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ABSTRACT
A sequence of high-order accurate radiation boundary con-

ditions involving local differential operators of auxiliary func-
tions on a circular boundary are implemented in a spectral finite
element method with mixed time integration. The semi-discrete
finite element equations are integrated explicitly in time while the
auxiliary functions on the circular boundary are integrated using
a semi-implicit time-integration method. An efficient algorithm
results which avoids the need to update either the solutions for
the field variable or the boundary functions at intermediate time
steps. Using this mixed time integration approach, a very natu-
ral and efficient implementation of the high-order accurate, local
boundary conditions is obtained without altering the local/sparse
character of the finite element equations. Numerical studies of
time-dependent scattering from an elliptic object demonstrate the
rapid convergence and accuracy of the implementation.

INTRODUCTION
Hagstrom and Hariharan (Hagstrom,1998) have derived a

sequence of high-order accurate radiation boundary conditions
involving first-order differential equations in time and tangen-
tial derivatives of auxiliary functions on a circular or spheri-
cal boundary. In (Thompson,2000; Thompson,1999a; Thomp-
son,1999b), this sequence is reformulated in terms of spheri-
cal and Fourier harmonics using a decomposition into orthogo-
nal transverse modes evaluated on spherical and circular bound-
aries, respectively. In this form, the local boundary conditions
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are interpreted as a sequence of residual functions obtained from
the hierarchy of local boundary operators used by Bayliss and
Turkel (Bayliss,1980) acting on a radial asymptotic (multipole)
expansion for outgoing waves. The resulting procedure then in-
volves a Cauchy problem involving systems of first-order tem-
poral equations, similar to that used in (Grote,1995; Thomp-
son,2000). With this reformulation, the auxiliary functions are
recognized as residuals of the local boundary operators acting on
the asymptotic expansion, and may be implemented efficiently
with standard semidiscrete finite element methods without alter-
ing the symmetric and sparse structure of the matrix equations.
Using harmonics, the method has the ability to vary separately,
and up to any desired order, the radial and transverse modal or-
ders of the radiation boundary condition. The primary source
of work is the expense in computing the spherical or Fourier
transform at each time-step in a time-integration scheme. For
a uniform mesh on the radiation boundary, this work may be re-
duced using the Fast Fourier Transform (FFT). For unstructured
meshes, and problems involving a segmented radiation boundary
condition, there is motivation to circumvent computation of the
harmonic transform and find an efficient method for computing
the local conditions directly in physical coordinates.

In this paper, we give an alternate approach which
avoids computing the Fourier transform, and directly approx-
imates the sequence of local boundary conditions defined in
(Hagstrom,1998) using a spectral finite element method. Nu-
merical experiments in (Hagstrom,1998) for a model prob-
lem involving the Fourier modes of the wave equation in
two-dimensions indicated the high-order accuracy that can be
achieved by directly implementing this sequence of local con-
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ditions in a finite difference method. Here we solve the resid-
ual functions using a spectral finite element approximation in
the angular coordinate on a circular boundary, together with a
mixed time integration procedure. The use of spectral elements
allows for consistent and high-order approximations for the lo-
cal boundary conditions within a standard Galerkin variational
framework. The interior finite element equations are integrated
explicitly in time allowing for efficient parallel computation. Fol-
lowing the suggestion in (Hagstrom,1998) for a finite difference
implementation, the spectral element equations for the residual
functions on the circular boundary are integrated using a semi-
implicit time-integration method. An efficient algorithm results
which avoids the need to update either the solutions for the field
variable or the residual boundary functions at intermediate time
steps. Using this mixed time integration approach, a very natu-
ral and efficient implementation of the high-order accurate, local
boundary conditions is obtained which allows for the solution to
be updated without assembling or factoring finite element ma-
trices. Numerical studies of scattering from an elliptic object
demonstrate the rapid convergence and accuracy of the imple-
mentation and point to further areas of research.

HELMHOLTZ EQUATION IN EXTERIOR DOMAINS
We consider time-dependent scattering in an infinite two-

dimensional regionR � R2, surrounding an object with surface
S . For computation, the unbounded regionR is truncated by a
circular boundaryΓ, of radiusk xxx k= R, see Figure 1. Within
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Ω

Figure 1. Illustration of unbounded region R surrounding a scatterer S .

The computational domain Ω� R is surrounded by a circular truncation

boundary Γ of radius R, with exterior region D = R �Ω.

Ω, the solutionφ(xxx; t) : Ω� [0;T] 7! R, satisfies the scalar wave

equation,

1
c2

∂2φ
∂t2 = ∇2φ xxx2Ω; t 2 [0;T] (1)

with initial conditions,φ(xxx;0) = φo(xxx), φ̇(xxx;0) = φ̇o(xxx), xxx 2 Ω,
and driven by the time-dependent radiation boundary condition
on the surfaceS :

∂φ
∂n

= g(xxx; t); xxx2 S ; t 2 [0;T] (2)

In linear acoustics, the scalar functionφ may represent the
pressure field or a velocity potential. The wave speed is assumed
c > 0, and real. The initial dataφo and φ̇o are assumed to be
confined to the computational domainΩ, so that in the exterior
regionD = R �Ω, i.e., the infinite region outsideΓ, the scalar
field φ(xxx; t) satisfies the homogeneous form of the wave equa-
tion. In polar coordinates(r;θ), the external region is defined as,
D = fr � R; 0� θ� 2πg, and the wave equation takes the form,

1
c2

∂2φ
∂t2 =

∂2φ
∂r2 +

1
r

∂φ
∂r

+
1
r2

∂2φ
∂θ2 (3)

The general solution to (3) is given by the Fourier expansion,

φ(r;θ; t) =

∞

∑
n=�∞

φn(r ; t) einθ (4)

For outgoing waves, the time-dependent modes,φn(r; t) may be
represented by the radial asymptotic (multipole) expansion:

φn(r; t) =
∞

∑
k=0

r�k�1=2 φk
n(r�ct) (5)

with wave functions satisfying the following recursion relation
(Hagstrom,1998; Thompson,1999a; Thompson,1999b),

�
φk

n

�0

=
(k�1=2)2�n2

2k
φk�1

n ; k= 1;2; � � � ;n (6)

LOCAL RADIATION BOUNDARY CONDITIONS
In (Thompson,1999a; Thompson,1999b), the local radiation

boundary conditions first derived in (Hagstrom,1998) are formu-
lated using the well-known hierarchy of local operators given in
(Bayliss,1980),

Bp = Lp(Lp�1(� � � (L2(L1)))) (7)
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Lj =

�
1
c

∂
∂t

+
∂
∂r

+
2 j�3=2

r

�
: (8)

In this approach, the residuals of the operators (8) acting on
the asymptotic expansion (5) are interpreted as a sequence of
functions with reduced radial order. ApplyingB1 = L1 to the
radial expansion (5), results in the following residual (Thomp-
son,1999a; Thompson,1999b),

B1 φn =

�
1
c

∂
∂t

+
∂
∂r

+
1
2r

�
φn(r; t) = w1

n(r; t) (9)

w1
n(r; t) =

∞

∑
k=1

�k r�k�3=2φk
n (10)

The functionw1
nm defines the remainder of the radial expansion.

with errorO(R�5=2) for n� 2. In general, applyingBj+1 to (5),
results in

Bj+1φn = Lj+1(w
j
n) =

�
1
c

∂
∂t

+
∂
∂r

+
2 j +1=2

r

�
wj

n = wj+1
n

(11)
where the residual ofBj is defined as,

wj
n(r; t) =

∞

∑
k= j

aj
k r�k� j�1=2φk

n; aj
k = (�1) j k!

(k� j)!
: (12)

The important observation here is that the order of the resid-
uals are reduced significantly towj+1

n = O(r�2)wj
n; wj

n(r; t) =
O(r�2 j�1=2). Using the recursion relation for(φk

n)
0 given in (6),

and the definition foraj
k, the radial derivatives in (11) may be

eliminated in favor of a recursive sequence foryj
n(r; t) = 21� jwj

n,
with the result (Thompson,1999a; Thompson,1999b),

1
c

∂yj
n

∂t
=

1
4r2 [( j�

1
2
)2�n2]yj�1

n �
j
r
yj

n+yj+1
n (13)

for j = 1;2; � � � ; p, andy0
n = 2φn. Applying the Fourier expansion

to (9) and (13), evaluated atr = R, and making use of the eigen-
values�n2 for the exponential, results in the radiation condition,
defined by the sequence of local operators,

�
1
c

∂
∂t

+
∂
∂r

+
1

2R

�
φ = v1(θ; t) (14)

�
1
c

∂
∂t

+
j
R

�
vj =

1
4R2

�
( j�

1
2
)
2
+

∂2

∂θ2

�
vj�1+vj+1 (15)

where

vj(θ; t) =
∞

∑
n=�∞

yj
n(R; t)einθ (16)

for j = 1,2,. . . , p, andv0 = 2φ;vp+1 = 0. The local radiation
condition (14), together with the sequence ofp equations (15),
defines the local conditions first derived by Hagstrom and Hari-
haran in (Hagstrom,1998).

In (Thompson,1999a; Thompson,1999b), this sequence is
reformulated in terms of Fourier harmonics evaluated on the ar-
tificial boundary atr = R. In this approach the sequence (13)
forms a system of first-order ordinary differential equations in
time for the auxiliary functions,vj

n(t) = yj
n(R; t), and driven by

the radial modes,

φn(R; t) =
1
2π

Z 2π

0
e�inθ φ(R;θ; t)dθ: (17)

Using Fourier harmonics, the method has the ability to vary sep-
arately, and up to any desired order, the radial and transverse
modal orders of the radiation boundary condition. The result-
ing procedure then involves a Cauchy problem involving sys-
tems of first-order temporal equations, similar to that used in
(Grote,1995; Thompson,2000). The decomposition into orthog-
onal transverse modes on the circular boundary allows the resid-
ual functions to be computed efficiently and concurrently with-
out altering in any way the symmetric, sparse structure of the
semi-discrete finite element matrix equations in the interior re-
gionΩ. The primary source of work is the expense in computing
the Fourier transform (17) at each time-step. For a uniform mesh
onΓ, this work may be reduced using the Fast Fourier Transform
(FFT). For unstructured meshes, there is motivation to circum-
vent computation of the inner-products of finite element basis
functions with trigonometric functions implied by (17).

In this paper, we give an alternate approach which avoids
computing the Fourier transform, and directly approximates the
sequence of local boundary conditions defined in (14) and (15)
using a spectral finite element method. Here we solve the aux-
iliary functionsvj(θ; t), using a spectral finite element approxi-
mation in the angular coordinateθ, together with a mixed time
integration procedure. The interior finite element equations inΩ
are integrated explicitly in time while the auxiliary functions on
the circular boundaryΓ are integrated using a semi-implicit time-
integration method. An efficient algorithm results which avoids
the need to update either the solutions for the field variableφ, or
the auxiliary boundary functionsvj , at intermediate time steps.
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Using this mixed time integration approach, a very natural and
efficient implementation of the high-order accurate, local bound-
ary conditions is obtained which allows for bothφ andvj to be
updated without assembling or factoring finite element matrices.

Let vvv(θ; t) = fvj(θ; t)g; j = 1;2; � � � p, be defined as a time-
dependent vector of orderp,

vvv= [v1 ; v2 ; � � � ; vp]
T (18)

then the sequence (15) may be formulated as a coupled system
of first-order partial differential equations in matrix form:

1
c

∂vvv
∂t

= AAAvvv+ bbbφ(R;θ; t) (19)

Here, the constantp� p, tri-diagonal matrixAAA= fAi j g, may be
split in two parts,

AAA= AAA1+AAA2
∂2

∂θ2 (20)

with AAA1 andAAA2 defined with band:

AAA1 =
1
R

B

�
1

4R
( j�

1
2
)
2
;� j ; R

�
(21)

AAA2 =
1

4R2B [1; 0; 0] (22)

Similarly, the constant vectorbbb= fbjg is split as,

bbb= bbb1+bbb2
∂2

∂θ2 (23)

bbb1 =
1

8R2 [1; 0; : : : ; 0]T (24)

bbb2 =
1

2R2 [1; 0; : : : ; 0]T (25)

Due to the rapid convergence of the functionsvj , for accu-
rate solutions, it is sufficient to use only few auxiliary functions
on Γ.

FINITE ELEMENT FORMULATION
A variational equation is obtained by multiplying (19) with

a weighting functionδvvvT , integrating over the circular boundary

Γ, and using the periodic conditionsvvv(0; t) = vvv(2π; t), with the
result,

1
c
(δvvv;

∂vvv
∂t

)Γ = Kv(δvvv;vvv)+Fv(δwww;φ) (26)

(δvvv;vvv)Γ :=
Z

Γ
δvvvTvvvdΓ (27)

Kv(δvvv;vvv) :=
Z

Γ
δvvvTAAA1vvvdΓ�

Z
Γ

∂δvvvT

∂θ
AAA2

∂vvv
∂θ

dΓ (28)

Fv(δvvv;φ) :=
Z

Γ
δvvvTbbb1φdΓ�

Z
Γ

∂δvvvT

∂θ
bbb2

∂φ
∂θ

dΓ (29)

Similarly, multiplying the wave equation (1) by the weight-
ing functionδφ, integrating over the interior domainΩ using the
divergence theorem, and incorporating the local radiation condi-
tion (14) evaluated on the circular boundary atr = R, gives the
coupled equation,

(δφ ;
1
c2

∂2φ
∂t2 )Ω +(δφ ;

1
c

∂φ
∂t

)Γ +Kφ(δφ ; φ) = Fφ(δφ;v1) (30)

Kφ(δφ ; φ) :=
Z

Ω
∇δφ �∇φ dΩ +

1
2R

Z
Γ

δφφ dΓ (31)

Fφ(δφ;v1) :=
Z

S
δφg dS +

Z
Γ

δφv1 dΓ (32)

For the interior finite element equations inΩ, we use a stan-
dard Galerkin semi-discrete approximation,φ(xxx; t) � φh(xxx; t) =
NNN(x)φφφ(t). This leads to the coupled system of second-order or-
dinary differential equations in time:

MMMφφ̈φφ(t) + CCCφφ̇φφ(t) + KKKφφφφ(t) = FFFφ(t); t > 0 (33)

In the above,MMMφ, CCCφ, andKKKφ are standard arrays associated with
the discretization of the wave equation and the localB1 operator;
and FFFφ(t) is the discrete force vector composed of a standard
load vector and a part associated with the auxiliary functionv1,

FFFφ(t) =
Z

Γ
NNNT

φ v1dΓ (34)

The functionv1 is the first element of the vector arrayvvv= fvjg,
which satisfies the coupled system (26) driven byφ(R;θ; t).
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Let FFFk
φ = FFFφ(tk) be the force at time steptk = k∆t. Here, we

compute the solutionφφφk+1
= φφφ(tk+1), by applying the second-

order accurate,explicit central difference method to the interior
finite element matrix equations given in (33), with the result:

M̂MMφφφk+1
= RRRk (35)

with effective mass matrix,

M̂MM =
1

∆t2 MMMφ +
1

2∆t
CCCφ (36)

and

RRRk
= FFFk

φ �

�
KKKφ�

2
∆t2MMMφ

�
φφφk �

�
1

∆t2MMMφ�
1

2∆t
CCCφ

�
φφφk�1

(37)
The algebraic equations given in (35) are decoupled using a

spectral element method with nodal (Gauss-Lobatto) quadrature
to diagonalizeMMMφ andCCCφ. With a diagonal effective masŝMMM,
the system of equations (35) can be solved without factorizing
a matrix; i.e., only matrix multiplications are required to obtain
the right-hand-side effective load vectorRRRk, after which the nodal
solutionsφn can be updated using,

φk+1
n =

Rk
n

m̂nn
(38)

whereφk+1
n andRk

n denote thenth components of the vectorsφφφk+1

andRRRk, respectively, and ˆmnn is thenth diagonal element of the
effective mass matrix obtained from the lumped mass and damp-
ing matrices. Furthermore, the matrix-vector productKKKφφφφk can
be evaluated at the element level by summing the contributions
from each element to the effective load vector, without matrix
assembly ofKKKφ, rendering a highly efficient algorithm suitable
for parallel implementation for large-scale analysis.

For the auxiliary functions we use a consistent spectral el-
ement approximation on the boundaryΓ, with nodal (Gauss-
Lobatto) quadrature (Thompson,1994). At the element level we
approximatevvv(θ; t), using Lagrange interpolation basis functions
Ne

i , of order q, associated with nodesi, positioned at Gauss-
Lobatto quadrature points,

vvv(θ; t) =
q+1

∑
i=1

Ne
i (θ)vvv

e
i (t); θ 2 Γe = [θe

1 ; θe
q+1]: (39)

In the above,vvve
i (t) = vvv(θe

i ; t). Arranging the nodal functions in
vector formddde

v(t) = [vvve
1 ; vvve

2 ; � � � ; vvve
q+1]

T , we havevvv = NNNeT
v ddde

v,

whereNNNe
v is an array of shape functions for an element onΓ.

Using this approximation in (26) leads to the matrix system,

CCCvḋddv(t) = KKKvdddv(t) + FFFv(t); t > 0 (40)

CCCv :=
NΓe

A
e=1

1
c

Z
Γe

NNNeT
v NNNv Rdθ (41)

KKKv :=
NΓe

A
e=1

�Z
Γe

NNNeT
v AAA1NNNv Rdθ�

Z
Γe

NNNeT
v;θ AAA2NNNv;θRdθ

�
(42)

FFFv :=
NΓe

A
e=1

�Z
Γe

NNNeT
v bbb1 φRdθ�

Z
Γe

NNNeT
v;θ bbb2 φ;θ Rdθ

�
(43)

In the above,A
NΓe
e=1 is the assembly (gather) operation for the

number of elements on the boundaryΓ, anddddv is the global DOF
vector of dimensionNΓ � p, whereNΓ is the total number of
nodes on the boundaryΓ, andp is the number of auxiliary func-
tions included in the sequence of boundary operators. These in-
tegrals may be preintegrated and assembled in closed-form. For
example, for the case of linear interpolation functions withq= 1,
and using nodal quadrature on a nonuniform mesh, we have the
assembled arrays in block tridiagonal form associated with nodal
matrix partitions,

CCCv =
R
2c

B[0; (∆θn+∆θn�1)III p ; 0] (44)

KKKv = KKK1
v +KKK2

v (45)

KKK1
v =

R
2

B[0; (∆θn+∆θn�1)AAA1 ; 0] (46)

KKK2
v = RB[

1
∆θn�1

AAA2 ;�

�
1

∆θn
+

1
∆θn�1

�
AAA2 ;

1
∆θn�1

AAA2](47)

where∆θn = θn+1�θn = θe
2�θe

1, n= 1;2; � � � ;NΓ, andIII p is the
identity matrix with dimensionp� p. For a full circular bound-
ary the matrixKKK2

v has an additional blockAAA2=∆θNΓ in the corners
due to the periodic conditions.

The nodal partition for the coupling vectorFFFv = FFF1
v +FFF2

v,
can be written in closed form as,

fFFF1
vgn = φn (∆θn+∆θn�1)

R
2

bbb1; (48)

fFFF2
vgn =

(φn+1�φn)

∆θn
Rbbb2 �

(φn�φn�1)

∆θn�1
Rbbb2; (49)

for n= 1;2; � � � ;NΓ, and∆θ0 = ∆θNΓ .
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Following the suggestion in (Hagstrom,1998), we formulate
a semi-implicit time-integration scheme for the auxiliary equa-
tions. To this end, we split the matrix,

Kv = LLL+UUU ; (50)

into a lower triangle including diagonal partLLL, and a strictly up-
per triangle partUUU . The upper triangle partUUU , is treated explic-
itly using the second-order accurate Adams-Bashford method,
while the remaining terms are integrated with the implicit trape-
zoidal rule. To advance the solutiondddk+1

v = dddv(tk+1), we com-
pute

L̂LLdddk+1
v =

�
CCCv+

∆t
2
(LLL+3UUU)

�
dddk

v�
∆t
2

UUUdddk�1
v +FFFk+1=2

v (51)

with the modified lower triangle matrix and average force,

L̂LL = CCCv�
∆t
2

LLL (52)

FFFk+1=2
v =

∆t
2

�
FFFk

v+FFFk+1
v

�
(53)

Using this semi-implicit splitting, the system (51) is solved in
sequence using a simple forward sweep over nodal blocksn =

1;2; � � � ;NΓ. In two-dimensions, further efficiency is gained by
utilizing the closed-form difference stencil for thejth row of the
matrix partition associated with a typical noden. Letγ= c∆t=2R,
then using the block matrix structure given described earlier, the
space-time stencil associated with thejth auxiliary function at
noden, denoted(vj)n, is given by,

[1+ jγ](vj)
k+1
n = [1� jγ](vj)

k
n

+ γR[3(vj+1)
k
n� (vj+1)

k�1
n ]

+
γ

4R
[( j�

1
2
)
2
+δ2

][(vj�1)
k+1
n +(vj�1)

k
n]:

n= 1;2; � � � ;NΓ; j = 1;2; � � � ; p:

(v0)n = 2φn; (vp+1)n = 0 (54)

In the above,δ2 is defined by the second-order spatial difference
operator on a nonuniform grid,

δ2(vj)n =
1

α2
n
[βn(vj)n�1� (1+βn)(vj)n+(vj)n+1] (55)

1
α2

n
:=

2

βn(1+βn)∆θ2
n�1

; βn = ∆θn=∆θn�1 (56)

Using this stencil, the solution for the auxiliary functions(vj)
k+1
n

is advanced efficiently in sequence forj = 1;2; � � � p, and node
n= 1;2; � � �NΓ, without matrix assembly or matrix factorization.
We note, that this stencil can also be obtained directly from a
second-order finite difference approximation of the sequence of
local boundary conditions in differential form (15). However,
through the use of the spectral element formulation with closed
form and symbolic matrix integration/assembly procedures de-
scribed here, high-order accurate approximations (quadratic, cu-
bic, etc.) are derived which areconsistentwith the finite element
method used for the interior field variable. Using this approach,
consistent and high-order accurate space-time difference stencils
on nonuniform grids may be derived similar to (54).

After initial conditions are established, the complete coupled
time-integration algorithm proceeds as follows:
(1) calculate the effective load at timet from (37),
(2) update the field solution at timet +∆t from (38),
(3) solve for the auxiliary functions(vj)n at timet+∆t from (54)
in sequence forj = 1;2; � � � ; p, andn= 1;2� � � ;NΓ,
(4) update the time step, and repeat.

The key to the effectiveness of this algorithm is that the field
update relies only on the auxiliary functions at the current time
step, i.e.,vvvk; and the update of the auxiliary functions relies only
on the most recently computed solutionφφφk+1 at time steptk+1.
The result is a very natural algorithm which avoids the need for
intermediate updates between equations as would be the case in
a staggered-step time integration.

In three-dimensions, a stencil similar to (54) can be writ-
ten for orthogonal grids on a sphere. For general unstructured
meshes, as would be generated using an automatic free mesh al-
gorithm, the system can still be solved efficiently using a forward
sweep of the matrix system (51).

NUMERICAL STUDIES
Consider the problem of time-dependent scattering from

an elliptic cylinder. The ellipse is defined by coordinatesx =

f coshµ cosθ, andy = f sinhµ sinθ. Here we choose the radial
coordinateµ0 = 0:2, and foci f = 1, resulting in an aspect ratio
of major to minor axis of approximately 5 : 1. The cylinder is
assumed infinite in thez-direction, so that the problem can be
solved as a two-dimensional problem in thexy-plane.

On the surface of the cylinder, we assume a ‘soft’ (homoge-
neous Dirichlet) boundary condition,

φ = φ(i)+φ(s) = 0; on S := fµ0 = 0:1; 0� θ� 2πg (57)

Here the total fieldφ(µ;θ) is composed of the incident wave
φ(i), and the scattered wave fieldφ(s), such thatφ(s)(µ0;θ) =

�φ(i)(µ0;θ).
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Figure 2. Finite element mesh for elliptic scatterer defined with foci f =
1, µ= 0:2. The circular radiation boundary Γ, is positioned at R= 1:25.

(Top) Uniform mesh (Mesh1), (Bottom) Unstructured mesh (Mesh2).

The incident plane-wave is given by,

φ(i)(xxx; t) = sin[kννν � (xxx�xxx0)�ωt] H[t�ννν � (xxx�xxx0)=c] (58)

Herexxx0 = [x0;y0] defines the position of the initial wave front
at t = 0. The direction of the incident plane-wave is determined
by the unit wave vectorννν = [cosα;sinα], whereα is the angle
between the lines of constant phase and thex-axis.

We obtain the exact steady-state solution for the scat-
tered field by expanding the exponential form of the incident

wave in elliptic coordinates by means of an addition theorem
(Morse,1953). Forφ(i) given in (58), and homogeneous bound-
ary condition (57), the steady-state analytical solution is,

φ(s)(µ;θ; t) = Imag
n

φ̂(s)(µ;θ)e�i(kννν�xxx0+ωt)
o

(59)

where

φ̂(s)(µ;θ) = �2
∞

∑
n=0

in
n

AnMc(3)n (µ;q)cen(θ;q)

+ BnMs(3)n (µ;q)sen(θ;q)
o

(60)

An =
Mc(1)n (µ0;q)

Mc(3)n (µ0;q)
cen(α;q) (61)

Bn =
Ms(1)n (µ0;q)

Ms(3)n (µ0;q)
sen(α;q) (62)

In the above,q = (k f=2)2, cen and sen are the even and odd

valued angular Mathieu functions, andMc(p)n andMs(p)n , p= 1;3
are even and odd radial (modified) Mathieu functions of the first
and third kind, respectively (Abramowitz,1968).

For the finite element solution, the radius of the circular ra-
diation boundaryΓ is set atR= 1:25. The numerical solution
for this scattering problem is solved using a total field method
similar to that described in (Thompson,2000), here formulated
for the two-dimensional problem. We use 3 different finite ele-
ment meshes. In the first (Mesh1), the computational domain is
discretized with a quasi-uniform mesh of standard 4-node bilin-
ear finite elements withNΓ = 360 evenly spaced node points on
the circular radiation boundaryΓ, and 50 node points in the ra-
dial direction, resulting inNT = 18;360 total nodes and elements,
see Figure 2. The other two meshes considered are unstructured
meshes generated using the ‘free mesh’ option in the CAE soft-
ware package I-DEAS from SDRC. The first unstructured mesh
(Mesh2) uses an average element length ofh = 0:018, result-
ing in NT = 16;205 nodes withNS= 236 nonuniform boundary
nodes on the inner ellipse, andNΓ = 436 nodes on the outer ra-
diation boundary. The second unstructured mesh (Mesh3) uses a
finer grid with an average element lengthh= 0:012, resulting in
NT = 35;906,NS = 354, andNΓ = 654 nonuniform nodes. The
computation is driven from rest to steady-state with wave vector
angleα = 30o, and frequencyk = ω=c = 2π. The initial wave
front starts at the radiation boundary, such thatxxx0 =�Rννν.

In the following we denote by LBC(p), the spectral ele-
ment approximation to the sequence of local radiation bound-
ary operators defined in (14) and (15), wherep is the number
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Figure 3. Scattering from an elliptic cylinder with incident plane-wave

oriented in θ = 30o direction, and normalized frequency k= ω=c= 2π.

Finite element solution contours for the total fieldat snapshots in time.

of residual functions included. Figures 3 and 4 show finite el-
ement solution contours for both total and scattered fields at
time t = (0:5;1:0;2:0;5:0), using the sequence of local radiation
boundary conditions LBC(10), withp = 10 auxiliary functions.
At t = 0:5, the incident plane-wave has just begun to diffract from
the elliptic cylinder. Att = 5:0, the solution has nearly reached
steady-state.

Figure 5 shows the maximumL2 error using LBC(p) and
the semi-implicit time-integration scheme described in (51) and
(54), and using different time steps, denotedA4(∆t). The re-
sults are compared with the implementation RBC1(N; p) given
in (Thompson,1999a; Thompson,1999b), withN = 20 angular
harmonics included in the Fourier expansion, and the explicit
time integration algorithm described in (Thompson,2000), de-
notedA2(∆t). The results show that using the local radiation con-
ditions, the error decreases rapidly, with onlyp=4 residual func-
tions needed to converge to a fixed lower bound. The fixed lower
error bound is primarily controlled by the explicit space-time dis-
cretization of the wave equation in the interior field; as the time-
step is decreased the lower-bound decreases accordingly. Accu-
racy of the direct implementation of the local operators given in
this paper matches the accuracy of the indirect implementation
using a Fourier expansion withN = 20 angular harmonics as de-
scribed in (Thompson,1999a; Thompson,1999b). This result is
expected since both methods are based on the same radial expan-
sion (5) withp residual functions. For very high-ordersp> 16,
we observe that the semi-implicit time-integration scheme be-
comes unstable. This instability is also shown using the unstruc-
tured meshes shown in Figure 6. As the mesh is refined the in-
stability appears at the lower order ofp= 12. These results show
that the semi-implicit scheme for the auxiliary conditions, while
extremely efficient, is only conditionally stable and is sensitive
to space-time discretization and radial orderp. Fortunately, due
to the rapid convergence of the residual functions in the bound-
ary conditions, only a low-order valuep is required, leading to
an accurate and stable solution for this problem. These results
motivate the investigation of an efficient implicit and uncondi-
tionally stable time-integration scheme for direct implementation
for the sequence of local boundary conditions. Preliminary work
on taking advantage of the nodal block structure of the auxiliary
equations in an implicit framework shows promise for efficient
time-integration and will be reported in a forthcoming paper.

CONCLUSIONS
Asymptotic local radiation boundary conditions first derived

by Hagstrom and Hariharan for the time-dependent wave equa-
tion, are formulated in a high-order accurate spectral element
method with mixed time-integration. Using this mixed time in-
tegration approach, a very natural implementation of the high-
order accurate, local boundary conditions is obtained which al-
lows the boundary conditions to be implemented efficiently with-
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out altering the local character of the finite element equations. By
using a semi-implicit time-integration method for the boundary
matrices, an efficient solution is obtained using a forward sweep
on a lower triangle matrix, without factoring finite element matri-
ces. Further efficiency is gained by recognizing the nodal block
structure of the auxiliary equations to form consistent space-time
difference stencils on a nonuniform boundary mesh. Using this
stencil, the auxiliary functions can be updated in time, and in
sequence for each node on the radiation boundary, without ma-
trix assembly. Extensions to three-dimensions for unstructured
meshes on a sphere follow directly from the methods described
here for the two-dimensional case. Numerical studies of scatter-
ing from an elliptic object demonstrate that the accuracy rapidly
converges with the number of residual functions included in the
sequence. The accuracy matches the alternative implementa-
tion using Fourier harmonics, as expected, without computing
Fourier transforms. The semi-implicit time-integration scheme
is conditionally stable and sensitive to space-time discretization
and the radial order used in the sequence of local boundary oper-
ators. At very high radial orders, the semi-implicit method may
become unstable, motivating the efficient implementation of an
unconditionally stable implicit scheme.
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Figure 4. Finite element solution contours for the scattered field.
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Figure 5. Maximum L2 error during steady-state measured on the circu-

lar artificial boundary Γ using the uniform mesh (Mesh1). Results com-

pared with the direct implementation of the sequence of local radiation

boundary conditions LBC(p) with the semi-implicit time integration al-

gorithm, denoted A4, compared to an indirect implementation using a

Fourier expansion and explicit time-integration as described in (Thomp-

son,1999a; Thompson,2000), denoted A2.
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Figure 6. Maximum L2 error during steady-state using the unstructured

meshes (Top) Mesh2, (Bottom) Mesh3. The numbers in the parenthesis

indicate the time step size used.
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