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ABSTRACT
The application of stabilized finite element methods to

model the vibration of elastic plates coupled with an acoustic
fluid medium is considered. New stabilized methods based on
the Hellinger-Reissner variational principle with a generalized
least-squares modification are developed which yield improve-
ment in accuracy over the Galerkin and Galerkin Generalized
Least Squares (GGLS) finite element methods for bothin vacuo
and acoustic fluid-loaded Reissner-Mindlin plates. Through ju-
dicious selection of design parameters this formulation provides
a consistent framework for enhancing the accuracy of mixed
Reissner-Mindlin plate elements. Combined with stabilization
methods for the acoustic fluid, the method presents a new frame-
work for accurate modeling of acoustic fluid-loaded structures.
The technique of complex wave-number dispersion analysis is
used to examine the accuracy of the discretized system in the rep-
resentation of free-waves for fluid-loaded plates. The influence
of different finite element approximations for the fluid-loaded
plate system are examined and clarified. Improved methods are
designed such that the finite element dispersion relations closely
match each branch of the complex wavenumber loci for fluid-
loaded plates. Comparisons of finite element dispersion relations
demonstrate the superiority of the hybrid least-squares (HLS)
plate elements combined with stabilized methods for the fluid
over standard Galerkin methods with mixed interpolation and
shear projection (MITC4) and GGLS methods.

�Corresponding author.

INTRODUCTION
When modeling the steady-state response of structures cou-

pled with an acoustic fluid, plate and shell elements are needed
to accurately represent both propagating, leaky, and evanescent
wave types in the solution. This is especially important when
modeling sound wave interaction in applications of structural
acoustics. Standard 4-node quadrilateral displacement based
plate and shell elements such as the mixed interpolation with
shear projection (MITC4), and selectively reduced integration
elements (SRI4) (Bathe,1985), while eliminating shear locking
problems for thin plates, exhibit poor accuracy at high frequen-
cies. To solve this problem, new stabilized hybrid plate elements
have been developed based on a generalized least-squares modi-
fication to the underlying Hellinger-Reissner functional (Thomp-
son,1999). The least-squares operators are proportional to resid-
uals of the governing equations of motion for Reissner-Mindlin
plates. The inclusion of shear deformation and rotary inertia
effects in this theory is important for high-frequency response
for flexural waves in plates. Use of independent displacements
and stress resultants in this Hybrid Least-Squares (HLS) method
provides a general framework for enhancing the accuracy of
mixed/hybrid plate elements. In (Thompson,1999), complex-
wavenumber finite element dispersion analysis is used as a de-
sign criteria to select optimal tuning parameters in the HLS for-
mulation so that the for a given wave propagation angle, the
plate elements match the analytical wavenumber-frequency re-
lations for in vacuoplates exactly. In this paper, our strategy
is to combine these HLS plate elements with stabilized treat-
ments for the acoustic fluid for accurate response of fluid-loaded
Reissner-Mindlin plates. The residual based Galerkin Least-
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Squares (GLS) methods developed in (Thompson,1995), and the
stabilized methods (STB) developed in (Oberai,1999), are con-
sidered. Both fluid stabilization treatments are residual based
methods which improve the accuracy of the finite element ap-
proximation to the sonic wavenumber.

Complex-wavenumber dispersion analysis is used to exam-
ine the accuracy of free-waves in the HLS plate elements de-
veloped in (Thompson,1999), coupled with stabilized methods
for the fluid (Thompson,1995; Oberai,1999). We use complex-
wavenumber dispersion analysis as a tool for quantifying the
behavior of different combinations of stabilized methods for
acoustic-structure interaction. While based on the study of in-
finite plates, dispersion analysis provides a valuable tool for
predicting the general trends in behavior for finite element dis-
cretization of practical models with fixed boundaries. The use
of finite element dispersion analysis for fluid-loaded plate sys-
tems was first performed by (Jasti,1992), where real-valued free
waves in Galerkin based plate elements using both Kirchoff’s
theory and Mindlin’s theory, coupled with a Galerkin formula-
tion for the fluid were studied. Later, (Grosh,1994) extended his
work to include imaginary wavenumbers, and helped to clarify
the significance of each wavenumber branch.

Weighted residuals of the governing Euler-Lagrange equa-
tions in least-squares form were first used to stabilize the patholo-
gies exhibited by the classical Galerkin method for the numer-
ical solution of advection-diffusion problems (Hughes,1989).
These so-called Galerkin Least-Squares (GLS) stabilized meth-
ods have been successfully employed in a wide variety of ap-
plications where enhanced stability and accuracy properties are
needed. These ideas have since been extended in (Harari,1992),
and (Thompson,1995) for the GLS finite element solution to the
scalar Helmholtz equation governing wave propagation in acous-
tic fluids. In (Thompson,1995; Harari,1996), finite element dis-
persion analysis was used to select optimal weighting parame-
ters in the least-squares modifications to the standard Galerkin
method, resulting in improved phase accuracy for both two- and
three- dimensional acoustic problems.

The first use of residual based methods for static analy-
sis of plate structures can be found in (Hughes,1988), where
symmetric forms of the equilibrium equations were appended
to the standard Galerkin equations to improve accuracy. Later,
(Grosh,1996) applied the Galerkin Gradient Least-Squares
(GGLS) method of (Franca,1989) to improve the accuracy
of Timoshenko beam elements for steady-state vibration. In
(Grosh,1998), the GGLS Timoshenko beam element is combined
with the one-dimensional GLS method of (Harari,1992) to study
acoustic-fluid loaded beams. As expected, the combined use of
stabilized methods for both the beam and acoustic fluid, yielded
improved accuracy over standard Galerkin methods. However,
the extension of the GGLS formulation to Reissner-Mindlin plate
elements based on bi-linear displacement interpolation failed to
produce a general 4-node quadrilateral element which is free

from shear locking (Grosh,1996), limiting the use of this method
for practical applications. Our approach for modeling fluid-
loaded structures is similar to that used in (Grosh,1998). Here,
instead of a Galerkin based displacement method, we use the
locking free, quadrilateral plate elements based on the Hybrid
Least-Squares (HLS) method developed in (Thompson,1999),
combined with the improved acoustic fluid stabilization meth-
ods developed in (Thompson,1995; Oberai,1999). Using a con-
sistent combination of accurate HLS methods for the uncoupled
plate and GLS methods for the fluid problems, improved meth-
ods are obtained such that the finite element dispersion relations
closely match each branch of the complex wavenumber loci for
fluid-loaded plates.

In the following, we first summarize the analytical disper-
sion relation forin vacuoReissner-Mindlin plates. This disper-
sion relation is used to design Hybrid Least-Squares (HLS) plate
elements which for a given free-wave angle, exactly match the
analytical wavenumber-frequency relation forin vacuoplates.
Next, the analytical subsonic, leaky, and evanescent roots for the
fluid-loaded plate are derived, and then compared to the coupled
finite element formulation with different stabilized fluid treat-
ments. The accuracy of different finite element approximations
for the fluid-loaded plate system are examined and clarified using
complex-wavenumber dispersion analysis. Finally, conclusions
are made and future work is discussed.

REISSNER-MINDLIN PLATE EQUATIONS
Consider a plate of thicknesst, defined on the domainΩs

such that,

Ωs =

n
(x;y;z) 2 R3; z2 [�

t
2
;

t
2
] ; (x;y) 2 Γ� R2

o
(1)

whereΓ is a two-dimensional midsurface andz is the coordinate
transverse to this plane. Furthermore, loadingq(x;y) is restricted
to the direction normal to the midsurface defined aseeez.

Mindlin’s approximate theory for flexural waves in plates
includes shear deformation and rotary inertia effects which are
important for high-frequency excitation. The deformation at
any point is given by the three-dimensional displacement vec-
tor defined by the kinematic relation,uuu =�zθθθ(x;y)+w(x;y)eeez,
whereθθθ = [θx ; θy]

T denotes the two-dimensional vector of ro-
tations, such thatθθθ ? eeez. The componentsθx and θy are the
rotations of the transverse line elements (perpendicular fibers to
the midsurface) about they andx axes respectively. As a con-
sequence of the kinematic assumptions, the in-plane bending
strains(εxx;εyy;γxy), are linearly related to curvatures through a
differential operatorLLL, acting on the rotationsθθθ,

κκκ = LLLθθθ = [θx;x ; θy;y ; θx;y+θy;x]
T (2)
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Using first-order shear deformation theory, the transverse shear
strains are defined by the angle between the slope of the midsur-
face after deformation and the fiber orientation,

γγγ = ∇w�θθθ = [w;x�θx ; w;y�θy]
T (3)

For classical Kirchoff thin plate theory, the slope is assumed to be
equal to the fiber rotation so thatγγγ = 0. The inclusion of nonzero
shear deformation in the Reissner-Mindlin model allows for a
more accurate representation of high-frequency behavior.

For a homogeneous plate with linear elastic material prop-
erties, the constitutive relation for the bending and twisting mo-
mentsMMM = [Mx ; My ; Mxy]

T and shear resultantsQQQ = [Qx ; Qy]
T

is given by,MMM = DDDb κκκ, andQQQ= Dsγγγ, where for isotropy,

DDDb = Db

2
41 ν 0

ν 1 0

0 0 (1�ν)
2

3
5 ; Db =

EI
(1�ν2)

; Ds = Gst (4)

with I = t3=12, Young’s modulusE, Poisson’s ratioν, shear
modulusG, andκ is a shear correction factor,Gs = κG.

For time-harmonic motion, the coupled equations of mo-
tion for the in vacuoReissner-Mindlin plate may be expressed
in terms of generalized displacementsuuu� = [w;θx;θy], and stress
resultantsσσσ� = [MMM;QQQ]. Here we write the equilibrium equations
as residuals,R1, andRRR2 = [R2x;R2y]

T ,

R1[uuu
�;σσσ�] := ∇ �QQQ+mω2w+q= 0 (5)

RRR2[uuu
�;σσσ�] := LLLT MMM+QQQ+ρI ω2 θθθ = 0 (6)

In the above,m= ρt is the mass density per unit area,ω is the
circular frequency measured in rad/sec, andLLL is the differential
operator implied in (2).

In the absence of an applied loadq, the plate equations of
motion admit solutions of the form,

w= w0e(ikννν�xxx); θθθ = θ0νννe(ikννν�xxx) (7)

In the above,i =
p
�1, k is the wavenumber,ννν = [cosϕ ; sinϕ]

defines a unit vector in the direction of wave propagation, with
wave vectorkkk= kννν = k[cosϕ ; sinϕ]. Conditions for the allowed
waves are obtained by substituting the assumed exponentials (7)
for uuu� into the homogeneous equations of motion. Two indepen-
dent characteristic equations associated with transverse deflec-
tion and rotation result:

�
Dsk2�ρt ω2 iDsk
�iDsk Dbk2+Ds�ρIω2

��
w0

θ0

�
=

�
0
0

�
(8)

Nontrivial solutions for the wave amplitudesw0 andθ0 are ob-
tained by setting the determinant of the characteristic matrix to
zero. The result is the dispersion equation relating frequencyω
to wavenumberk,

D(k) := (k4�λ2
sk

2�λ4
b) = 0 (9)

with frequency dependent functions,

λ2
s = [k2

s +k2
p]; λ4

b = [k4
b�k2

pk2
s]: (10)

Here,

kp = ω=cp; ks = ω=cs; kb = (mω2=Db)
1=4:

wherekb is the classical plate bending wavenumber forin vacuo
flexural waves in the Kirchoff theory, and

cp =

�
E

ρ(1�ν)2

�1=2

; cs =

�
Gs

ρ

�1=2

:

Considered as a function ofk2, solutions to the plate dispersion
relation (9) occur in pairs:�k1 and�k2. At frequencies below
a cut-off frequency, the wavenumber pair�k1 occurs as purely
real, while the pair�k2 is purely imaginary. The real wavenum-
ber pair corresponds to propagating waves while the imaginary
pair corresponds to evanescent waves characterized by exponen-
tial decay. The influence of the evanescent waves are localized
near drivers and discontinuities in the plate, e.g., near boundary
layers. In the next section, the discrete counterpart to this contin-
uous dispersion relation is used as a tool for the design of stabi-
lized hybrid finite element methods, which for a given free-wave
angle, match the exact wavenumber-dispersion relation defined
by (9).

HYBRID LEAST SQUARES FORMULATION
In (Thompson,1999) a new Hybrid Least Squares (HLS)

finite element method based on a modified Hellinger-Reissner
functional with independent stress and displacement approxima-
tions was developed. The Hellinger-Reissner functional is modi-
fied by adding weighted differential operators acting on the resid-
uals of the governing equations of motion for the plate written in
least-squares form. This approach may be considered an exten-
sion of Galerkin Least Squares (GLS) methods to mixed/hybrid
methods. For the Mindlin plate equations, the HLS functional
is expressed in terms of the residualsR1, andRRR2 = [R2x;R2y], as
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(Thompson,1999),

FHLS(uuu
� ; σσσ�) = FH(uuu

�;σσσ�)+
1
2

Z
Γ̃

τ1(∇R1)
2 dΓ

+
1
2

Z
Γ̃

τ2
�
(R2x;x)

2+(R2y;y)
2	 dΓ: (11)

In the above,Γ̃ = [eΓe is the sum of element interiorsΓe,
andFH(uuu� ; σσσ�) defines the Hellinger-Reissner functional for the
plate equations of motion,

FH(uuu
� ; σσσ�

) = Fb+Fs�ω21
2

Z
Γ
(mw2

+ρIθθθ2
)dΓ (12)

with,

Fb(θθθ ; MMM) :=
Z

Γ
MMMT κκκdΓ�

1
2

Z
Γ

MMMT DDD�1
b MMM dΓ (13)

Fs(uuu
� ; QQQ) :=

Z
Γ

QQQT γγγdΓ�
1
2

Z
Γ

QQQT D�1
s QQQdΓ (14)

The frequency dependent parametersτ1 = τ1(ω) andτ2 =

τ2(ω) are local mesh parameters determined from dispersion
analysis and designed to stabilize the finite element solution, thus
improving accuracy (Thompson,1999). Settingτ1 = τ2 = 0, re-
verts to the underlying Hybrid formulation. The use of residuals
maintains the consistency of the resulting finite element varia-
tional equation. Integration of the residuals over element inte-
riors Γ̃ is required to maintainC0 continuity between adjacent
elements.

Using a mixed/hybrid finite element approach,independent
approximations are used for the displacement variables and stress
resultants – a compatible displacement fielduuu� = NNN ddd, and a lo-
cal stress field defined within element interiorsσσσ� = PPPβββ. Here,
NNN andPPP are arrays of polynomial basis functions andddd andβββ are
the unknown element nodal degrees-of-freedom (dof) and stress
parameters, respectively. Any of several existing mixed finite el-
ement approximation fields which produce elements which are
free from shear locking and pass the static patch test may be
used. In (Thompson,1999),we used the field-consistent displace-
ment and assumed stress fields proposed by Aminpour (Amin-
pour,1992) to develop a 4-node Hybrid Least Squares quadrilat-
eral plate element (HLS4). The transverse displacement inter-
polation is bi-linear in the nodal parameterswi , enriched with
linked quadratic functions expressed in terms of the nodal rota-
tions θxi andθyi. The transverse displacement is approximated
by polynomials of one order higher than the rotations resulting
in a field consistent basis. The curvatures and shear strains are
then formed by,κκκ = BBBbddd, andγγγ = BBBsddd, defined by (2) and (3),
respectively. The assumed momentMMM = PPPb βββ, and shear force

QQQ = PPPsβββ, fields are formulated in element natural coordinates
and then transformed into physical coordinates by means of the
contravariant tensor transformation evaluated at the center of the
element. The shear resultant field is assumeda priori to satisfy
the static equilibrium equations defined in natural coordinates.

Imposing stationary conditions with respect touuu� and σσσ�,
and eliminatingβββ from the resulting discrete Euler-Lagrange
equations results in the dynamic stiffness matrix for each ele-
ment:

ssse = kkke�ω2mmme+kkke
LS(ω) (15)

The element stiffness matrix is constructed from,

kkke
= TTTT HHH�1TTT; (16)

where

TTT =

Z
Γe

PPPT
b BBBbdΓ+

Z
Γe

PPPT
s BBBsdΓ (17)

HHH =

Z
Γe

PPPT
b DDD�1

b PPPbdΓ+

Z
Γe

PPPT
s D�1

s PPPsdΓ (18)

The consistent element massmmme is computed in standard form.
For general 4-node quadrilateral finite elements with the

stress fields defined by (Aminpour,1992), the least-squares terms
in the HLS functional simplify. In this case, we determine the
frequency dependent stabilization matrixkkke

LS from a square el-
ement with lengthh and constant element jacobianJe = h2=4,
i.e.,

kkke
LS = r1

Z 1

�1

Z 1

�1

�
dNNNT

w

dξ
dNNNw

dξ
+

dNNNT
w

dη
dNNNw

dη

�
dξdη+

r2

Z 1

�1

Z 1

�1

 
dNNNT

θx

dξ
dNNNθx

dξ
+

dNNNT
θy

dη
dNNNθy

dη

!
dξdη (19)

where NNNw(ξ;η), NNNθx(ξ;η) and NNNθy(ξ;η) are row vectors of
polynomial basis functions defined by finite element approxima-
tions in natural coordinates(ξ;η): w= NNNwddde; θx = NNNθxddd

e; θy =

NNNθxddd
e. The scaled mesh parametersr1 = τ1(mω2)2 and r2 =

τ2(ρIω)2 are defined based on an average element lengthh. In
(Thompson,1999), optimal values forr1 and r2 are determined
such that finite element wavenumber pairs�k1 and�k2 match
the analytical wavenumber pairs for a given wave orientation an-
gleϕ on a uniform mesh.

Figure 1 shows a comparison of finite element and analyt-
ical dispersion curves for the propagating and evanescent wave
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Figure 1. Comparison of analytic and finite element dispersion curves

for steel plate in vacuo with h=t = 1:0. k1 (Propagating) and k2

(Evanescent) wavenumber pairs for Hybrid Least Squares (HLS), Hy-

brid (HYB), and (MITC). The sonic wavenumber k0 = ω=c0, denoted

by dashed lines, is shown for reference.

numbers for a steel platein vacuo. Results are given for a uni-
form mesh with waves directed along mesh lines. The disper-
sion curves are compared for the Mixed Interpolation of Ten-
sorial Components element (MITC4) (Bathe,1985), the Hybrid
element (HYB4) of (Aminpour,1992), and the Hybrid-Least-
Squares element (HLS4), (Thompson,1999). For propagation
along mesh lines, results for MITC4 are equivalent to SRI4. The
properties for the plate are taken as:E = 210�1010 dynes/cm2,
ν = 0:29, ρ = 7:8 g/cm2, and κ = 5=6. The ratio of the el-
ement length to plate thickness ish=t = 1:0. For reference,
the frequency is normalized with respect to the element length
h, and the speed of sound in water,c0 = 148100 cm/s. The
MITC element significantly under-estimates the propagating real
wavenumber pair while overestimating the imaginary wavenum-
ber. The HYB element matches the analytical propagating
wavenumber much better, suggesting significant improvement in
phase accuracy. The HLS element matches the analytical disper-
sion curvesexactlyby design.

COUPLED ACOUSTIC FLUID - PLATE EQUATIONS
For the fluid loaded plate, the acoustic pressurep(x;y;z) ap-

pears as a surface traction in the vertical equation of motion for
the plate:

Qx;x+Qy;y+mω2w(x;y) = p(x;y;0)�q(x;y); (x;y) 2 Γ (20)

The fluid domainΩ f is defined by the semi-infinite regionz� 0.
The bottom of the plate is assumed to bein vacuo. The acoustic
pressure satisfies the Helmholtz equation,

(∇2
+k2

0)p(x;y;z) = 0; (x;y;z) 2Ω f (21)

wherek0 = ω=c0, andc0 = K=ρ0 is the acoustic wave speed. To
ensure outgoing waves, the acoustic pressure is also subject to
the Sommerfeld radiation condition at infinity. The continuity of
normal acceleration on the wet surfacez= 0, is expressed as the
Neumann condition,

∂p
∂z

����
z=0

= ρ0ω2w(x;y); on Γ (22)

Here we assume free plane waves propagating in thex-
direction within the fluid-loaded plate with no sourcesq = 0.
The plate vertical deflectionw and rotationθ = θx is sought in
the following form:

w= w0eikxx; θ = θ0eikxx (23)

Then, the acoustic pressure field satisfies the boundary condition,

∂p
∂z

����
z=0

= ρ0ω2w0eikxx (24)

With these conditions, the functionsw, θ, andp are independent
of y, so that the governing equations can be simplified to,

Qx;x+mω2w(x) = p(x;z)jz=0 (25)

Mx;x+Qx+ρIω2θ(x) = 0 (26)

Eliminatingθ in favor ofw gives the single equation:

w;xxxx+λ2
s w;xx�λ4

bw=
1
Ds

[λ2
p p+ p;xx]

��
z=0

(27)

with frequency dependent functionsλb, λs, defined in (10), and

λ2
p = [k2

p�Ds=Db]:

Assuming a plane wave solution for acoustic pressure:

p(x;z) = p0ei(kxx+kzz) (28)

5 Copyright  2000 by ASME



then to satisfy (24) and (21),

p(x;z) =
ρ0ω2

ikz
w0ei(kxx+kzz) (29)

with kz defined by,

k2
0 = k2

x +k2
z: (30)

The dispersion equation for the fluid-loaded plate is obtained
by introducing (23) and (29) into the plate equation (27), with the
result:

ikzDsD(kx)�ρ0ω2(λ2
p�k2

x) = 0 (31)

In the aboveD(kx) is the dispersion equation forin vacuoplates
defined in (9). The roots of this equation give the possible
wavenumberskx andkz of the free plane waves. Squaring both
sides of (31) and using (30) to eliminatekz in terms ofkx, the
dispersion equation for fluid-loaded plates can be replaced by,

D2
s(k

2
0�k2

x)(k
4
x�λ2

sk2
x�λ4

b)
2�ρ2

0ω4(λ2
p�k2

x)
2 = 0 (32)

Considered as an equation ink2
x, the dispersion equation has

five roots; One Subsonic wavenumber (purely real), two Leaky
wavenumbers, and two evanescent wavenumbers (occur as com-
plex conjugate pairs). Once thek2

x roots have been computed, the
componentskz are obtained from (30).

There is one realkx root over all frequencies with modulus
larger than the acoustic wavenumberk0. Sincekx > k0, this root
is interpreted as asubsonicfree-wave. The subsonic root is plot-
ted in Figure 2 using the fluid-loaded plate properties given ear-
lier, and with fluid densityρ0 = 1:0g= cm3. Thecoincident fre-
quencyωh=c0 = 1:19, for the fluid-loaded plate is located at the
intersection where thein vacuopropagating wavenumber for the
plate,k1, matches the sonic wavenumberk0 = ω=c0. Below co-
incidence, the subsonic wave behaves as a modified propagating
wave in the plate. For frequencies above coincidence, the sub-
sonic wavenumber asymptotes to the sonic linek0 = ωh=c0. For

this root,k2
z = k2

0�k2
x < 0, so that the componentkz = i

q
k2

x�k2
0

is purely imaginary, and the acoustic pressure decreases expo-
nentially with respect to the variablez. The energy associated
with this wave is trapped in the acoustic near-field of the plate,
and decays rapidly in the fluid.

The two leaky wavenumbers are characterized by the roots
where the real part ofkx is much larger than the imaginary part,
i.e., Re(kx)� Im(kx), see Figure 3. In the regionk0 < k1, thekx

component of the leaky wavenumbers initially occur as complex

conjugate pairs and then quickly bifurcate into two paths of pure
real roots such thatk0 < kx < k1. As the frequency increases, the
paths rejoint to form a complex conjugate pair. For frequencies
beyond the intersection of the real part of the leaky rootkx, and
the sonic rootk0, then Re(kx)< k0. For these higher frequencies,
the energy associated with the leaky wave will propagate with
decay within the plate, while slowly ‘leaking’ energy into the
fluid with wave angle defined byα = arctanRe(kz=kx).

The two evanescent wavenumbers occur as complex conju-
gate pairs over the entire frequency range, with Im(kx)�Re(kx),
see Figure 4. This root represents a wave that decays rapidly in
the plate. For the steel plate in water, the evanescent wavenum-
ber closely matches the imaginary root of thein vacuoplate over
all frequencies, i.e., Im(kx) � k2. The energy associated with
the evanescent wave is radiated nearly perpendicular to the plate
with a propagating wavenumber Re(kz) which asymptodes to a
line tangent to the sonic wavenumberk0.

While not all of the roots can be considered free-waves over
all frequencies, the location of each root plays a role in asymp-
totic and numerical evaluations of analytical solutions for fluid-
loaded plates (Crighton,1979; Crighton,1988). Below coinci-
dence, the leaky roots to the dispersion relation (32) generally
have the least influence on analytical solutions, compared to sub-
sonic and evanescent roots (Crighton,1979). From these obser-
vations, while all roots of the fluid-loaded dispersion relation
have significance, we conjecture that the subsonic and evanes-
cent waves should be most closely matched by any finite element
approximation, with the subsonic the most important for accurate
phase in structures with widely spaced discontinuities.

STABILIZED FINITE ELEMENT FORMULATION
The variational equation for the coupled fluid-structure

problem is,

δ(Fs+Ff ) = δW (33)

where the structural partFs = FHLS(uuu�;σσσ�; p) is the Hybrid-
Least-Squares functional defined earlier for the plate, with the
residualR1, modified for the fluid pressure loadingp on the plate,
i.e.,R1 = ∇ �QQQ+mω2w+q� pjz=0. The fluid partFf =FGLS(p)
is defined by a Galerkin functional modified by a residual in
least-squares form over element interiors and a residual over
inter-element boundaries:

FGLS(p) = FG(p)+
1
2

Z
Ω̃ f

τ(∇2p+k2
0)

2dΩ (34)

+

Z
S 0

β[[p;n]](∇2p+k2
0)dΓ (35)
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Figure 2. Fluid-loaded plate analytical dispersion relation for the sub-

sonic root. The propagating root for the in vacuo plate k1, and sonic

wavenumber k0 = ωh=c0, are plotted for reference. The coincident
frequencyωh=c0 = 1:19, for the fluid-loaded plate is located at the

intersection where the k1 = k0.
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Figure 3. Fluid-loaded plate analytical dispersion relation for the real

part of the two leaky roots.

FG(p) =
1
2

Z
Ω f

(∇p)2dΩ+
1
2

k2
0

Z
Ω f

p2dΩ (36)

In the above,S 0 = [eSe is the sum of inter-element bound-
ariesSe, [[p;n]], denotes a jump in normal derivatives across el-
ement boundaries,τ andβ are mesh parameters designed to sta-
bilize the uncoupled acoustic fluid problem (Thompson,1995;

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

wh/c
0

W
av

en
um

be
r

Evanescent Re(Kx)  
Evanescent Re(Kz)  
Evanescent Im(Kx)  
Evanescent Im(Kz)  
In Vacuo     Im(Kx)
Sonic     (K0)  

Figure 4. Fluid-loaded plate analytical dispersion relation for the com-

plex conjugate evanescent roots. The imaginary root for the in vacuo
plate k2, and sonic wavenumber K0, are plotted for reference.

Oberai,1999). Forτ = 0;β = 0 the formulation reverts to
Galerkin.

The right-hand-side is the ‘virtual work’ of the interface con-
ditions, coupling the structure to the fluid,

δW =

Z
Γ

δw(q� p)dΓ�ρ0ω2
Z

Γ
δpwdΓ (37)

Introducing finite element approximations for the acoustic
pressurep= NNNp ppp, together with the displacement and stress ap-
proximations for the plate discussed earlier, and imposing sta-
tionary conditions with respect top, and(uuu�;σσσ�), leads to the
symmetric coupled system of equations for the stabilized fluid-
loaded plate elements,

�
ssse qqqe

qqqeT hhhe

��
ddde

pppe

�
=

�
fff e

0

�
(38)

wherehhhe, is the fluid dynamic stiffness matrix composed of stan-
dard fluid stiffness and mass matrices with a residual-based sta-
bilization matrix from (35) and the pressurep appearing in the
structural residualR1. The matrixqqqe defines the coupling ma-
trix resulting from (37) and(w; p) appearing in the stabilization
term associated with the residualR1. For waves restricted to the
xz-plane it is sufficient to consider two-dimensional 4-node bi-
linear acoustic elements. In this case, the residuals simplify and
we consider two alternatives forτ andβ.

In the first, we consider only the residual within an element
and setβ = 0. In this case, the GLS parameterτ(k0h) is defined
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by (Thompson,1995):

τk2
0 = 1�

6(4� fx� fz�2 fx fz)
(k0h)2(2+ fx)(2+ fz)

(39)

where fx = cos(k0hcosπ=8), fz = cos(k0hsinπ=8), k0 = ω=c0,
andh represents an average element size.

In the second case, we consider both the least-squares resid-
ual within element interiors associated withτ, and residuals de-
fined on inter-element boundaries associated withβ. Here, the
values which produce a leading orderO((k0h)7) correction to
the finite element approximation to the sonic wavenumberkh

0,
are defined by (Oberai,1999):

8τk2
0 = τ1+ τ2(ξ2+η2)�90ξ2η2 (40)

8βk2
0 = 20�15(ξ2+η2) (41)

where the coefficientsτ1(k0h) and τ2(k0h) have the following
dependence onk0h,

τ1 = �10�
13
6
(k0h)2�

9
640

(k0h)4

τ2 = 30+
9
4
(k0h)2�

67
768

(k0h)4

In the above,ξ;η, denote natural coordinates defined on a bi-
unit reference element. Natural coordinates are used to parame-
terize general quadrilateral elements in physical coordinates. In
general, the small amount of extra computation required by in-
cluding residuals on element boundaries with the parameters de-
fined above is worth the effort for acoustic problems, since the
sonic wavenumber accuracy is improved compared to the first
case withβ = 0. However as discussed below, when combined
with the interaction with plate discretization, the accuracy is not
necessarily superior for the fluid-loaded plate problem.

FINITE ELEMENT DISPERSION ANALYSIS
Finite element dispersion relations for the fluid-loaded plate

are obtained by assembling a patch of elements from a uniform
mesh with grid spacing∆x = ∆z= h, (Jasti,1992; Grosh,1994).
The result is three repetitive stencils associated with solutions
vvvn = [wn ; θn ; pn;0 ; pn;1]

T , at a typical noden:

1

∑
l=�1

BBBl vvvn+l = 0 (42)

HereBBBl are(3�4) matrix partitions which depend on frequency
and the element dynamic stiffness coefficients. The notationpn;0

denotes pressure solutions at a node lying on the plate boundary
at z= 0, while pn;1 denotes solutions at a typical node along the
first row of grid points in the fluid defined byz= h.

The dispersion relation for the uncoupled fluid relating
wavenumber componentskx andkz, to frequencyk0 = ω=c0 is
given by (Harari,1996):

g2cz+g1 = 0; (43)

g2 = (cxh13+h14); (44)

g1 = (cxh12+h11): (45)

andcz = cos(kzh), cx = cos(kxh), sx = sin(kxh).
To obtain finite element dispersion relations, free-waves are

assumed at a typical node along thex-direction of the plate,

�
wn

θn

�
=

�
w0

θ0

�
e(ikx nh) (46)

Similarly, pressure solutions at a typical node are assumed in
exponential form in thexz-plane,

pn;m = p0e(ikx nh)e(ikznh) (47)

The dispersion relations for the fluid-loaded plate are obtained by
substituting (46) and (47) into the stencils (42) and using (43) to
eliminatekz. The result are the coupled wavenumber-frequency
relations defined by the Hermitian matrix,

2
4 S11 �iS12 Q1

iS12 S22 �iQ2

Q1 iQ2 H1

3
5
8<
:

w0

θ0

p0

9=
;=

8<
:

0
0
0

9=
; (48)

In the above, the coefficients are functions ofkx andω. The func-
tions associated with the structural and fluid difference equations
areSi j , andH1 respectively. For the coupling equations,

Q1 = q12cx+q11; Q2 = q41cx; (49)

Hereqi j = [qqqe]i j , are coefficients of the element dynamic stiff-
ness arrays; further details are given in (Sankar,2000). The fluid-
loaded plate dispersion equation relating wavenumberkx to fre-
quencyω is obtained by rooting the characteristic polynomial
obtained from the determinant of (48).
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Figure 5. Relative error in real part of wavenumber kx with h=t = 1.

(Top) Subsonic, (Bottom) Leaky.

Figure 5 (Top) shows the relative phase error from the fi-
nite element subsonic wavenumberkh

x compared with the ana-
lytic subsonic wavenumberkx. The subsonic wavenumber of-
ten plays a dominant role in fluid-loaded plates. Thus by re-
ducing the percent error in the subsonic wavenumber, even if
by a small amount, the overall accuracy of the numerical so-
lution can increase significantly. Results for the MITC4 plate
element with a Galerkin approximation for the fluid (MITC4-
Gal) gives very large errors, both below and above the coincident
frequency. In contrast, the Hybrid plate element with Galerkin
Least-Squares approximation for the fluid (HYB-GLS) reduces
the error significantly. The Hybrid Least-Squares plate element
together with GLS for the fluid (HLS-GLS) improves the accu-
racy even further, closely matching the analytical wavenumber.
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Figure 6. Relative error in imaginary part of wavenumber kx with h=t =
1. (Top) Evanescent, (Bottom) Leaky.

The Galerkin Gradient-Least-Squares (GGLS) plate element de-
veloped in (Grosh,1996), coupled with GLS fluid elements with
the τ given in (39) is also compared. We note that this GGLS
plate element is restricted to rectangular elements only. Be-
low coincidenceωh=c0 = 1:19, GGLS-GLS shows significant
error and then approaches the HYB-GLS solution for frequen-
cies higher than coincidence. When the GLS fluid representa-
tion is replaced with the stabilized term defined by theτ andβ
parameters defined in (40), and (41), which includes residuals
on the boundary, the phase accuracy is decreased below coinci-
dence. However, above coincidence, where the fluid properties
dominate the behavior of the root, the stabilized fluid approxima-
tion (STB), with a better approximation to the sonic wavenum-
ber, quickly improves the dispersion error. Below coincidence,
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Figure 7. Relative error in real part of wavenumber kz with h=t = 1.

(Top) Evanescent, (Bottom) Leaky.

the GLS fluid phase error partially cancels the plate discretization
error leading to a lower overall dispersion error for the HLS-GLS
structure-fluid combination.

Figure 5 (Bottom) shows the relative dispersion error in the
real part of the leaky wavenumberkx. The sharp peak occurs near
the end of the bifurcation region atωh=c0 = 0:6, where the leaky
roots change from separate real roots, to a complex-conjugate
pair. The spike in the error is a result of missing the bifurcation
point by a small amount. As mentioned earlier, we conjecture
that since this error peak occurs before coincidence, where the
leaky wavenumbers have relatively small influence on the over-
all solution, the impact on the finite element solution is small
compared to accuracy of the subsonic or evanescent roots. In the
bifurcation region, the HYB-GLS solution matches the analytical
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Figure 8. Relative error in imaginary part of wavenumber kz with h=t =
1. (Top) Subsonic, (Bottom) Leaky.

wavenumber closely. However, after rejoining to form a pair of
complex conjugate roots, HYB-GLS under-estimates the analyt-
ical wavenumbers. The HLS-GLS solution closely matches the
analytical leaky component over the entire frequency range. Ac-
curacy of the leaky roots decreases for the STB fluid compared
to GLS. Similar to the subsonic wavenumber results, the leaky
wavenumber solutions for GGLS-GLS show significant error
prior to coincidence. The solution using MITC4 with Galerkin
fluid completely misrepresents the leaky wavenumbers both in
the bifurcation and complex conjugate regions (not shown).

Figure 6 (Top) shows the relative error for Im(kx), measured
as an error in amplitude decay. Results show significant error in
the evanescent wavenumber using the Hybrid element (HYB). In
contrast, both HLS-GLS, HLS-STB and GGLS-GLS evanescent
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Figure 9. Relative error in real part of wavenumber kx with h=t = 2.

(Top) Subsonic, (Bottom) Leaky.

wavenumbers match the analytical value over the entire range of
frequencies. The similarities in the evanescent wavenumbers is
explained by the dominant influence of the common treatment
for the in vacuoplate evanescent wavenumberk2, where both
HLS and GGLS are designed to exactly matchk2 along mesh
lines and over all frequencies. Since the evanescent wavenum-
ber Im(kx) � k2, the amplitude error for the fluid-loaded plate is
small using HLS.

Figure 6 (Bottom) shows the amplitude error for the imagi-
nary part of the leaky wavenumber Im(kx). Here both HLS-GLS
and HYB-GLS give errors less than 1%. The error is largest for
the GGLS-GLS method.

The relative error for Re(ky), is shown in Figure 7. Dis-
persion error in the fluid due to evanescent roots is similar for

the plate elements with common GLS fluid treatment, increasing
steadily with increasing frequency. In contrast, the STB treat-
ment for the fluid shows very small error. This result demon-
strates the strong influence of the improved sonic wavenumber
accuracy on the dispersion error. The phase error for propagat-
ing waves in the fluid due to the leaky roots is the smallest using
HLS-GLS, with error less than 7%. Again, the large peak oc-
curs due to the small misrepresentation of the bifurcation point
corresponding to frequencyωh=c0 = :6.

The imaginary components Im(kz) are shown in Figure 8.
Before coincidence, the STB fluid treatment shows improved ac-
curacy compared to GLS for the amplitude of the evanescent
root. For the amplitude of the leaky root, above coincidence,
the STB method for fluid tends to underestimate the exact ampli-
tude. In contrast, the GLS method overestimates the exact value.
HLS-GLS gives the best overall accuracy for this wavenumber
component.

Figure 9 shows the phase error of the real part of the sub-
sonic and leaky wavenumber for a courser mesh with element
length to thickness ratio ofh=t = 2. In this case, the error in-
creases, yet the relative accuracy for the different approximations
remains the same.

CONCLUSIONS
A complex-wavenumber dispersion analysis of acoustic

fluid interaction with Reissner-Mindlin plates is performed to
quantify the accuracy of new stabilized finite element methods.
Dispersion analysis provides a tool for comparing the free-waves
in different finite element formulations for fluid-loaded plates.
The analysis of free-waves in an infinite mesh allows us to predict
the trends in behavior of the elements when used to model bound-
ary value problems with fixed boundaries. Results demonstrate
the significantly improved accuracy of the hybrid least-squares
(HLS) plate element developed in (Thompson,1999), combined
with a GLS (Thompson,1995) or stabilized STB (Oberai,1999),
fluid treatment, compared to the underlying hybrid (HYB) el-
ement (Aminpour,1992), and the displacement-based elements
(MITC4) (Bathe,1985), and (GGLS) (Grosh,1998). MITC4 plate
elements coupled with a Galerkin fluid approximation performs
poorly for both subsonic, evanescent, and leaky wavenumber
components. The accuracy of the assumed-stress hybrid ele-
ment (HYB), coupled with a GLS fluid treatment, is improved
compared to MITC and performs well. Using the least-squares
modification for the hybrid plate (HLS), together with GLS fluid
elements, the performance of the hybrid element is enchanced
further, especially in the difficult high frequency region, yield-
ing a highly accurate fluid-loaded plate model. The least-squares
modifications are simple to implement with negligible increase
in computational cost and memory. We note that high-order ac-
curacy may also be achieved by ‘brute-force’ using higher-order
finite element approximations such as hp-version or spectral ex-
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tensions (Thompson,1994), but with extra cost and memory re-
quirements. The inclusion of residuals on inter-element bound-
aries in the acoustic fluid as described in (STB) (Oberai,1999),
further improves the accuracy of the sonic wavenumber approxi-
mation. As a result, the accuracy is improved in the frequency re-
gions where the acoustic discretization dominates the behavior of
the fluid-loaded plate. In particular the accuracy is improved for:
(1) the subsonic wavenumber beyond the coincidence frequency,
where the fluid is propagating along the plate, and (2) radiation in
the perpendicular direction to the plate, due to evanescent waves
along the plate.

In general, the ability to represent all wavenumber com-
ponents is important. However, for common plate structures
with relatively wide spacing between discontinuities, the sub-
sonic wavenumber often plays a dominant role, and should be
accurately represented in the finite element approximation. The
HLS approach has a lower error than the GGLS approach for
the important subsonic wavenumber. While GLS is not as accu-
rate in approximating the sonic wavenumber compared to STB,
in the range of frequencies prior to coincidence, the fluid phase
error tends to partially cancel the plate discretization error lead-
ing to the best overall dispersion accuracy using the HLS-GLS
structure-fluid combination. In this paper, accurate methods for
fluid-loaded plates were obtained using a consistent combination
of optimal design parameters for the uncoupled problems. We
conjecture that further improvements can be made by determin-
ing optimal design parameters within the HLS-GLS framework
which are specifically taylored to match the dominant roots of
the coupled fluid-structure dispersion relations.
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