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ABSTRACT are interpreted as a sequence of residual functions obtained from
A sequence of high-order accurate radiation boundary con- the hierarchy of local boundary operators used by Bayliss and
ditions involving local differential operators of auxiliary func-  Turkel (Bayliss,1980) acting on a radial asymptotic (multipole)
tions on a circular boundary are implemented in a spectral finite expansion for outgoing waves. The resulting procedure then in-
element method with mixed time integration. The semi-discrete volves a Cauchy problem involving systems of first-order tem-
finite element equations are integrated explicitly in time while the poral equations, similar to that used in (Grote,1995; Thomp-
auxiliary functions on the circular boundary are integrated using son,2000). With this reformulation, the auxiliary functions are
a semi-implicit time-integration method. An efficient algorithm recognized as residuals of the local boundary operators acting on
results which avoids the need to update either the solutions for the asymptotic expansion, and may be implemented efficiently
the field variable or the boundary functions at intermediate time with standard semidiscrete finite element methods without alter-
steps. Using this mixed time integration approach, a very natu- ing the symmetric and sparse structure of the matrix equations.
ral and efficient implementation of the high-order accurate, local Using harmonics, the method has the ability to vary separately,
boundary conditions is obtained without altering the local/sparse and up to any desired order, the radial and transverse modal or-
character of the finite element equations. Numerical studies of ders of the radiation boundary condition. The primary source
time-dependent scattering from an elliptic object demonstrate the of work is the expense in computing the spherical or Fourier
rapid convergence and accuracy of the implementation. transform at each time-step in a time-integration scheme. For
a uniform mesh on the radiation boundary, this work may be re-
duced using the Fast Fourier Transform (FFT). For unstructured
INTRODUCTION meshes, and problems involving a segmented radiation boundary
Hagstrom and Hariharan (Hagstrom,1998) have derived a condition, there is motivation to circumvent computation of the
sequence of high-order accurate radiation boundary conditions harmonic transform and find an efficient method for computing
involving first-order differential equations in time and tangen- the local conditions directly in physical coordinates.
tial derivatives of auxiliary functions on a circular or spheri- In this paper, we give an alternate approach which
cal boundary. In (Thompson,2000; Thompson,1999a; Thomp- ayoids computing the Fourier transform, and directly approx-
son,1999b), this sequence is reformulated in terms of spheri- imates the sequence of local boundary conditions defined in
cal and Fourier harmonics using a decomposition into orthogo- (Hagstrom,1998) using a spectral finite element method. Nu-
nal transverse modes evaluated on spherical and circular boundperical experiments in (Hagstrom,1998) for a model prob-
aries, respectively. In this form, the local boundary conditions |em involving the Fourier modes of the wave equation in
two-dimensions indicated the high-order accuracy that can be
achieved by directly implementing this sequence of local con-
*Corresponding author.
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ditions in a finite difference method. Here we solve the resid- equation,

ual functions using a spectral finite element approximation in

the angular coordinate on a circular boundary, together with a 1 0% )

mixed time integration procedure. The use of spectral elements 22 = e xeQte [0,T] 1)
allows for consistent and high-order approximations for the lo-
cal boundary conditions within a standard Galerkin variational
framework. The interior finite element equations are integrated
explicitly in time allowing for efficient parallel computation. Fol-
lowing the suggestion in (Hagstrom,1998) for a finite difference
implementation, the spectral element equations for the residual

Q

with initial conditions,®(x,0) = @ (X), ®(X,0) = @(X), X € Q,
and driven by the time-dependent radiation boundary condition
on the surfacé:

. . . . - 0
func.tlc.m; on .the C|rc.ular boundary are !n.tegrated using a semi- a_(p = g(x.t), xeS,te[0,T] 2)
implicit time-integration method. An efficient algorithm results n
which avoids the need to update either the solutions for the field ) ) _
variable or the residual boundary functions at intermediate time In linear acoustics, the scalar functigmay represent the

steps. Using this mixed time integration approach, a very natu- Pressure field or a velocity potential. The wave speed is assumed
ral and efficient implementation of the high-order accurate, local ¢> 0, and real. The initial datg, and@ are assumed to be
boundary conditions is obtained which allows for the solution to confined to the computational domé so that in the exterior

be updated without assembling or factoring finite element ma- egionD =R —Q, i.e., the infinite region outside, the scalar
trices. Numerical studies of scattering from an elliptic object field @(x;t) satisfies the homogeneous form of the wave equa-

mentation and point to further areas of research. D ={r > R,0<6<2m}, and the wave equation takes the form,

10%p %9 109 10%
HELMHOLTZ EQUATION IN EXTERIOR DOMAINS 22 " a2 + Tor + 2362 3)
We consider time-dependent scattering in an infinite two-
. . . 2 . . .
dimensional regio C R?, surrounding an object with surface  the general solution to (3) is given by the Fourier expansion,
S. For computation, the unbounded regi®nis truncated by a
circular boundary, of radius|| X ||= R, see Figure 1. Within

or,6,t) = i Gn(r,t) € (4)

n=—o0

For outgoing waves, the time-dependent modg&,t) may be
represented by the radial asymptotic (multipole) expansion:

D
(rt) =5 1 Y2g(r—ct) (5)
K=0
with wave functions satisfying the following recursion relation
(Hagstrom,1998; Thompson,1999a; Thompson,1999h),
r ' (k=1/22-1
(qﬁ) _Tqﬁ ) k_lazaan (6)
LOCAL RADIATION BOUNDARY CONDITIONS
Figure 1. lllustration of unbounded region R surrounding a scatterer S. In (Thompsgn,l999a; Thompson,1999b), the local radiation
The computational domain Q C R is surrounded by a circular truncation boundary conditions first derived in (Hagstrom,1998) are formu-
boundary I of radius R, with exterior region D = R — Q. lated using the well-known hierarchy of local operators given in
(Bayliss,1980),
Q, the solutiong(x,t) : Q x [0, T] — R, satisfies the scalar wave Bp =Lp(Lp-1(---(L2(L1)))) (7
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(Ea+%>vj=4 {(J——) aez}vj 1+Vjiy1  (15)

In this approach, the residuals of the operators (8) acting on where
the asymptotic expansion (5) are interpreted as a sequence of

functions with reduced radial order. Applyiigy = L; to the
radial expansion (5), results in the following residual (Thomp-
son,1999a; Thompson,1999h),

10 0 1
B (G5t or + 3 ) MEO WD ©)
_ Y ke 10
él r @ (10)

The functionw,,, defines the remainder of the radial expansion.
with errorO(R~>/2) for n > 2. In general, applyin®;,1 to (5),
results in

10 0 2j+1/2\ i
Bj+1¢h = Ljra(w)) = <06t+5 f)wﬁzwﬁl
(11)
where the residual d@; is defined as,
- i —k—j—1/2 j i k!
rt):ijakr o, al=(-1) Ca (12)

The important observation here is that the order of the resid-
uals are reduced significantly tah™ = O(r=2)wh, wi(r,t) =
O(r=21-1/2). Using the recursion relation f@gk)’ given in (6),

and the definition fora{(, the radial derivatives in (11) may be
eliminated in favor of a recursive sequenceygir,t) = 2= iwj),

with the result (Thompson,1999a; Thompson,1999b),

1oy _ 1
cot

o bt @)

for j=1,2,---, p, andy? = 2¢,. Applying the Fourier expansion
to (9) and (13), evaluated at= R, and making use of the eigen-
values—n? for the exponential, results in the radiation condition,
defined by the sequence of local operators,

10 o0 1
(Cat + = ar + —= > @=v1(6,t) (14)

= Y ViR

n=—o0

(16)

forj=1,2,.., p, andvyg = 2¢,vp1 = 0. The local radiation
condition (14), together with the sequencepéquations (15),
defines the local conditions first derived by Hagstrom and Hari-
haran in (Hagstrom,1998).

In (Thompson,1999a; Thompson,1999b), this sequence is
reformulated in terms of Fourier harmonics evaluated on the ar-
tificial boundary atr = R. In this approach the sequence (13)
forms a system of first-order ordinary differential equations in
time for the auxiliary functionsyh(t) = yn(R t), and driven by
the radial modes,

1

21
—/ e o(R,6,t)d6.

o a7)

™(Rt) =

Using Fourier harmonics, the method has the ability to vary sep-
arately, and up to any desired order, the radial and transverse
modal orders of the radiation boundary condition. The result-
ing procedure then involves a Cauchy problem involving sys-
tems of first-order temporal equations, similar to that used in
(Grote,1995; Thompson,2000). The decomposition into orthog-
onal transverse modes on the circular boundary allows the resid-
ual functions to be computed efficiently and concurrently with-
out altering in any way the symmetric, sparse structure of the
semi-discrete finite element matrix equations in the interior re-
gionQ. The primary source of work is the expense in computing
the Fourier transform (17) at each time-step. For a uniform mesh
onT, this work may be reduced using the Fast Fourier Transform
(FFT). For unstructured meshes, there is motivation to circum-
vent computation of the inner-products of finite element basis
functions with trigonometric functions implied by (17).

In this paper, we give an alternate approach which avoids
computing the Fourier transform, and directly approximates the
sequence of local boundary conditions defined in (14) and (15)
using a spectral finite element method. Here we solve the aux-
iliary functionsv;(6,t), using a spectral finite element approxi-
mation in the angular coordina@ together with a mixed time
integration procedure. The interior finite element equatiorf3 in
are integrated explicitly in time while the auxiliary functions on
the circular boundarl are integrated using a semi-implicit time-
integration method. An efficient algorithm results which avoids
the need to update either the solutions for the field varighte
the auxiliary boundary functiong, at intermediate time steps.
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Using this mixed time integration approach, a very natural and I, and using the periodic condition$0,t)

= v(2m,t), with the

efficient implementation of the high-order accurate, local bound- result,

ary conditions is obtained which allows for bagrandv; to be

updated without assembling or factoring finite element matrices.

LetV(e,t) = {VJ(eat)}a J = la Za
dependent vector of ordex

p, be defined as a time-

V:[V17V27"',VP]T (18)

then the sequence (15) may be formulated as a coupled system

of first-order partial differential equations in matrix form:

lov
-—=A R 1
oot v+ b@(R 6,t) (19)
Here, the constarp x p, tri-diagonal matrixA = {A;; }, may be
split in two parts,
62
A=A +A; T (20)
with A; andA; defined with band:
1.1, 1, .
Al—ﬁB ﬁ(l—é) ,— 1R (21)
1
A = i B[1,0,0] (22)
Similarly, the constant vectdr= {b; } is split as,
62
by = —— [1,0 o' (24)
1 = 8R2 s Uy eeey
_ 1 T
bz—ﬁ[l,o,...,O] (25)

Due to the rapid convergence of the functiefsfor accu-
rate solutions, it is sufficient to use only few auxiliary functions
onl.

FINITE ELEMENT FORMULATION
A variational equation is obtained by multiplying (19) with
a weighting functiordv', integrating over the circular boundary

4

ov

1

E(6v7 E)F = Ky(dV,V) + F,(dw, @) (26)

(BV,V)r = / sV vdr 27)
T

S (BV,V) / sV Aqvdr — / ﬂAz—dr (28)

o
Fu(5V,9) - / ST byodr — / v, aq’dr (29)

Similarly, multiplying the wave equation (1) by the weight-
ing functionde, integrating over the interior domaf using the
divergence theorem, and incorporating the local radiation condi-
tion (14) evaluated on the circular boundary at R, gives the
coupled equation,

029 109

1
(6([), 2 atz )Q + (6([), c ot )r + K(P(a(pv (p) = (30)

F(P(a(p, Vl)

Ko(59, ¢) i= / 05¢- OpdQ + i/acpcpdr (31)

/ opg dS + / opv, dIf (32)

( 6(p7 Vl

For the interior finite element equations(i we use a stan-
dard Galerkin semi-discrete approximatiqix,t) ~ @'(x,t) =
N(x) @(t). This leads to the coupled system of second-order or-
dinary differential equations in time:

t>0 (33)

Mo®(t) + Co®(t) + Ko®(t) = Fy(t),

In the aboveMy, Cy, andK are standard arrays associated with
the discretization of the wave equation and the I@3abperator;
andF(t) is the discrete force vector composed of a standard
load vector and a part associated with the auxiliary function

- /r NT vadr (34)

The functionv; is the first element of the vector arraty= {v;},
which satisfies the coupled system (26) drivergbi, 0,t).
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LetF'(‘p: F o(tx) be the force at time stap= kAt. Here, we whereN¢ is an array of shape functions for an elementfon
compute the solutio** = @(t,1), by applying the second- Using this approximation in (26) leads to the matrix system,
order accurategxplicit central difference method to the interior

finite element matrix equations given in (33), with the result: Cvdv(t) — Kydy(t) + Fu(t), t>0 (40)
M@t = R (35)
. . ) Nrg
with effective mass matrix, C, = 1 / N\e,TNv RGO (a1)
e=1CJre
S 1 Nre
M= SzMo+ 55 Co (36) K= A {/ N\e,TAlN\,Rde—/ NET A, NV7eRd9} (42)
e=1 Jle e
and Nre
FV = A {/ NSTbl(pRCB—/ ng bz(p,e Rde} (43)
e=1 Jle e
2 1 1
ek e Y -1
Ri=F§ (K“’ AtZM‘P> ¢ <At2M“’ 2Atc“’> ¢ N
(37) In the above,AAej1 is the assembly (gather) operation for the

The algebraic equations given in (35) are decoupled using a number of elements on the boundaryanddy is the global DOF
spectral element method with nodal (Gauss-Lobatto) quadraturevector of dimensioNr- x p, whereNr is the total number of
to diagonalizeM, andC,. With a diagonal effective madd, nodes on the boundafy; andp is the number of auxiliary func-
the system of equations (35) can be solved without factorizing tions included in the sequence of boundary operators. These in-
a matrix; i.e., only matrix multiplications are required to obtain tegrals may be preintegrated and assembled in closed-form. For
the right-hand-side effective load vecRY, after which the nodal example, for the case of linear interpolation functions wjith 1,
solutionsg, can be updated using, and using nodal quadrature on a nonuniform mesh, we have the
assembled arrays in block tridiagonal form associated with nodal
matrix partitions,

K
dt= 0 (39)
Mnn R
CV = 2_C B[O, (Aen +Aen71)| p> O] (44)
whereg<t! andRE denote theith components of the vectog™ K 1. w2
andR¥, respectively, andh, is thenth diagonal element of the v=Ki+Ky (45)
effective mass matrix obtained from the lumped mass and damp- K\1/ - B B[O, (A8, + ABh_1)A1, O] (46)
ing matrices. Furthermore, the matrix-vector prodﬂgtpk can 2
be evaluated at the element level by summing the contributions g2 RBJ 1 A, — (i + 1 >A2 1 A)(47)
from each element to the effective load vector, without matrix ABh-1 ABn  ABp-1 A
assembly oKy, rendering a highly efficient algorithm suitable
for parallel implementation for large-scale analysis. whereAB, = 6,11 — 6, =62 — 682, n=1,2,---,Nr, andl , is the
For the auxiliary functions we use a consistent spectral el- jgentity matrix with dimensior x p. For a full circular bound-
ement approximation on the boundalry with nodal (Gauss-  ary the matrixk2 has an additional blockz/A8y, in the corners
Lobatto) quadrature (Thompson,1994). At the element level we g¢ to the periodic conditions.
approximatey(6,t), using Lagrange interpolation basis functions The nodal partition for the coupling vect6y, = F% + F\Z,,
N¢, of orderq, associated with nodds positioned at Gauss- can be written in closed form as,
Lobatto quadrature points,
1 R
V. = qilNe(e)ve(t) 6 c Mo (65,65 (39) {Fytn = 0 (88n +A6n-1) Ebl, (48)
b)) = i i\t) e — Y1, Yg+1l-
= 20 (i1 —n) (G — @n-1)
{Fv}n - Aen sz Aenfl sz, (49)
In the abovey?(t) = v(6F,t). Arranging the nodal functions in
vector formdy(t) = [V§, V5, -+, V4]", we havev = NET de, forn=1,2,---,Nr, andA6y = AB\; .
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Following the suggestion in (Hagstrom,1998), we formulate
a semi-implicit time-integration scheme for the auxiliary equa-
tions. To this end, we split the matrix,

into a lower triangle including diagonal pdrf and a strictly up-

per triangle party. The upper triangle pald, is treated explic-

itly using the second-order accurate Adams-Bashford method,
while the remaining terms are integrated with the implicit trape-
zoidal rule. To advance the solutimﬁj+1 = dy(tk+1), we com-
pute

A A A
Lkt = (cv+ ?t (L+3U)> dk — %uab*1 +FE2 51y
with the modified lower triangle matrix and average force,

- At
L:CV—?L

At
FkHy/z _ > (F5+ |=5+1)

(52)

(53)

Using this semi-implicit splitting, the system (51) is solved in
sequence using a simple forward sweep over nodal blocks
1,2,---,Nr. In two-dimensions, further efficiency is gained by
utilizing the closed-form difference stencil for thth row of the
matrix partition associated with a typical naud_ety = cAt /2R,

then using the block matrix structure given described earlier, the
space-time stencil associated with tfth auxiliary function at
noden, denotedVvj)n, is given by,

[1+ (V)R = [1— jvl(v))k
+ YRIB(Vjs1)k — (Vi) ]

y.. 1

+ 25l = 22+ FVi-)8" + (vi-a)nl-
n:laza'”aNra J:lazaap
(Vo)n =2, (Vp+1)n=0 (54)

In the aboved? is defined by the second-order spatial difference
operator on a nonuniform grid,

52(Vj)n = a_l%[Bn(Vj)nfl = (14 Bn) (Vj)n + (Vj)nta] (55)
1 2
C(_% = Bn(1+ Bn)Aeﬁ,17 Bn = Aen/Aen—l (56)
6

Using this stencil, the solution for the auxiliary functigivg)k+*

is advanced efficiently in sequence fpe 1,2,---p, and node
n=1,2 ---Nr, without matrix assembly or matrix factorization.
We note, that this stencil can also be obtained directly from a
second-order finite difference approximation of the sequence of
local boundary conditions in differential form (15). However,
through the use of the spectral element formulation with closed
form and symbolic matrix integration/assembly procedures de-
scribed here, high-order accurate approximations (quadratic, cu-
bic, etc.) are derived which ao®nsistentvith the finite element
method used for the interior field variable. Using this approach,
consistent and high-order accurate space-time difference stencils
on nonuniform grids may be derived similar to (54).

After initial conditions are established, the complete coupled

time-integration algorithm proceeds as follows:

(1) calculate the effective load at timérom (37),

(2) update the field solution at time- At from (38),

(3) solve for the auxiliary function@; ), at timet + At from (54)
in sequence fof=1,2,---,p,andn=1,2--- Nr,

(4) update the time step, and repeat.

The key to the effectiveness of this algorithm is that the field
update relies only on the auxiliary functions at the current time
step, i.e.¥; and the update of the auxiliary functions relies only
on the most recently computed solutiq)h+1 at time stepty1.

The result is a very natural algorithm which avoids the need for
intermediate updates between equations as would be the case in
a staggered-step time integration.

In three-dimensions, a stencil similar to (54) can be writ-
ten for orthogonal grids on a sphere. For general unstructured
meshes, as would be generated using an automatic free mesh al-
gorithm, the system can still be solved efficiently using a forward
sweep of the matrix system (51).

NUMERICAL STUDIES

Consider the problem of time-dependent scattering from
an elliptic cylinder. The ellipse is defined by coordinaxes
f coshucosB, andy = f sinhusind. Here we choose the radial
coordinatgly = 0.2, and focif = 1, resulting in an aspect ratio
of major to minor axis of approximately 5 : 1. The cylinder is
assumed infinite in the-direction, so that the problem can be
solved as a two-dimensional problem in theplane.

On the surface of the cylinder, we assume a ‘soft’ (homoge-
neous Dirichlet) boundary condition,

o=0¢" +¢% =0, onS:={w=0.1,0<6<2m} (57)

Here the total fieldp(l,6) is composed of the incident wave
¢, and the scattered wave fiel®, such thatg'® (u,8) =

_(P(i) (“07 e)
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Figure 2. Finite element mesh for elliptic scatterer defined with foci f =
1, p=0.2. The circular radiation boundary I, is positioned at R=1.25.
(Top) Uniform mesh (Meshl), (Bottom) Unstructured mesh (Mesh2).

The incident plane-wave is given by,

@V (x,t) = sinkv - (x—Xo) — ] H[t —v- (Xx—X0)/c]  (58)

Here xo = [Xo,Yo] defines the position of the initial wave front
att = 0. The direction of the incident plane-wave is determined

by the unit wave vectov = [cosa,sina], wherea is the angle
between the lines of constant phase andkthagis.

wave in elliptic coordinates by means of an addition theorem
(Morse,1953). Fog!) given in (58), and homogeneous bound-
ary condition (57), the steady-state analytical solution is,

¢9(1,0,) = Imag{ ) (1 @) e (W Xor L (50)
where

¥ (10) = -2 ;i“{An Mef? (1, o) cen(8,q)

+ByMst? (o) sen(8,0)}  (60)

Ao = (0.9 co 0, q) (61)
MCn (HO;Q)
(1)
B = o (0.9 o 4, q) (62)
Ms” (Mo, 0)

In the aboveq = (kf/2)?, ce& andse, are the even and odd

valued angular Mathieu functions, amt{” andMs'”, p= 1,3
are even and odd radial (modified) Mathieu functions of the first
and third kind, respectively (Abramowitz,1968).

For the finite element solution, the radius of the circular ra-
diation boundary is set atR = 1.25. The numerical solution
for this scattering problem is solved using a total field method
similar to that described in (Thompson,2000), here formulated
for the two-dimensional problem. We use 3 different finite ele-
ment meshes. In the first (Mesh1l), the computational domain is
discretized with a quasi-uniform mesh of standard 4-node bilin-
ear finite elements withi- = 360 evenly spaced node points on
the circular radiation boundalfy, and 50 node points in the ra-
dial direction, resulting itNy = 18,360 total nodes and elements,
see Figure 2. The other two meshes considered are unstructured
meshes generated using the ‘free mesh’ option in the CAE soft-
ware package I-DEAS from SDRC. The first unstructured mesh
(Mesh2) uses an average element lengtth ef 0.018, result-
ing in Ny = 16,205 nodes witiNs = 236 nonuniform boundary
nodes on the inner ellipse, ahll = 436 nodes on the outer ra-
diation boundary. The second unstructured mesh (Mesh3) uses a
finer grid with an average element lenditk- 0.012, resulting in
Nt = 35,906,Ns = 354, and\r = 654 nonuniform nodes. The
computation is driven from rest to steady-state with wave vector
anglea = 30°, and frequenck = w/c = 21. The initial wave
front starts at the radiation boundary, such that —Rv.

In the following we denote by LBQ), the spectral ele-

We obtain the exact steady-state solution for the scat- ment approximation to the sequence of local radiation bound-
tered field by expanding the exponential form of the incident ary operators defined in (14) and (15), wherés the number

Copyright 0 2000 by ASME



of residual functions included. Figures 3 and 4 show finite el-
ement solution contours for both total and scattered fields at
timet = (0.5,1.0,2.0,5.0), using the sequence of local radiation
boundary conditions LBC(10), witph = 10 auxiliary functions.
Att=0.5, the incident plane-wave has just begun to diffract from
the elliptic cylinder. Att = 5.0, the solution has nearly reached
steady-state.

Figure 5 shows the maximuip error using LBCf) and
the semi-implicit time-integration scheme described in (51) and
(54), and using different time steps, denof{At). The re-
sults are compared with the implementation RBCIY) given
in (Thompson,1999a; Thompson,1999b), with= 20 angular
harmonics included in the Fourier expansion, and the explicit
time integration algorithm described in (Thompson,2000), de-
notedA2(At). The results show that using the local radiation con-
ditions, the error decreases rapidly, with oply 4 residual func-
tions needed to converge to a fixed lower bound. The fixed lower
error bound is primarily controlled by the explicit space-time dis-
cretization of the wave equation in the interior field; as the time-
step is decreased the lower-bound decreases accordingly. Accu-
racy of the direct implementation of the local operators given in
this paper matches the accuracy of the indirect implementation
using a Fourier expansion witkh = 20 angular harmonics as de-
scribed in (Thompson,1999a; Thompson,1999b). This result is
expected since both methods are based on the same radial expan-
sion (5) with p residual functions. For very high-ordegps> 16,
we observe that the semi-implicit time-integration scheme be-
comes unstable. This instability is also shown using the unstruc-
tured meshes shown in Figure 6. As the mesh is refined the in-
stability appears at the lower orderpf= 12. These results show
that the semi-implicit scheme for the auxiliary conditions, while
extremely efficient, is only conditionally stable and is sensitive
to space-time discretization and radial orgerortunately, due
to the rapid convergence of the residual functions in the bound-
ary conditions, only a low-order valygis required, leading to
an accurate and stable solution for this problem. These results
motivate the investigation of an efficient implicit and uncondi-
tionally stable time-integration scheme for directimplementation
for the sequence of local boundary conditions. Preliminary work
on taking advantage of the nodal block structure of the auxiliary
equations in an implicit framework shows promise for efficient
time-integration and will be reported in a forthcoming paper.

CONCLUSIONS

Asymptotic local radiation boundary conditions first derived
by Hagstrom and Hariharan for the time-dependent wave equa-
tion, are formulated in a high-order accurate spectral element
method with mixed time-integration. Using this mixed time in-
tegration approach, a very natural implementation of the high-
order accurate, local boundary conditions is obtained which al-
lows the boundary conditions to be implemented efficiently with-

Figure 3. Scattering from an elliptic cylinder with incident plane-wave
oriented in © = 30° direction, and normalized frequency K = (D/C =21
Finite element solution contours for the total fieldat snapshots in time.
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stencil, the auxiliary functions can be updated in time, and in putational Acoustics, pp. 511-521, Nashville, TN, Nov. 14-19,
sequence for each node on the radiation boundary, without ma-1999.

trix assembly. Extensions to three-dimensions for unstructured Thompson, L.L., and Pinsky, P.M., ‘Complex wavenumber
meshes on a sphere follow directly from the methods described Fourier analysis of the p-version finite element methddyrnal
here for the two-dimensional case. Numerical studies of scatter- of Computational Mechanic43, (4), pp. 255-275, 1994.

ing from an elliptic object demonstrate that the accuracy rapidly P.M. Morse and H. Feshbachylethods of Theoretical
converges with the number of residual functions included in the Physics McGraw-Hill, 1953.

sequence. The accuracy matches the alternative implementa- M. Abramowitz and |. Stegun, EdsHandbook of Mathe-
tion using Fourier harmonics, as expected, without computing matical Functions Washington, DC: National Bureau of Stan-
Fourier transforms. The semi-implicit time-integration scheme dards, 1964. Reprinted by Dover Publications, New York, 1968,
is conditionally stable and sensitive to space-time discretization pp. 751-770.

and the radial order used in the sequence of local boundary oper-

ators. At very high radial orders, the semi-implicit method may

become unstable, motivating the efficient implementation of an

unconditionally stable implicit scheme.
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:‘,, , Figure 5. Maximum L2 error during steady-state measured on the circu-
\h‘_—-// ’ lar artificial boundary I" using the uniform mesh (Mesh1). Results com-
pared with the direct implementation of the sequence of local radiation
boundary conditions LBC(p) with the semi-implicit time integration al-

gorithm, denoted A4, compared to an indirect implementation using a
Fourier expansion and explicit time-integration as described in (Thomp-
son,1999a; Thompson,2000), denoted A2.

Figure 4. Finite element solution contours for the Scattered field
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Figure 6. Maximum Lo error during steady-state using the unstructured

meshes (Top) Mesh2, (Bottom) Mesh3. The numbers in the parenthesis

indicate the time step size used.
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