLS) improves the accu- tion (STB), with a better approximation to the sonic wavenum-
racy even further, closely matching the analytical wavenumber. ber, quickly improves the dispersion error. Below coincidence,
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Figure 7. Relative error in real part of wavenumber Kz with h/t =1

Figure 8. Relative error in imaginary part of wavenumber Kz with h/t =
(Top) Evanescent, (Bottom) Leaky.

1. (Top) Subsonic, (Bottom) Leaky.

the GLS fluid phase error partially cancels the plate discretization wavenumber closely. However, after rejoining to form a pair of
error leading to a lower overall dispersion error for the HLS-GLS complex conjugate roots, HYB-GLS under-estimates the analyt-
structure-fluid combination. ical wavenumbers. The HLS-GLS solution closely matches the
Figure 5 (Bottom) shows the relative dispersion error in the analytical leaky component over the entire frequency range. Ac-
real part of the leaky wavenumbgr The sharp peak occurs near — curacy of the leaky roots decreases for the STB fluid compared
the end of the bifurcation region ah/co = 0.6, where the leaky to GLS. Similar to the subsonic wavenumber results, the leaky
roots change from separate real roots, to a complex-conjugatewavenumber solutions for GGLS-GLS show significant error
pair. The spike in the error is a result of missing the bifurcation prior to coincidence. The solution using MITC4 with Galerkin
point by a small amount. As mentioned earlier, we conjecture fluid completely misrepresents the leaky wavenumbers both in
that since this error peak occurs before coincidence, where the the bifurcation and complex conjugate regions (not shown).
leaky wavenumbers have relatively small influence on the over- Figure 6 (Top) shows the relative error for (kg), measured
all solution, the impact on the finite element solution is small as an error in amplitude decay. Results show significant error in
compared to accuracy of the subsonic or evanescent roots. In thethe evanescent wavenumber using the Hybrid element (HYB). In
bifurcation region, the HYB-GLS solution matches the analytical contrast, both HLS-GLS, HLS-STB and GGLS-GLS evanescent
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--- HYB-GLS
- - GGLS-GLS] 1

the plate elements with common GLS fluid treatment, increasing
steadily with increasing frequency. In contrast, the STB treat-
ment for the fluid shows very small error. This result demon-
strates the strong influence of the improved sonic wavenumber
accuracy on the dispersion error. The phase error for propagat-
ing waves in the fluid due to the leaky roots is the smallest using

< 0.98 g

:3 HLS-GLS, with error less than 7%. Again, the large peak oc-
=00 ] curs due to the small misrepresentation of the bifurcation point
& 096" . corresponding to frequenegh/co = .6.

0.95-

0.94-

0.93-

The imaginary components [i,) are shown in Figure 8.
Before coincidence, the STB fluid treatment shows improved ac-
curacy compared to GLS for the amplitude of the evanescent
root. For the amplitude of the leaky root, above coincidence,
the STB method for fluid tends to underestimate the exact ampli-

*% 05 Wi 1 15 tude. In contrast, the GLS method overestimates the exact value.
0 HLS-GLS gives the best overall accuracy for this wavenumber
component.
11 Figure 9 shows the phase error of the real part of the sub-
Lod — s | sonic and leaky wavenumber for a courser mesh with element
‘ - - HYB-GLS length to thickness ratio di/t = 2. In this case, the error in-
106 - - GGLS-GLS| |

[Re() | /| Re(g) |

Figure 9. Relative error in real part of wavenumber Ky with h/t = 2.

(Top) Subsonic, (Bottom) Leaky.

15
Wh/c0

creases, yet the relative accuracy for the different approximations
remains the same.

CONCLUSIONS

A complex-wavenumber dispersion analysis of acoustic
fluid interaction with Reissner-Mindlin plates is performed to
guantify the accuracy of new stabilized finite element methods.
Dispersion analysis provides a tool for comparing the free-waves
in different finite element formulations for fluid-loaded plates.
The analysis of free-waves in an infinite mesh allows us to predict
the trends in behavior of the elements when used to model bound-
ary value problems with fixed boundaries. Results demonstrate
the significantly improved accuracy of the hybrid least-squares
(HLS) plate element developed in (Thompson,1999), combined
with a GLS (Thompson,1995) or stabilized STB (Oberai,1999),
fluid treatment, compared to the underlying hybrid (HYB) el-
ement (Aminpour,1992), and the displacement-based elements

wavenumbers match the analytical value over the entire range of (MITC4) (Bathe,1985), and (GGLS) (Grosh,1998). MITC4 plate
frequencies. The similarities in the evanescent wavenumbers iselements coupled with a Galerkin fluid approximation performs
explained by the dominant influence of the common treatment poorly for both subsonic, evanescent, and leaky wavenumber
for the in vacuoplate evanescent wavenumber where both components. The accuracy of the assumed-stress hybrid ele-
HLS and GGLS are designed to exactly makghalong mesh  ment (HYB), coupled with a GLS fluid treatment, is improved
lines and over all frequencies. Since the evanescent wavenum-compared to MITC and performs well. Using the least-squares
ber Im(ky) ~ ko, the amplitude error for the fluid-loaded plate is  modification for the hybrid plate (HLS), together with GLS fluid
small using HLS. elements, the performance of the hybrid element is enchanced
Figure 6 (Bottom) shows the amplitude error for the imagi- further, especially in the difficult high frequency region, yield-
nary part of the leaky wavenumber (kq). Here both HLS-GLS ing a highly accurate fluid-loaded plate model. The least-squares
and HYB-GLS give errors less than 1%. The error is largest for modifications are simple to implement with negligible increase
the GGLS-GLS method. in computational cost and memory. We note that high-order ac-
The relative error for Rgy), is shown in Figure 7. Dis- curacy may also be achieved by ‘brute-force’ using higher-order
persion error in the fluid due to evanescent roots is similar for finite element approximations such as hp-version or spectral ex-
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tensions (Thompson,1994), but with extra cost and memory re- method for the Helmholtz equation’, To appearlitiernat. J.
qguirements. The inclusion of residuals on inter-element bound- Numer. Methods Engrg.
aries in the acoustic fluid as described in (STB) (Oberai,1999), T.J.R. Hughes, L.P. Franca, and G.M. Hulbert, ‘A new finite
further improves the accuracy of the sonic wavenumber approxi- element formulation for computational fluid dynamics: VIII. The
mation. As a result, the accuracy is improved in the frequency re- Galerkin least squares method for advective-diffusive equations’,
gions where the acoustic discretization dominates the behavior of Comp. Meth. in Appl. Mech. Eng.3(1989), 173-189.
the fluid-loaded plate. In particular the accuracy is improved for: I. Harari and T.J.R. Hughes, ‘Galerkin/least-squares finite
(1) the subsonic wavenumber beyond the coincidence frequency,element methods for the reduced wave equation with non-
where the fluid is propagating along the plate, and (2) radiationin reflecting boundary conditions in unbounded domai@gmp.
the perpendicular direction to the plate, due to evanescent wavesMeth. in Appl. Mech. Eng98 (1992), 411-454.
along the plate. I. Harari, K. Grosh, T.J.R. Hughes, M. Malhotra, P.M. Pin-
In general, the ability to represent all wavenumber com- Sky, J.R. Stewart, L.L. Thompson, ‘Recent Developments in
ponents is important. However, for common plate structures Finite Element Methods for Structural Acoustic&chives of
with relatively wide spacing between discontinuities, the sub- Computational Methods in Engineerir@y,pp. 132-311, 1996.
sonic wavenumber often plays a dominant role, and should be ~ T.J.R. Hughes and L.P. Franca, ‘A mixed finite element
accurately represented in the finite element approximation. The method formulation for Reissner-Mindlin plate theory: uniform
HLS approach has a lower error than the GGLS approach for convergence of all higher-order spaceSgmput. Meths. Appl.
the important subsonic wavenumber. While GLS is not as accu- Mech. Engrg.67 (1988), 223-240.
rate in approximating the sonic wavenumber compared to STB, K. Grosh and P.M. Pinsky, ‘Galerkin Generalized Least
in the range of frequencies prior to coincidence, the fluid phase Squares Methods for Timoshenko Bean@mp. Meth. in Appl.
error tends to partially cancel the plate discretization error lead- Mech. Eng.132 (1996) 1-16.
ing to the best overall dispersion accuracy using the HLS-GLS L. P. Francaand D. G. Dutra do Carmo, ‘The Galerkin gradi-
structure-fluid combination. In this paper, accurate methods for ent least-squares metho€pmput. Meths. Appl. Mech. Engrg.
fluid-loaded plates were obtained using a consistent combination 74 (1989), 44-54.
of optimal design parameters for the uncoupled problems. We K. Grosh and P.M. Pinsky, ‘Galerkin Generalized Least
conjecture that further improvements can be made by determin- Squares Methods for time-harmonic structural acoust@smp.
ing optimal design parameters within the HLS-GLS framework Meth. in Appl. Mech. Eng154 (1998) 299-318.
which are specifically taylored to match the dominant roots of R. Jasti, ‘Mixed shell finite elements with applications in
the coupled fluid-structure dispersion relations. structural acoustics’, Chapter 8, PhD dissertation, Stanford Uni-
versity, 1992.
K. Grosh and P.M. Pinsky, ‘Complex wave-number disper-
sion analysis of Galerkin and Galerkin least-squares methods
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