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ABSTRACT

A Computational Structural Acoustics (CSA) capabil-
ity for solving scattering, radiation, and other prob-
lems related to the acoustics of submerged structures
has been developed by employing some of the recent
algorithmic trends in Computational Fluid Dynam-
ics (CFD), namely time-discontinuous Galerkin Least-
Squares finite element methods. Traditional compu-
tational methods toward simulation of acoustic radia-
tion and scattering from submerged elastic bodies have
been primarily based on frequency domain formula-
tions. These classical time-harmonic approaches (in-
cluding boundary element, finite element, and finite
difference methods) have been successful for problems
involving a limited range of frequencies (narrow band
response) and scales (wavelengths) that are large com-
pared to the characteristic dimensions of the elastic
structure. Attempts at solving large-scale structural
acoustic systems with dimensions that are much larger
than the operating wavelengths and which are complex,
consisting of many different components with different
scales and broadband frequencies, has revealed limita-
tions of many of the classical methods. As a result,
there has been renewed interest in new innovative ap-
proaches, including time-domain approaches. This pa-
per describes recent advances in the development of
a new class of high-order accurate and uncondition-
ally stable space-time methods for structural acoustics
which employ finite element discretization of the time
domain as well as the usual discretization of the spa-
tial domain. The formulation is based on a space-time
variational equation for both the acoustic fluid and elas-

tic structure together with their interaction. Topics to
be discussed include the development and implemen-
tation of higher-order accurate non-reflecting bound-
ary conditions based on the exact impedance relation
through the Dirichlet-to-Neumann (DtN) map, and a
multi-field representation for the acoustic fluid based on
independent pressure and velocity potential variables.
Numerical examples involving radiation and scattering
of acoustic waves are presented to illustrate the high-
order accuracy achieved by the new methodology for
CSA.

INTRODUCTION

Previous approaches to the transient structural acous-
tics problem involving the interaction of vibrating struc-
tures submerged in an infinite acoustic fluid have em-
ployed (i) boundary element methods based on Kirch-
hoff’s retarded potential integral formulation [1, 2],
(ii) Taylor-Galerkin methods, e.g. [3], and (iii) semi-
discrete methods which employ standard Galerkin finite
element methods in space and finite difference tech-
niques for integrating in time (also referred to as the
method of lines), see e.g. [4, 5, 6, 7]. However for
general transient wave propagation problems it is well
known that these standard methods are not optimal.
This is especially evident for problems involving sharp
gradients in the solution which typically arise in the
vicinity of fluid-structure interfaces and near inhomo-
geneities such as stiffeners and structural joints. In this
paper a new multi-field space-time finite element ap-
proach to solving the coupled structural acoustics prob-
lem is described. The proposed method employs the
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simultaneous discretization of the spatial and tempo-
ral domains and is based on a new time-discontinuous
variational formulation for the coupled fluid-structure
system.

Discontinuous Galerkin (DG) space-time methods
with residual based stabilization such as Galerkin
Least-Squares (GLS) methods have been shown to
be effective for first-order and second-order hyper-
bolic systems of partial differential equations, see e.g.
[8, 9, 10, 11, 12], and are now widely used in many appli-
cations arising in computational fluid dynamics (CFD),
including problems governed by the compressible Eu-
ler and Navier-Stokes equations [13, 14], advection-
diffusion problems [15], and large-eddy and turbulence
modeling [16]. In this approach, the concept of space-
time slabs is employed which allow for discretizations
that are discontinuous in time and offers great flexi-
bility in the discretization; in particular through the
possibility of using space-time meshes oriented along
space-time characteristics.

Recently, the time-discontinuous space-time finite el-
ement method has been successfully extended to the
second-order hyperbolic equations governing structural
acoustics in infinite domains [17, 18, 19, 20, 21, 22]. In
these single-field formulations, scalar velocity potential
is used as the solution variable for the acoustic fluid,
while the displacement vector is used to represent the
motion of the structure. Since these methods use a sin-
gle trial solution in each physical region, in this case the
structural domain and surrounding fluid domain, they
are referred to as ‘single-field’ formulations. In this pa-
per, an extension of the single-field time-discontinuous
space-time formulation for structural acoustics is pre-
sented where independent finite element approxima-
tions are used for the structural displacement vector
and its time derivative, together with independent ap-
proximations for the acoustic pressure and velocity po-
tential. For this multi-field formulation, the resulting
system of coupled algebraic equations to be solved in
each time step takes on a positive form; a condition
which is necessary for the unconditional stability of the
algorithm for unstructured space-time meshes.

The resulting multi-field space-time algorithm gives
a general solution to the fundamental problem of con-
structing a finite element method for transient struc-
tural acoustics with the desired combination of good
stability and high accuracy. Stability is obtained
through the introduction of temporal jump operators
which weakly enforce continuity of the independent so-
lution variables between space-time slabs. Additional
stability is obtained by a Galerkin Least-Squares (GLS)
modification. The order of accuracy of the solution is

related to the order of the finite element spatial and
temporal basis functions chosen, and can be specified
to any accuracy and for general unstructured discretiza-
tions in space and time.
In addition to the advantages cited above, the space-

time finite element approach provides a powerful frame-
work for unified and simultaneous spatial and temporal
adaptivity of the discretization. This is especially use-
ful in the application of self-adaptive solution strate-
gies for transient structural acoustics, in which both
spatial and temporal enhancement can efficiently cap-
ture waves propagating along space-time characteris-
tics. Furthermore the use of space-time hp-adaptive
discretization strategies, where a combination of mesh
size refinement/unrefinement (h-adaptivity), and finite
element basis enrichment (p-adaptivity), can easily be
accommodated in the time-discontinuous formulation.
Because the temporal and spatial domains are treated
in a consistent manner in the space-time variational
equations, the method gives rise to a firm mathematical
foundation from which rigorous a posteriori error esti-
mates useful for reliable and efficient adaptive schemes
may be established, see e.g. [23].
For the approach presented here, a truncated fluid

domain with radiation (non-reflecting) boundary condi-
tions is employed to transmit outgoing waves to infinity.
For large-scale, three-dimensional discretizations, the
use of accurate radiation boundary conditions is essen-
tial to allow the fluid truncation boundary to be placed
close to the structure, minimizing the mesh and matrix
problem size. New, high-order accurate non-reflecting
boundary conditions, based on the exact impedance re-
lation through the Dirichlet-to-Neumann (DtN) map
[24], will be described. Details for the implementation
of the first two operators in the localized DtN non-
reflecting boundary conditions in the new multi-field
formulation are described; further details on the deriva-
tion and implementation in single-field formulations are
given in [18, 17, 20].

THE STRUCTURAL ACOUSTICS PROBLEM

Consider the coupled system consisting of a structural
region Ωs in R

nsd ; where nsd is the number of space
dimensions, surrounded by an infinite fluid region B.
The interface boundary between the structure and fluid
domains is denoted by Γi. The unit outward normal
to the structure (inward normal to the fluid) on Γi is
denoted by n.
The structure is assumed to be governed by the equa-

tions of elastodynamics while the fluid equations are
taken under the usual linear acoustic assumptions of an
inviscid, compressible fluid with small disturbance. The
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Fig. 1: Coupled system for the exterior fluid-structure
interaction problem, with artificial boundary Γ∞ en-
closing the finite computational domain Ω = Ωf ∪ Ωs.

momentum equations for small motions of an acoustic
fluid are

∇p+ ρf v̇ = 0 (1)

where p(x , t) is the excess pressure perturbation from
the static pressure, v(x , t) is the fluid particle velocity,
and ρf = ρf (x) > 0 is the density of the fluid. A
superimposed dot indicates partial differentiation with
respect to time t. The constitutive behavior of the fluid
is assumed to be

ṗ+Kf∇ · v = 0 (2)

where Kf = ρfc
2 is the bulk modulus of the fluid and c

is the acoustic wave speed. From the assumption of an
irrotational acoustic fluid, the velocity can be written
as the gradient of the velocity potential φ as v = ∇φ.
Consequently, pressure is related to the velocity poten-
tial by p = −ρf φ̇.
On the structural interface Γi, the normal compo-

nent of the fluid velocity is assumed to be equivalent to
the motion of the structural surface. Projecting the ve-
locity normal to the structure gives the fluid-structure
coupling: v ·n = vs ·n where vs(x , t) is the structural
velocity vector. The influence of the fluid pressure act-
ing on the structure is given by the normal traction
σ · n = −pn where σ is the symmetric Cauchy stress
tensor. The stress is assumed to be related to the struc-
tural displacement vector us(x , t) through a constitu-
tive relation of the form:

σ = C : ∇sus (3)

where ∇sus is the symmetric gradient and C = C(x) is
the fourth-order tensor of elastic coefficients; assumed

to satisfy the usual positive-definiteness (pointwise sta-
bility) and major and minor symmetry properties. The
equations of motion for the structure are

∇ · σ = ρsv̇s (4)

where ρs = ρs(x) > 0 is the structural density, and
vs(x , t) = u̇s(x , t).

The drivers for the problem are the initial conditions:

us(x, 0) = u0s(x), x ∈ Ωs (5)

vs(x, 0) = v0s(x), x ∈ Ωs (6)

φ(x, 0) = φ0(x), x ∈ Ωf (7)

p(x, 0) = p0(x), x ∈ Ωf (8)

EXACT NON-REFLECTING BOUNDARY
CONDITIONS

When domain based computational methods are used
to model an infinite fluid region, a non-reflecting bound-
ary must be introduced in the fluid at a finite distance
from the submerged structure. Let the non-reflecting
boundary be denoted Γ∞ and positioned such that the
original fluid region B is divided into a bounded inte-
rior domain Ωf and an exterior domain Ω∞ such that
B = Ωf ∪ Ω∞; see Fig. 1.
In the method presented, an exact non-reflecting

boundary condition; derived in the frequency domain
through a Fourier transform, is used as a basis for the
space-time finite element formulation. An exact non-
reflecting boundary condition is obtained by taking ad-
vantage of the fact that an outgoing wave solution can
always be written in terms of a series of wave harmon-
ics with respect to a separable coordinate system [25].
In the frequency domain, i.e., the time-harmonic prob-
lem, this idea has been exploited by several researchers
to derive exact non-reflecting boundary conditions; see
e.g. the Dirichlet-to-Neumann (DtN) impedance op-
erator derived in [24]. The DtN operator is a nonlocal
(integral) and frequency dependent boundary condition
applied on a separable boundary Γ∞.

For a spherical boundary Γ∞ of radius r = R in R
3

with unit outward normal n to Γ∞, the exact represen-
tation of the exterior acoustic impedance restricted to
Γ∞ is [24]:

v(R, θ, ϕ) · n =

∞∑
n=0

zn(k̂)

∫
Γ∞

sn(θ, ϕ, θ
′, ϕ′) φ(R, θ′, ϕ′) dΓ

′

(9)
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where the DtN kernels sn, n = 0, 1, 2, · · · are given by,

sn =

n∑
j=0

′αnjP
j
n(cosϕ)P

j
n(cosϕ

′) cos j(θ − θ′) (10)

αnj =
(2n+ 1)(n− j)!

2πR2(n+ j)!
(11)

with impedance coefficients,

zn(k̂) =
kh′n(k̂)

hn(k̂)
(12)

In the above, ω > 0 is the frequency, k = ω/c is

the acoustic wavenumber, k̂ = kR is a nondimensional
wavenumber normalized with respect to the radial dis-
tance, 0 ≤ θ < 2π is the circumferential angle and
0 ≤ ϕ < π is the polar angle for a spherical trunca-
tion boundary of radius r = R. The differential surface
area is dΓ = Jsdθdϕ, where Js = R

2 sinϕ is the surface
Jacobian. The functions P jn are associated Legendre
functions of the first kind, and hn are spherical Hankel
functions of the first kind of order n. The prime on hn
indicates differentiation with respect to its argument,
and the prime after the sum indicates that a factor of
1/2 multiplies the term with j = 0. The boundary
condition (9) can be written in abstract operator form
as,

∂φ

∂n
(x , k) = S(k) φ(x , k), x ∈ Γ∞ (13)

relating Dirichlet data, φ, to Neumann data, ∂φ/∂n =
v · n, through the linear mapping S(k) : φ 7→ ∂φ/∂n.
For a spherical boundary the normal velocity specializes
to a simple radial derivative: ∂φ/∂n = ∂φ/∂r.
A direct time-dependent counterpart to the DtN map

can be obtained through a convolution integral in time
as,

v(x , t) · n =

∫ t
0

S(t− τ)φ(τ) dτ, x ∈ Γ∞ (14)

resulting in a boundary condition that is non-local in
both space and time dimensions. Implementation of
(14) in a computational method requires storage of
all previous solutions up to the current time step; a
property that makes its use impractical for large-scale
computations over long time intervals. Note that this
limitation of the time convoluted DtN operator is also
shared with the Kirchoff boundary integral representa-
tion.
In order to circumvent the difficulty of having

to implement a temporal convolution integral, time-

dependent boundary conditions are derived which re-
place the temporal integral with local temporal deriva-
tives; see [17, 20]. Two alternative sequences were de-
rived; the first retains the nonlocal spatial integral of
the DtN map (9), while replacing the time-convolution
in (14) with higher-order local time derivatives (local
in time and nonlocal in space version), while the sec-
ond involves only time and spatial derivatives (local in
time and local in space version). In the following, some
important results from the derivation are summarized.

Local in Time and Non-Local in Space
Version

Consider the first two terms in the truncated DtN se-
ries; then (9) reduces to,

v · n = z0

∫
Γ∞

φ s0 dΓ
′

+ z1

∫
Γ∞

φ s1 dΓ
′

(15)

Using the definition for zn(k̂) in (12) and relations

hn(k̂) = h0(k̂)


(−i)n

n∑
j=0

(n+ j)!

j!(n− j)!

(
−1

2ik̂

)j , (16)

for n = 0, 1, 2, · · · , and

hn(k̂)
′ = hn−1(k̂)−

(
n+ 1

k̂

)
hn(k̂), (17)

for n = 1, 2, · · · , then (15) can be written in the alter-
native form,

(
1

R
− ik

)
v · n =

(
k2 +

2ik

R
−
1

R2

)∫
Γ∞

φ s0 dΓ
′

+

(
k2 +

2ik

R
−
2

R2

)∫
Γ∞

φ s1 dΓ
′

(18)

Direct application of the inverse Fourier transform gives
the time-dependent counterpart:

Kf v · n = c2p,n

+
1

R

∫
Γ∞

(
R2p,t + 2cRp−Kfφ

)
s0 dΓ

′

+
1

R

∫
Γ∞

(
R2p,t + 2cRp− 2Kfφ

)
s1 dΓ

′

(19)
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where the functions s0 and s1 are defined in (10). This
time-dependent radiation boundary condition is per-
fectly absorbing for the first two spherical wave har-
monics of order n = 0 and n = 1.
Similarly for the first three terms in (9), the local in

time counterpart as reported in [17, 20] is

Kf v · n =
R

3c
(6c2p,n + 4cRp,nt +R

2p,ntt)

+
1

c0

∫
Γ∞

(c1p,ttt + c2p,tt + 10c3p,t + 9c4p− 3c5φ) s0 dΓ
′

+
1

c0

∫
Γ∞

(c1p,ttt + c2p,tt + 11c3p,t + 12c4p− 6c5φ) s1 dΓ
′

+
1

c0

∫
Γ∞

(c1p,ttt + c2p,tt + 13c3p,t + 18c4p− 9c5φ) s2 dΓ
′

(20)
where

c5 = c
2Kf ; c4 = c

3R

c3 = c
2R2; c2 = 5cR

3

c1 = R
4; c0 = 3c

2R

This condition is perfectly absorbing for the first
three spherical wave harmonics of order n = 0, 1, 2.
These are nonlocal operators that involve a spatial in-
tegral yet retain the important property of locality in
time. In general, the boundary operators in this se-
quence will have higher-order time derivatives which
make them difficult to implement in standard finite el-
ement implementations. However, when implemented
in the discontinuous space-time finite element formula-
tion, standard C0(Γ∞ × In) continuous interpolations
may be used on the radiation boundary in both the
space and time dimensions [17, 20].

Local in Time and Local in Space Version

In [17, 20] it is shown that when the solution on the
boundary Γ∞ contains only a finite number of spherical
harmonics, then (9) can be transformed into an exact
condition which is local in both space x and time t. The
transformation starts with the ideas of Givoli and Keller
[26], where a spatially local counterpart to the non-
local DtN map S was obtained for the two-dimensional
Helmholtz equation. The extension to three-dimensions
was given by Harari [27].
The sequence of local boundary conditions is ob-

tained by truncating the DtN map given in (9), so
that the sum over n extends over the finite range

n = 0, 1, · · ·N − 1, and expressing the first N terms
in the DtN map as:

v · n =
N−1∑
n=0

zn(k̂)Yn(θ , ϕ) (21)

where

Yn(θ , ϕ) =

n∑
j=0

′P jn(cosϕ)(Anj cos jθ +Bnj sin jθ)

(22)
are spherical surface harmonics of order n, with non-
local coefficients Anj and Bnj . The initial goal is to
replace the nonlocal spatial integrals embedded in the
coefficients Anj and Bnj with local spatial derivatives.
This can be accomplished by recognizing that Yn can be
interpreted as eigenfunctions of the Laplace-Beltrami
operator

∆Γ :=
1

sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)
+

1

sin2 ϕ

∂2

∂θ2
(23)

with eigenvalues λ = −n(n+ 1), so that

[n(n+ 1)]mYn = (−∆Γ)
mYn (24)

This property of the spherical harmonics suggests writ-
ing the impedance coefficients as a series of powers of
n(n+ 1):

zn(k̂) =

N−1∑
m=0

[n(n+ 1)]mβm(k̂), n = 0, 1, · · · , N − 1

(25)
This is a system of N linear equations for the N un-
known values βm,m = 0, 1, · · ·N . Using (25) to replace
zn in (21) gives,

v · n =
N−1∑
n=0

N−1∑
m=0

βm(k̂) [n(n+ 1)]
m Yn(θ , ϕ) (26)

Now using (24) to replace [n(n+1)]mYn with the high-
order tangential derivatives (−∆Γ)mYn, and using the
assumption that the solution φ on Γ∞ contains only the
first N spherical harmonics, the following sequence of
local radiation boundary conditions is obtained:

v · n =

N−1∑
m=0

βm(k̂) (−∆Γ)
mφ on Γ∞ (27)

where the values of βm(k̂) are obtained by solving the
N×N linear algebraic system (25). Since this sequence
follows directly from the truncated DtN map, these ra-
diation boundary operators are exact for waves consist-
ing of the first N spherical harmonics. In this case, the

53



nonlocal spatial integrals have been replaced by a lin-
ear map expressed in terms of the differential operator
(∆Γ)

m.
The next step is to obtain an exact local in time coun-

terpart to (27) through an inverse Fourier transform.
To this end use is made of the finite series expansion
for the spherical Hankel functions embedded in the co-
efficients βm(k̂).
For the first two operators in the sequence corre-

sponding to N = 2, the system (25) reduces to β0 = z0
and β1 = (z1 − z0)/2, so that the local DtN condition
(27) specializes to,

v · n = z0φ+
1

2
(z0 − z1)∆Γφ (28)

Clearing the common denominator h0h1 and using
the recurrence relation (17) in conjunction with (16)
and after some algebraic manipulation, we obtain the
simplified form,(
1

R
− ik

)
v · n =

(
k2 +

2ik

R
−
1

R2

)
φ+

1

2R2
∆Γφ

(29)
Since this expression involves only terms in powers of ik,
the inverse Fourier transform is readily obtained with
the desired result,

Kf v · n = cRp,n +Rp,t + 2cp−
Kf

2R
(2−∆Γ)φ (30)

This second-order accurate local boundary condition
is perfectly absorbing for the first two spherical wave
harmonics of orders n = 0 and n = 1. Expressions
for the exact time-dependent local boundary condi-
tions for higher-order harmonics N = 3, 4, · · · , involve
higher-order temporal and tangential derivatives, and
are obtained using the same procedure as indicated for
N = 1, 2; see [17, 20].
This new sequence of local time-dependent boundary

conditions provide increasing accuracy with order N
which, however, is also a measure of the difficulty of im-
plementation. In general, the Nth-order condition con-
tains all the even tangential and temporal derivatives
up to order 2(N − 1). Because the time-discontinuous
formulation allows for the use of C0 interpolations to
represent the high-order time derivatives, it is possi-
ble to implement this sequence of time-dependent ab-
sorbing boundary conditions up to any order desired
[17, 20]. However for high-order operators in the se-
quence extending beyond N ≥ 3, the lowest possible
order of spatial continuity on the artificial boundary
that can be achieved after integration by parts is CN−2.
For these high-order operators a layer of boundary ele-
ments adjacent to Γ∞, possessing high-order tangential
continuity on Γ∞ are needed.
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Fig. 2: Illustration of two consecutive space-time slabs
with unstructured finite element meshes in space-time.

TIME-DISCONTINUOUS GALERKIN FI-
NITE ELEMENT FORMULATION

The development of the space-time method proceeds by
considering a partition of the time interval, I =]0, T [,
of the form: 0 = t0 < t1 < · · · < tN = T , with In =
]tn, tn+1[ and ∆tn = tn+1 − tn. Using this notation,
Qsn = Ωs×In, and Q

f
n = Ωf×In are the nth space-time

slabs for the structure and fluid respectively. For the
nth space-time slab, the spatial domain is subdivided
into (nel)n elements, and the interior of the e

th element
is defined as Qen. Figure 2 shows an illustration of two
consecutive space-time slabs Qn−1 and Qn for the fluid
where the superscript is omitted for clarity.
Within each space-time element, the trial solution

and weighting function are approximated by polyno-
mials in both x and t. These functions are assumed
C0(Qn) continuous throughout each space-time slab,
but are allowed to be discontinuous across the inter-
faces of the slabs. An important component in the suc-
cess of the space-time method is the incorporation of
discontinuous temporal jump terms at each space-time
slab interface; for a function wh, the jump operator is
defined as,

[[wh(tn)]] = wh(x , t+n ) − w
h(x , t−n )

These jump operators weakly enforce initial conditions
across time slabs and are crucial for obtaining an uncon-

54



ditionally stable algorithm for unstructured space-time
finite element discretizations with high-order interpola-
tions. This feature of the time-discontinuous method,
allows for the general use of high-order elements and
spectral-type interpolations in both space and time.
The specific form of these jump operators are designed
such that a natural norm emanates from the variational
equation and satisfies a strong coercivity condition.

The space of finite element basis functions for the
multi-field representation for the fluid are stated in
terms of independent trial velocity potential φh, and
trial pressure ph, variables:

Trial velocity potential:

T h1 =
{
φh
∣∣∣φh ∈ C0(

N−1⋃
n=0

Qfn) , φ
h
∣∣∣
Qf

e
n

∈ Pk(Qf
e

n )
}

Trial pressure:

T h2 =
{
ph
∣∣∣ph ∈ C0(

N−1⋃
n=0

Qfn) , p
h
∣∣∣
Qf

e
n

∈ P l(Qf
e

n )
}

where Pk denotes the space of kth-order polynomials
and C0 denotes the space of continuous functions.
The collections of finite element basis functions for the
approximation to the structural equations are given by
the spaces,

Trial structural displacements:

Sh1 =
{
uhs (x, t)

∣∣∣

uhs ∈ (C
0(

N−1⋃
n=0

Qsn))
nsd , uhs

∣∣∣
Qs
e
n

∈ (Pm(Qs
e

n ))
nsd
}

Trial structural velocities:

Sh2 =
{
vhs (x, t)

∣∣∣

vhs ∈ (C
0(
N−1⋃
n=0

Qsn))
nsd , vhs

∣∣∣
Qs
e
n

∈ (Pn(Qs
e

n ))
nsd
}

Before stating the space-time variational equations,

it is useful to introduce the following notation.

(δuhs , u
h
s )Ωs =

∫
Ωs

δuhs · u
h
s dΩ

a(δuhs , u
h
s )Ωs =

∫
Ωs

∇δuhs · σ(u
h
s ) dΩ

(δph , ph)Ωf =

∫
Ωf

δph ph dΩ

(δph , ph)Γ =

∫
Γ

δph ph dΓ

(δph , ph)Qn =

∫ tn+1
tn

(δph , ph)Ω dt

(δph , ph)Υn =

∫ tn+1
tn

(δph , ph)Γ dt

The meaning of other similar bilinear forms may be
inferred from these. In the above definitions, a delta
refers to the variation of the function, i.e. the corre-
sponding weighting function. The L2 norm is denoted

by ||φ||Ω = (φ , φ)
1/2
Ω .

MULTI-FIELD SPACE-TIME VARIATIONAL
EQUATION

The multi-field space-time variational equation is ob-
tained from a weighted residual of the governing
equations and incorporates time-discontinuous jump
terms. The specific form of this new formula-
tion is designed such that unconditional stability
for arbitrary space-time finite element discretizations
can be proved through a functional analysis of the
method. The statement of the time-discontinuous
Galerkin method for the multi-field formulation is:

Within each space-time slab, n = 0, 1, ..., N − 1;
Find Uhf := {φ

h , ph} ∈ T h1 × T
h
2

and Uhs := {u
h
s , v

h
s } ∈ S

h
1 × S

h
2 ,

such that for all weighting functions
δUhf := {δφ

h , δp} ∈ T h1 × T
h
2 , and

δUhs := {δu
h
s , δv

h
s } ∈ S

h
1 × S

h
2 ,

the following coupled variational equation is satisfied:

Bf (δU
h
f , U

h
f )n

+Bs(δU
h
s , U

h
s )n

+B∞(δU
h
f , U

h
f )n

−
(
δph , vhs · n

)
(Υi)n

+
(
δvhs · n , p

h
)
(Υi)n

= Lf (δU
h
f )n + Ls(δU

h
s )n (31)
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with the following definitions;

Bf (δU
h
f , U

h
f )n :=

(
δph , K−1f ṗ

h
)
Qfn

− (∇δph , vh)
Qfn

+ (δvh , LfU
h
f )Q̃fn

+
(
δph(t+n ) , K

−1
f p

h(t+n )
)
Ωf

+
(
δvh(t+n ) , ρfv

h(t+n )
)
Ωf
(32)

Bs(δU
h
s , U

h
s )n :=

(
δvhs , ρsv̇

h
s

)
Qsn

+ a(δvhs , u
h
s )Qsn

+ a(δuhs , LsU
h
s )Q̃sn

+
(
δvhs (t

+
n ) , ρsv

h
s (t
+
n )
)
Ωs

+ a
(
δuhs (t

+
n ) , u

h
s (t
+
n )
)
Ωs

(33)

Lf (δU
h
f )n :=

(
δph(t+n ) , K

−1
f p

h(t−n )
)
Ωf

+
(
δvh(t+n ) , ρfv

h(t−n )
)
Ωf
(34)

Ls(δU
h
s )n :=

(
δvhs (t

+
n ) , ρsv

h
s (t
−
n )
)
Ωs

+ a
(
δuhs (t

+
n ) , u

h
s (t
−
n )
)
Ωs

(35)

in which vh = ∇φh, δvh = ∇δφh, and

LfU
h
f = ρf v̇

h +∇ph (36)

LsU
h
s = u̇hs − v

h
s (37)

In the above expressions, a tilde refers to integration
over element interiors. Note that the linear form Ls(·)0
is obtained from the general expression for Ls(·)n by
setting n = 0 and replacing uhs (0

−) by u0s and v
h
s (0

−)
by v0s . Likewise, Lf (·)0 is obtained by setting n = 0
in (35) and replacing φh(0−) and ph(0−) with the ini-
tial conditions given in (8). Bf (· , ·)n and Bs(· , ·)n are
bilinear forms for the fluid and structure respectively.
Fluid-structure interaction is accomplished through the
coupling operators defined on the fluid-structure inter-
face (Υi)n := Γi × In. The operator B∞, incorporates
the time-dependent radiation boundary conditions on
the fluid truncation boundary Γ∞. The definition of
this operator depends on the order of the spatial and/or

temporal derivatives appearing in the radiation bound-
ary condition and will be described later. The method
is applied in one space-time slab at a time; data from
the end of the previous slab are employed as initial
conditions for the current slab; i.e., the solution is ob-
tained for a given time interval T and time step ∆tn by
solving the variational equation (31) in order for each
n = 0, 1, 2, . . . N − 1.

As a result of being a weighted residual based for-
mulation, the method presented is consistent in the
sense that for a sufficiently smooth exact solution to the
initial/boundary-value problem (1) – (8), with a non-
reflecting boundary condition of the form (19), (20), or
(30), Uf = {φ , p} andUs = {us , vs}; where p = −ρf φ̇
and vs = u̇s, satisfies,

Bf (δU
h
f , Uf )n

+Bs(δU
h
s , Us)n

+B∞(δU
h
f , Uf )n

−
(
δph , vs · n

)
(Υi)n

+
(
δvhs · n , p

)
(Υi)n

= Lf (δU
h
f )n + Ls(δU

h
s )n (38)

∀ δUhf ∈ T
h
1 × T

h
2 , and δU

h
s ∈ S

h
1 × S

h
2 and n =

0, 1, ..., N − 1. Consequently,

Bf (δU
h
f , Ef )n +Bs(δU

h
s , Es)n +B∞(δU

h
f , Ef )n

−
(
δph , (vhs − vs) ·n

)
(Υi)n

+
(
δvhs ·n , p

h − p
)
(Υi)n

= 0

(39)
where Ef = U

h
f − Uf and Es = U

h
s − Us is the

error; in components Ef = {φh − φ , ph − p} and
Es = {uhs − us , v

h
s − vs}. This formal consistency

of (31) with the strong (local) form of the problem is
necessary for maintaining optimal convergence rates for
higher-order basis functions.

A natural measure of stability for the coupled struc-
tural acoustics problem is the total energy for the sys-
tem:

E(Uf , Us) := Ef (Uf ) + Es(Us) (40)

Es(Us) =
1

2
(vs , ρsvs)Ωs +

1

2
a(us , us)Ωs (41)

Ef (Uf ) =
1

2
||K−1/2f p||

2

Ωf
+
1

2
||ρ1/2f v||

2

Ωf
(42)

where Ef and Es denote the energy for the acoustic fluid
and elastic structure respectively.
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Stability, or coercivity, is established as follows:

Bf (U
h
f , U

h
f )n = (ph , K−1f ṗ

h)
Qfn
+ (vh , ρf v̇

h)
Qfn

+2Ef (U
h
f (t
+
n ))

= Ef (U
h
f (t
−
n+1)) + Ef (U

h
f (t
+
n )) (43)

Similarly,

Bs(U
h
s , U

h
s )n = (vhs , ρsv̇

h
s )Qsn + a(u

h
s , u̇

h
s )Qsn

+2Es(U
h
s (t
+
n ))

= Es(U
h
s (t
−
n+1)) + Es(U

h
s (t
+
n )) (44)

Then

Bf (U
h
f , U

h
f )n + Bs(U

h
s , U

h
s )n −

(
ph , vhs · n

)
(Υi)n

+
(
vhs · n , p

h
)
(Υi)n

= Ef (U
h
f (t
−
n+1)) + Ef (U

h
f (t
+
n ))

+ Es(U
h
s (t
−
n+1)) + Es(U

h
s (t
+
n ))

= E(t−n+1) + E(t
+
n ) (45)

This is the coercivity condition.
Furthermore,

Lf (U
h
f )n = (ph(t+n ) , K

−1
f p

h(t−n )Ωf

+(vh(t+n ) , ρfv
h(t−n ))Ωf

≤ Ef (U
h
f (t
+
n )) + Ef (U

h
f (t
−
n )) (46)

and

Ls(U
h
s )n ≤ Es(U

h
s (t
+
n )) + Es(U

h
s (t
−
n )) (47)

so that

Lf (U
h
f )n + Ls(U

h
s )n ≤ E(t

+
n ) + E(t

−
n ) (48)

Finally, setting δUhf = U
h
f , δU

h
s = U

h
s in (31), and

using (45) and (48) gives the stability condition:

E(t−n+1) +B∞(U
h
f , U

h
f )n ≤ E(t

−
n ), ∀ ∆tn > 0, (49)

and n = 0, 1, . . . N − 1. Eq. (49) states that the com-
puted total energy for the system plus the radiation
energy absorbed through the artificial boundary at the
end of a time step is always less than or equal to the
total energy at the previous time step for arbitrary step
sizes. This result implies that the space-time formula-
tion presented is unconditionally stable.

Matrix equations are obtained by introducing space-
time finite element approximations for the independent
variables:

φh(x , t) = Nf (x , t)φ, (x , t) ∈ Qfn (50)

ph(x , t) = χf (x , t)p, (x , t) ∈ Qfn (51)

uhs (x , t) = Ns(x , t)d, (x , t) ∈ Qsn (52)

vhs (x , t) = χs(x , t)c, (x , t) ∈ Qsn (53)

with their associated weighting (variational) parame-
ters. In these expressions {Nf , Ns} ∈ T h1 × S

h
1 and

{χf , χs} ∈ T h2 × S
h
2 are matrices defining global ba-

sis functions over a space-time slab, and {φ , p} and
{d , c} are global solution vectors. Inserting (50) – (53)
into the variational equation (31) leads to the coupled
system of algebraic equations to be solved in sequence
for each time interval In =]tn , tn+1[, n = 0, 1, · · ·N−1:



Kf Cf 0 0
CTf Mf A 0

0 AT Ms Cs
0 0 CTs Ks







φ
p
c
d



=




f1f
f2f
f2s
f1s



(54)

whereKs ,Ms are global matrices emanating from the
structural bilinear operator Bs, andKf ,Mf are global
matrices emanating from the fluid bilinear operator Bf
and B∞; Cf is the coupling matrix relating acoustic
pressure and velocity potential solution arrays; likewise
Cs is the coupling matrix relating structural displace-
ment and velocity degrees-of-freedom; A is the fluid-
structure coupling matrix defined as:

AT =

∫ tn+1
tn

∫
Γi

χTs nχf dΓ dt (55)

Note that the coupled matrix system is positive-definite.
The positive form of (54) follows directly from the sta-
bility (coercivity) result (45).

Implementation of Local High-Order Ac-
curate Non-Reflecting Boundary Condi-
tions

A direct approach in which to implement time-
dependent boundary conditions is to define a linear op-
erator Sm as,

v · n− Sm(Uf ) = 0 (56)

which implies

v · n = Sm(Uf ) on Γ∞ (57)
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For example, the first three local in space and time
operators Sm for m equal to 1,2 and 3 are [17, 18, 20]:

S1(Uf ) = −
1

R
φ+

1

ρfc
p (58)

S2(Uf ) = −
1

2R
(2−∆Γ)φ+

1

ρfc

(
2 +R

∂

∂r

)
p

+
R

Kf
p,t (59)

S3(Uf ) = −
1

24R
(24− 14∆Γ − (∆Γ)

2)φ

+
1

2ρfc

(
6−∆Γ + 4R

∂

∂r

)
p

+
R

6Kf

(
20−∆Γ + 8R

∂

∂r

)
p,t

+
R2

3Kfc

(
5 +R

∂

∂r

)
p,tt

+
R3

3Kfc2
p,ttt (60)

These boundary conditions are incorporated into the
finite element method as a natural boundary condition,
i.e., they are enforced weakly in both time and space.
For example, the operator defined on Γ∞ in Eq. (31)
for the local second-order boundary condition (59) is
given by:

B∞(δU
h
f , U

h
f )n = (δph , S2(U

h
f ))(Υ∞)n

+ d2
(
δph(t+n ) , [[p

h(tn)]]
)
(Υ∞)n

+ d0
(
δφh(t+n ) , ρf [[φ

h(tn)]]
)
(Υ∞)n

.

(61)

where

(
δph , S2(U

h
f )
)
(Υ∞)n

= d2
(
δph , ṗh

)
(Υ∞)n

+ d1
(
δph , ph

)
(Υ∞)n

− d0
(
δph , φh

)
(Υ∞)n

+ d0
(
δφh , ph + ρf φ̇

h
)
(Υ∞)n

;

(62)

d0
(
δph , φh

)
(Υ∞)n

:=
1

R

(
δph , φh

)
(Υ∞)n

+
1

2R

(
δph,ϕ , φ

h
,ϕ

)
(Υ∞)n

+
1

2R

(
δph,θ , csc

2(ϕ)φh,θ
)
(Υ∞)n

(63)

d1
(
δph , ph

)
(Υ∞)n

:=
2

ρfc

(
δph , ph

)
(Υ∞)n

+
R

ρfc

(
δph , ph,r

)
(Υ∞)n

(64)

d2
(
δph , ṗh

)
(Υ∞)n

:=
R

Kf

(
δph , ṗh

)
(Υ∞)n

(65)

Note that integration-by-parts has been used to relax
the continuity implied by the second-order tangential
derivatives appearing in ∆Γ from C

1(Γ∞) to C
0(Γ∞).

The form of the terms defined in (61) involving tempo-
ral jump operators evaluated on the boundary Γ∞, can
be inferred from (63) and (65). These consistent jump
terms act to weakly enforce continuity of Uhf between
space-time-slabs at the boundary Γ∞. These additional
operators are needed in order to ensure unconditional
stability for the solution and are the crucial element
that enable generalization of the time-discontinuous
space-time finite element method to handle unbounded
domains.

SINGLE-FIELD FORMULATION

If the finite element approximation for the acoustic

pressure is selected such that, ph = −ρf φ̇h, which im-

plies that the residual LfUhf = ρf∇φ̇
h +∇ph = 0, and

similarly if the structural velocity is the time derivative
of the structural displacement, vhs = u̇

h
s , then the multi-

field formulation (31) specializes to the single-field for-
mulation derived in [17, 18, 20]. This simplification
occurs when the temporal order of approximation for
ph and vhs is one order less than that used for φ

h and
uhs , respectively; i.e., {χf , χs} = {Nf,t , Ns,t}. In this
case (31) becomes:
For n = 0, 1, ..., N − 1; Find φh ∈ T h1 and u

h
s ∈ S

h
1 ,
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such that ∀ δφh ∈ T h1 , and δu
h
s ∈ S

h
1 :

bf (δφ
h , φh)n

+bs(δu
h
s , u

h
s )n

+b∞(δφ
h , φh)n

+
(
δφ̇h , ρf u̇

h
s · n
)
(Υi)n

−
(
δu̇s · n , ρf φ̇h

)
(Υi)n

= lf (δφ
h)n + ls(δu

h
s )n (66)

with the following definitions; a = c−1,

bf (δφ
h , φh)n :=

(
δφ̇h , a2 ρf φ̈h

)
Qfn

+ (δv̇h , ρfv
h)
Qfn

+
(
δφ̇h(t+n ) , a

2 ρf φ̇h(t
+
n )
)
Ωf

+
(
δvh(t+n ) , ρfv

h(t+n )
)
Ωf

(67)

bs(δu
h
s , u

h
s )n :=

(
δu̇hs , ρsü

h
s

)
Qsn

+ a(δu̇hs , u
h
s )Qsn

+
(
δu̇hs (t

+
n ) , ρsu̇

h
s (t
+
n )
)
Ωs

+ a
(
δuhs (t

+
n ) , u

h
s (t
+
n )
)
Ωs
(68)

lf (δφ
h)n :=

(
δφ̇h(t+n ) , a

2 ρf φ̇h(t
−
n )
)
Ωf

+
(
δvh(t+n ) , ρfv

h(t−n )
)
Ωf

ls(δu
h
s )n :=

(
δu̇hs (t

+
n ) , ρsu̇

h
s (t
−
n )
)
Ωs

+ a
(
δuhs (t

+
n ) , u

h
s (t
−
n )
)
Ωs
(69)

The form of b∞(· , ·)n follows directly from the defini-
tion of B∞(· , ·)n with ph replaced with −ρf φ̇h. Using
approximations (50) and (52) the matrix equations em-
anating from (66) take the form:

[
kf a
aT ks

]{
φ
d

}
=

{
ff
fs

}
, (70)

for n = 0, 1, · · ·N − 1, where ks is the global matrix
emanating from the structural operator bs, and kf is

the global matrix emanating from the fluid operator bf
and b∞, and a is the fluid-structure coupling matrix
defined as

aT =

∫ tn+1
tn

∫
Γi

ρfN
T
s,tnNf,t dΓ dt (71)

In this expression, a subscript comma t denotes par-
tial derivatives with respect to time and Ns(x, t) ∈ S1
and Nf (x, t) ∈ T1 are global shape function matrices
representing the space-time finite element approxima-
tion to the structural displacement and acoustic ve-
locity potential respectively. Since the single-field for-
mulation is a special case of the multi-field formula-
tion, the reduced matrix system defined in (70) is also
positive-definite – a detailed proof is given in [21]. Sec-
ondary variables are obtained from postprocessing; i.e.,

ph = −ρf φ̇h = −ρfNf,tφ and vhs = u̇
h
s =Ns,td.

GALERKIN LEAST-SQUARES STABILIZA-
TION

For additional stability, local residuals of the governing
differential equations in the form of least-squares may
be added to the Galerkin variational equations. The
Galerkin Least Squares (GLS) addition to the single-
field variational equation for the fluid, (67) takes the
form [17]:

bfGLS(δφ
h , φh)n = bf (δφ

h , φh)n

+ (KfτLδφ
h , Lφh)

Q̃fn

+ (Kfs[[δv(x)]] · n , [[v(x)]] · n)(Υ̃e)n

(72)

where the residual Lφh = ∇·∇φh−a2φ̈h is the acoustic
wave equation, and τ and s are local mesh parameters
designed to improve desirable high frequency numerical
dissipation without degrading the accuracy of the un-
derlying time-discontinuous Galerkin method. Galerkin
Least Squares methods have also been used to enhance
the stability and accuracy of solutions to the related
reduced wave equation (Helmholtz equation) governing
time-harmonic acoustics in the frequency domain; see
e.g. [27, 28], and [29, 30, 17].

ACCURACY ANALYSIS

Convergence rates for the simplified formulation have
been determined in [17, 19]. Important results are
that for the operator S1, defined in (58), and the time-
discontinuous Galerkin Least Squares formulation, the

59



h
�1

1E-4

.001

.01

.1

1

10 100 1000

� 6= 0

� = 0

jj
je
jj
j2 �

3

Fig. 3: Convergence of the numerical error employ-
ing a biquadratic space-time element. Results confirm
the cubic rate of convergence predicted by the error es-
timate; i.e., (2k − 1) = 3 for quadratic interpolation
k = 2.

approximation error E = {φh−φ , uhs −us}, converges
at the rate

|||E|||
2

≤ c(φ)h2k−1f + c(u)h2m−1s (73)

where hs = max{cL∆t , ∆x}, and hf = max{c∆t , ∆x}
are element mesh size parameters, cL is the dilatational
wave speed in Ωs and c is the acoustic wave speed in Ωf ;
∆x and ∆t are maximum element diameters in space
and time, respectively; c(u) and c(φ) are values that are
independent of hs, hf . The integers k and m are the fi-
nite element interpolation orders for the fluid and struc-
ture respectively. The norm |||E||| in which convergence
is measured emanates naturally from the coupled fluid-
structure variational equation (66) together with the
least-squares operators. This result indicates that the
error for the coupled system is controlled by the conver-
gence rates in both the structure and the fluid; i.e., for
an accurate solution to the coupled fluid-structure prob-
lem, discretizations for both the structural domain and
the fluid domain must be adequately resolved. Accu-
racy can be increased in both space and time by simply
increasing the order of the polynomial used in the finite
element approximation. These convergence rates were
verified numerically in [17, 19] for a model problem in
one space dimension; both Galerkin and GLS formula-
tions converge at the same rate as expected; see Fig. 3

NUMERICAL EXAMPLES

A few numerical results are presented to demonstrate
the effectiveness of the space-time method to accurately

model transient radiation and scattering from geometri-
cally complex surfaces. Further details and a number of
other examples may be found in [17, 18, 20, 21]. In Fig-
ures 4 – 5 results are presented for a pulsating sphere.
These results illustrate the nearly perfect absorption
of radiation energy through the non-reflecting bound-
ary Γ∞ using the local second-order operator S2 for a
propagating wave pulse striking the boundary at severe
angles of incidence. In Figures 6 and 7, results are pre-
sented for the transient scattering from a rigid cylinder
with conical-to-spherical end caps and a large length-to-
diameter ratio. This example represents a challenging
problem where the multiple-scales involving the ratio of
the wavelength to cylinder diameter and cylinder length
dimension play a critical role in the complexity of the
resulting scattered wave field. The numerical simula-
tion starts with an initial pulse at t = 3. At t = 6 the
incident pulse has expanded and has just reached the
boundaries of the rigid cylinder. At the non-reflecting
boundary Γ∞, the wave front is allowed to pass through
the boundary with negligible reflection. At t = 9, the
wave has begun to reflect off the rigid boundary, creat-
ing a complicated backscattered wave.

CONCLUSIONS

In this paper, a space-time finite element method for
solution of the transient structural acoustics problem
in infinite domains has been presented. The formu-
lation is based on a new multi-field time-discontinuous
Galerkin variational equation for both the structure and
the acoustic fluid together with their interaction. The
resulting algorithm gives an ideal methodology for con-
structing unstructured finite element meshes in space-
time with the optimal combination of good stability and
high accuracy.
Desirable attributes of the new approach for com-

putational structural acoustics (CSA) include a natu-
ral framework for the design of rigorous a posteriori
error estimates for self-adaptive solution strategies for
unstructured space-time discretizations, and the imple-
mentation of high-order accurate and time-dependent
non-reflecting boundary conditions. High-order accu-
racy is obtained simply by raising the order of the space-
time polynomial basis functions; both standard nodal
interpolation and hierarchical shape functions are ac-
commodated.
New time-dependent non-reflecting boundary condi-

tions written in terms of pressure and velocity vari-
ables and which are exact for the first N spherical wave
harmonics have been presented. Two new sequences
of time-dependent non-reflecting boundary operators
were presented; the first involves both time and spatial
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Fig. 4: (Top): Computational domain for a sphere
shifted from the centroid of a spherical non-reflecting
boundary Γ∞. Upper half modeled with 1518 axisym-
metric elements using quadratic interpolation. (Bot-
tom): Solution time-history on Γ∞, at the axis of sym-
metry ϕ = 0.

derivatives (local in time and local in space version),
and the second involves time derivatives yet retains a
spatial integral (local in time and nonlocal in space ver-
sion). The development of these boundary conditions
began with the truncated Dirichlet-to-Neumann (DtN)
map in the frequency domain. The time-discontinuous
Galerkin space-time formulation provides a natural
variational setting for the incorporation of these local
in time boundary conditions. Numerical results com-
puted with the space-time formulation demonstrated
that with proper usage, the second-order non-reflecting
boundary condition S2, when implemented in the space-
time finite element method, is sufficiently accurate to
capture the important physics associated with compli-
cated transient radiation and scattering problems in-

volving severe geometric and time scales.

References

[1] W.J. Mansur and C.A. Brebbia. Further devel-
opments on the solution of the transient scalar
wave equation. In C.A. Brebbia, editor, Topics
in Boundary Element Research, volume 2, Berlin,
1984. Springer-Verlag.

[2] H.C. Neilson, G.C. Everstine, and Y.F. Wang.
Transient response of a submerged fluid-coupled
double-walled shell structure to a pressure pulse.
J. Acoust. Soc. Am., 70(6):1776–1782, 1981.

[3] A. Safjan, L. Demkowicz, and J.T. Oden. Adaptive
finite element methods for hyperbolic systems with
application to transient acoustics. Int. J. Numer.
Methods Engng., 32:677–707, 1991.

[4] P.M Pinsky and N.N. Abboud. Finite element so-
lution of the transient exterior structural acoustics
problem based on the use of radially asymptotic
boundary operators. Comp. Methods in Applied
Mech. Engng., 85:311–348, 1991.

[5] P.M. Pinsky and L.L. Thompson. Accu-
racy of local non-reflecting boundary conditions
for time-dependent structural acoustics. In
Structural Acoustics, volume NCA-Vol.12/AMD-
Vol.128, pages 153–160. ASME, 1991.

[6] P.M. Pinsky, L.L. Thompson, and N.N. Abboud.
Local high order radiation boundary conditions
for the two-dimensional time-dependent struc-
tural acoustics problem. J. Acoust. Soc. Am.,
91(3):1320–1335, 1992.

[7] L.F. Kallivokas and J. Bielak. Time-domain analy-
sis of transient structural acoustics problems based
on the finite element method and a novel ab-
sorbing boundary element. J. Acoust. Soc. Am.,
94(6):3480–3492, 1993.

[8] C. Johnson, U. Navert, and J. Pitkaranta. Finite
element methods for linear hyperbolic problems.
Comp. Methods in Applied Mech. Engng., 45:285–
312, 1984.

[9] C. Johnson. Numerical Solutions of Partial Dif-
ferential Equations by the Finite Element Method.
Cambridge University Press, 1986.

[10] T.J.R. Hughes. Recent progress in the develop-
ment and understanding of SUPG methods with

61



special reference to the compressible Euler and
Navier-Stokes equations. Int. J. Numer. Methods
Engng., 7:1261–1275, 1987.

[11] T.J.R. Hughes and G.M. Hulbert. Space-time fi-
nite element methods for elastodymamics: Formu-
lations and error estimates. Comp. Methods in Ap-
plied Mech. Engng., 66:339–363, 1988.

[12] G.M. Hulbert and T.J.R. Hughes. Space-time fi-
nite element methods for second-order hyperbolic
equations. Comp. Methods in Applied Mech. En-
gng., 84:327–348, 1990.

[13] F. Shakib, T.J.R. Hughes, and Z. Johan. A new
finite element formulation for computational fluid
dynamics: X. the compressible Euler and Navier-
Stokes equations. Comp. Methods in Applied Mech.
Engng., 89:141–219, 1991.

[14] G. Hauke and T.J.R. Hughes. A unified approach
to compressible and incompressible flows. Comp.
Methods in Applied Mech. Engng., 113:389–395,
1994.

[15] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert.
A new finite element formulation for computa-
tional fluid dynamics: VIII. the Galerkin/least-
squares method for advective-diffusive equations.
Comp. Methods in Applied Mech. Engng., 73:173–
189, 1989.

[16] K. Jansen, Z. Johan, and T.J.R. Hughes. Im-
plementation of a one-equation turbulence model
within a stabilized finite element formulation of
a symmetric advective-diffusive system. Comp.
Methods in Applied Mech. Engng., 105:405–433,
1993.

[17] L.L. Thompson. Design and Analysis of Space-
time and Galerkin Least-Squares Finite Element
Methods for Fluid-Structure Interaction in Exte-
rior Domains. PhD thesis, Stanford University,
April 1994.

[18] L.L. Thompson and P.M. Pinsky. New space-time
finite element methods for fluid-structure interac-
tion in exterior domains. In Computational Meth-
ods for Fluid/Structure Interaction, volume AMD-
Vol. 178, pages 101–120. ASME, 1994.

[19] L.L. Thompson and P.M. Pinsky. A space-time fi-
nite element method for structural acoustics in in-
finite domains, Part I: Formulation, stability, and
convergence. Comp. Methods in Applied Mech. En-
gng., 132:195–227, 1996.

[20] L.L. Thompson and P.M. Pinsky. A space-time fi-
nite element method for structural acoustics in in-
finite domains, Part II: Exact time-dependent non-
reflecting boundary conditions. Comp. Methods in
Applied Mech. Engng., 132:229–258, 1996.

[21] L.L. Thompson and P.M. Pinsky. A space-
time finite element method for the exterior struc-
tural acoustics problem: Time-dependent radia-
tion boundary conditions in two spatial dimen-
sions. Int. J. Numer. Methods Engng., 39:1635–
1657, 1996.

[22] L.L. Thompson and P.M. Pinsky. A space-time
finite element method for the exterior acoustics
problem. J. Acoust. Soc. Am., 99(6):3297–3311,
1996.

[23] C. Johnson. Discontinuous Galerkin finite ele-
ment methods for second order hyperbolic prob-
lems. Comp. Methods in Applied Mech. Engng.,
107:117–129, 1993.

[24] J.B. Keller and D. Givoli. Exact non-
reflecting boundary conditions. J. Comput. Phys.,
82(1):172–192, 1989.

[25] M.C. Junger and D. Feit. Sound, Structures and
their Interaction. M.I.T. Press, Cambridge, MA,
1986.

[26] D. Givoli and J.B. Keller. Non-reflecting boundary
conditions for elastic waves. Wave Motion, 12:261–
279, 1990.

[27] I. Harari. Computational Methods for Problems
of Acoustics with Particular Reference to Exterior
Domains. PhD thesis, Stanford University, 1991.

[28] I. Harari and T.J.R. Hughes. Galerkin/least-
squares finite element methods for the reduced
wave equation with non-reflecting boundary con-
ditions in unbounded domains. Comp. Methods in
Applied Mech. Engng., 98:411–454, 1992.

[29] L.L. Thompson and P.M. Pinsky. A multi-
dimensional Galerkin Least-Squares finite element
method for time-harmonic wave propagation. In
et. al. R. Kleinman, editor, Second International
Conference on Mathematical and Numerical As-
pects of Wave Propagation, pages 444–451. SIAM,
1993.

[30] L.L. Thompson and P.M. Pinsky. A Galerkin
Least Squares finite element method for the two-
dimensional Helmholtz equation. Int. J. Numer.
Methods Engng., 38:371–397, 1995.

62



Fig. 5: Radiation from a nonconcentric sphere using
the local S2 absorbing boundary condition: Elevated
solution contour for φh(x , t) shown at the end of the
initial pulse sinωt at t = 1 and later times t = 1.5
through t = 3.5 in increments of ∆t = 0.5.
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Fig. 6: Scattering from a geometrically complex rigid
cylinder due to a point source. Solution contours shown
at the end of the initial pulse at t = 3 and later times
t = 6 and t = 9.

Fig. 7: Scattering from a rigid cylinder due to a point
source. Solution contours shown at times t = 12, 15, 18.
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