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ABSTRACT tational method such as the finite element method, the far-field
Asymptotic and exact local radiation boundary conditions is truncated at an artificial boundary surrounding the source of
first derived by Hagstrom and Hariharan are reformulated as an radiation. The impedance of the far-field is then represented on
auxiliary Cauchy problem for linear first-order systems of ordi- this boundary by either radiation boundary conditions, infinite
nary equations on the boundary for each harmonic on a circle or elements, or absorbing sponge layers. Survey articles of various
sphere in two- or three-dimensions, respectively. With this re- boundary treatments are given in (Tsynkov, 1998). If accurate
formulation, the resulting radiation boundary condition involves boundary treatments are used, the finite computational region can
first-order derivatives only and can be computed efficiently and be reduced so that the truncation boundary is relatively close to
concurrently with standard semi-discrete finite element methods the radiator, and fewer elements than otherwise would be possi-
for the near-field solution without changing the banded/sparse ble may be used, resulting in considerable savings in both cpu
structure of the finite element equations. In 3D, with the number time and memory. In the frequency domain, several accurate and
of equations in the Cauchy problem equal to the mode number, efficient methods for representing the impedance of the far-field
this reformulation is exact. If fewer equations are used, then are well understood, including the Dirichlet-to-Neumann (DtN)
the boundary conditions form uniform asymptotic approxima- map (Keller, 1989; Grote, 1995a), and infinite elements (Burnett,
tions to the exact condition. Furthermore, using this approach, 1994; Astley, 1998). However, efficient evaluation of accurate
we formulate accurate radiation boundary conditions for the two- boundary treatments for the time-dependent wave equation on
dimensional unbounded problem on a circle. Numerical studies unbounded spatial domains has long been an obstacle for the de-
of time-dependent radiation and scattering are performed to as-velopment of reliable solvers for time domain simulations. Ide-
sess the accuracy and convergence properties of the boundarally, the artificial boundary would be placed as close as possible
conditions when implemented in the finite element method. The to the source, and the radiation boundary treatment would be ca-
results demonstrate that the new formulation has dramatically pable of arbitrary accuracy at a cost and memory not exceeding
improved accuracy and efficiency for time domain simulations that of the interior solver.
compared to standard boundary treatments. A standard approach is to apply local (differential) bound-
ary operators which annihilate leading terms in the radial multi-
pole expansion for outgoing wave solutions. A well known se-
INTRODUCTION quence of boundary conditions developed for a spherical trun-
When modeling radiation from structures in an acoustic cation boundary are the local operators derived by Bayliss and
medium which extends to infinity with a domain based compu- Tyrkel (Bayliss, 1980). However, these and other approximate
local boundary conditions exhibit significant spurious reflection
for high-order wave harmonics, especially as the position of the
*Corresponding author.
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truncation boundary approaches the source of radiation (Pinsky,
1991; Pinsky, 1992).

In recent years, new boundary treatments have been de-
veloped which dramatically improve both the accuracy and ef- D
ficiency of time domain simulations compared to approximate
local radiation boundary conditions. In (Grote, 1995b; Grote,
1996), exact nonreflecting boundary condition®R@C) are de-
rived involving solution of an auxiliary Cauchy problem for lin-
ear first-order systems of time-dependent differential equations
on a spherical boundary for each harmonic. In (Thompson,
1999a), this NRBC is rederived based on direct application of
a result given in Lamb (Lamb, 1916), with improved scaling of r
the first-order system of equations associated with the NRBC.
Formulation of the NRBC in standard semidiscrete finite ele-
ment methods with several alternative implicit and explicit time-
integrators is reported in (Thompson, 1999a; Thompson, 1999b).
In (Thompson, 1999b), a modified version of the exact NRBC Figure 1. ILLUSTRATION OF UNBOUNDED REGION R C R4 SUR-
first derived in (Grote, 1996), is implemented in a finite element ROUNDING A SCATTERER S. THE COMPUTATIONAL DOMAIN Q C
formulation. In order to obtain a symmetric system, the NRBC R |s SURROUNDED BY A TRUNCATION BOUNDARY ' OF RADIUS
is reformulated with additional auxiliary variables on the trun- R wiTH EXTERIORREGIOND =R — Q.
cation boundary. The modified version may be viewed as an
extension of the second-order local boundary operator derived
by Bayliss and Turkel (Bayliss, 1980), and gives improved ac-
curacy when only a few harmonics are included in the spherical Thompson, 1999a). A modified version similar to the formu-
expansion/transformation. In (Thompson, 1999c), a method is lation given in (Thompson, 1999b) is also reported. The refor-
described for calculating far field solutions concurrently with the mulation is based on the hierarchy of local boundary operators
near-field solution based on the exact NRBC. At each discrete used by Bayliss and Turkel which satisfy truncations of the mul-
time step, radial modes computed on a spherical artificial bound- tipole expansion for each harmonic and a recursion relation for
ary which drive the exact NRBC for the near-field solution, are the expansion coefficients. With this reformulation, the result-
imposed concurrently as data for the radial wave equation in the ing radiation boundary conditions involves first-order derivatives
far-field. The radial grid is truncated at the far-field point of in- only, and as a result, may be implemented efficiently with stan-
terest with the modal form of the exact NRBC. The solution in dard semidiscrete finite element methods without changing the
the far-field is then computed from an inverse spherical harmonic symmetric and banded/sparse structure of the matrix equations.
transform of the radial modes.

Hagstrom and Hariharan (Hagstrom, 1998) have derived a
sequence of radiation boundary conditions involving first-order
differential equations in time and tangential derivatives of auxil- INITIAL-BOUNDARY VALUE PROBLEM
iary functions on a circular or spherical boundary. They indicate We consider time-dependent scattering and radiation of
how these local conditions may be effectively implemented in a waves in an infinited-dimensional regio®R ¢ R, surrounding
finite difference scheme using only local tangential operators, but an object with surfac&. For computation, the unbounded region
at the cost of introducing a large number of auxiliary functions R s truncated by an artificial boundaFy We assume that the
at the boundary. Numerical experiments were conducted for a hypersurfacé is ad-dimensional ball of radiu§x ||=R, i.e., a
model problem involving the Fourier modes of the wave equa- sphere in three-dimensiors£ 3), or a circle in two-dimensions

tion in two-dimensions using a finite difference method. How- (d=2). We thendenote b c R, the finite subdomain bounded
ever, direct finite element implementation of this sequence in a by 9Q = US, see Figure 1.
standard Galerkin variational equation would result in a nonsym- Within Q, the solutionp(x,t) : Q x [0,T] ~ R, satisfies the
metric system of equations. ’ ’ ’
In this paper we rederive the sequence of local boundary
conditions described in (Hagstrom, 1998) in terms of harmon-
ics and reformulate the recursive equations as a Cauchy prob-
lem involving systems of first-order ordinary differential equa- 1 0% )
tions on the boundary, similar to that used in (Grote, 1995b; 2z = et fxy),  xeQ tel0T] 1)
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scalar wave equation,
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with initial conditions,

(p(xv 0) = (PO(X), ¢(X, O) = (.R)(X), xeQ (2) ng = { 800, g ig (10)
and driven by the time-dependent radiation boundary condition
on the surfacé:
0,d=2
m = {3 (11)

0 0
By +Basl +Yp=g(xD),  X€S,te[0T]  (3)
and where/nm are orthogonal harmonics normalizedion
The wave speed, andf1, 2,y are real, and we assume-

0, andf1,B2 > 0. The sourcef and initial datag, and('p0 are 1 : _
i . . ———exp(ind), d=2
assumed to be confined to the computational dorfiso that V21mR
in the exterior regio® =R —Q, i.e., the infinite region outside  yym(0) =
I, the scalar fieldp(x,t) satisfies the homogeneous form of the (2n +21)(n — |m))! P™ (cosd) exp(imé), d =3
wave equation, 41R?(n + |m|)!
(12)
1 0% The time-dependent modesm(r,t), r > R, t > 0 satisfy the
2z = 0%p,  xeD,te[0,T] (4) radial wave equation,
1 0°@hm 02 200 n(n+2a-1)
. 2 {W Ta o 2 e 13
@®x,0=0, 9x0)=0  xeQ (5)

In the following, we introduce polar and spherical coordi- . . B
nates(r,8), where® = 8 in two-dimensions an® = (6,4) in Gm(r,0) =0, @m(r,0) =0, r=R (14)
three-dimensions, respectively, such that the wave equation can . )
be written in separable form, For outgoing waves, the solution to (13) may be represented
by the multipole expansion:

10°%9 0% 2009 1

= 5+ — 5+ S0 (6) K
2otz o2 roor r2 Gm(r,t) = 3 1 gfim(r —ct) (15)
k=0
where
where

62
9 d=2
aez: _ 00, d = 2

Arg = 2 () = {n d=3 (16)
L 9 (ng%®) 4 L 90 y_3 ’
sin@ 90 )  sinfeap2’

Substituting (15) into (13), we obtain the recursion relation

. . . for the expansion coefficients:
In the above, we have introduced the scaled dimensional P

valuea = (d — 1)/2, such that

(dn) = kel an

1/2, d=2
a = ’ 8
{ 1, d=3 ®) where
The general solution to (6) is given by the expansion, (k—1/2)2 —r? 42
" ok — ” lz)k ( ’ ) (18)
© —1)—n(n+
(p(r,e,(b,t) = Z z (an(r ’ t) ynm(e) (9) 2k ’ d =3

n=ny M=—y
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Construction of Radiation Boundary Conditions Applying the local operatorkj, j =2, --- to (22) will re-
In the following, we derive high-order accurate radia- duce the order of the remainder further. In general, applging

tion boundary conditions suitable for numerical implementation, to (15), we have by induction,

based on the hierarchy of local operators used by Bayliss and

Turkel (Bayliss, 1980) which annihilate radial terms in the ex- 10 9 2j+a\ ,
pansion (15). The local operators are easily constructed using a Bj+1¢hm = Lj+1(Bj¢m) = (EE ot > Wi = WiiL
product of radial derivatives: (24)
with wh defined as,
Bj =Lj(Lj-a(---(L2(L1)))) (19) - K oo
Whn(r,t) = 3 ar I, (25)
&
10 0 2(j—-1)+a
L=(22, 0 2i-Y+a (20)
cot or r J. , ] !
a = (—1'k(k=1)- (k= (j-1)) = (-1)’ (26)

(k=J)!
However, the product fornBy@hm, involves high order radial
derivatives which limits the ordej, which can be practically
used in a numerical method. Inspired by the local boundary con-
ditions of Hagstrom and Hariharan (Hagstrom, 1998), involving
. . A . . .~ favo

a sequence of first-order equations in time with tangential deriva-
tives, we reformulate the Bayliss and Turkel boundary operators 5 s
as arecursive sequence involving first-order time derivatives only ) iy (1 2j+a il
for each mode. This sequence is then cast as a system of first- L2 (o) (EE Tt >Wg‘m_ Wom > (27)
order differential equations in time, for each harmonic, which
may be solved concurrently with the finite element equations.  as,

In the following, we interpret the remainders of the Bayliss
and Turkel operators (19) acting on the multipole expansion (15)

We note Whm(r,t) = O(r 2 )gum = O(r—2-9).
Forj=1,2,---,1, we eliminate radial derivatives in (24) in
r of a recursive sequence fofm. To this end we rewrite,

i .

as a sequence of functions with reduced radial order. We apply 1 ownm = }w}'ﬁ;} — ler1m_ 1 <E + a_ }E> Wi (28)

B1 = L1 to the radial expansion (15), with the result, co 2 r 2\0r r cot

19 8 «q Now consider the last term in the brackets,

Bi@om= <Ea+a+?> (ﬂqm:W%m (21) )
0 a 10 ; ki -
<§ + T EE) Wim = Z aIJ<r e {2((¢1m)/ —(k+])r lqﬁm}
The functionw} ., defines the remainder of the radial expansion, k=] (29)
Substituting the recursion relation f(xd;m)’ given in (17),
Wi (rt) = % kr kLo 22) and the definition fos] given in (26), into (29) leads to,
nm\"» - - m
K=1
ol
As noted by Bayliss and Turkely}:(r,t) = O(r=2)@hm = <3 L% }E> W= — 21;“ wh L (30)
O(r=2=%). If we setw},, = 0, thenBi@m = 0. Applying the or r cot r

harmonic expansion to this result evaluated atR, gives,
Using this key result in (28) defines the following recursive

B1p=0, onf 23) sequence for the functmmi]m(r,t), i=12,---,ln:
which defines the first-order local boundary condition of Bayliss 1 9w ich Co 1 .
and Turkel. P Tnm = Jr—zn Wit — %W%mWL EW#n_wl (31)
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with W, = @hm.

Rescaling the variables by2, applying the harmonic ex-
pansion to (21) and (31), leads to the sequence of local ra-
diation boundary conditions given in Hagstrom and Hariharan
(Hagstrom, 1998) involving the tangential derivatives defined in
(7). While these conditions can be effectively implemented in
a finite difference scheme (Hagstrom, 1998), direct finite ele-
ment implementation in a standard Galerkin variational equation

would result in a nonsymmetric system of equations. To address

this difficulty, we recognize that when evaluated on the artificial
boundary at = R, the sequence (31) forms a system of first-order
ordinary differential equations in time for the auxiliary functions,

Vim(t) =22 Wl (R ) (32)

Here we seVym(t) = {21 wrj}m(R,t)}, i=12,---ly, and define
a time-dependent vector function of ordigr

Vam(t) = [Vim(t), Vam(t) , -+ Mim(®)]T (33)

We then write the system of equations defined by (31) as a first-
order matrix differential equation for each harmonic:

d

avnm(t) = AnVnm(t) + bnghm(R 1) (34)
with constant,, x |, tri-diagonal matrixA, = {Ainj 19
R if i=j—1
i cJ —i if i=]
ij — = ,
A= RYicl/2Rif i=j+1 (35)
0 otherwise
The constant vectds, = {b#}} is defined by:
1—4n?
: BRL1 Lo, d=2
_Nn(n+1)c d—3
2R2 e17 -
wheree; is the unit vector,
e =[1,0,...,0" (37)

We then define the radiation boundary condition by taking
the harmonic expansion of (21) and evaluating on the truncation

5

boundary at = R:

ECANL P s Vi) Ynm(8), onT  (38)
cot Tar Ty (p_n=znl m=Zmo nmil) Ynm(9),
where
—o0, d=2
m—-{L d=3 (39)

In the above, the functiom}(t) = wi (R t) satisfies the
Cauchy problem for each harmonic defined by the first-order ma-
trix system (34), with initial conditionyy(0) = 0, and driven by
the radial modes defined by the harmonic transform,

m(RD) = [ Yor(®) (R B.1) " (40)
where
RGO, d=2
dr = {R2§n9d9d¢,d::3 (41)

Here, the star indicates complex conjugate. _

In three-dimensions, when the number of functiohg(t)
included in the system (34) is equal to the number of harmonics
in the solution, i.e. I, = n, thenvlltl(t) = 0, and the bound-
ary condition is exact and is equivalent to the exact nonreflect-
ing boundary conditions derived in (Grote, 1995b; Thompson,
1999a). This result follows from the finite expansion (15),
with the index defined over the finite rangge=0,1,---, n.

We also note that the auxiliary functions satisfy the property,
Vit = O(R"2)Vhm, so thatvhii < vim, andvim = O(R-2i-9).
Therefore, if fewer equations are used, ixe< n, then the three-
dimensional boundary condition forms a uniform asymptotic ap-
proximation to the exact condition. In two-dimensions, the ex-
pansion (15) ranges over an infinite number of multipoles, so that
for a finite valudp, the boundary condition also forms a uniform
asymptotic approximation. We note several advantages of the
radiation boundary condition (38) compared to the nonreflect-
ing boundary conditions derived in (Grote, 1995b; Thompson,
1999a), including a banded tri-diagonal coefficient maiixthe
avoidance of an additional vector inner product to compute the
functionvy(t), and the implementation as a uniform approxima-
tion to the exact condition, with corresponding reduced memory
and computational work.

In practice, the infinite sum overin (38) is truncated at a
finite valueN:

N mg
Bio= 3 3 VamYnm (42)
n=N; m=my
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where
(43)

Forn > N, then the boundary condition reverts to the first-order
local boundary conditionB;¢ = 0. To improve the approxi-
mation to the truncated harmonios> N, without affecting the
modesn < N, we define a modified boundary condition using
(24)forj=1,andr =R

B2o= (44)

where
d=2
Nz = {2, d=3 (43)

In the above, the functiovf,(t) = w2(R,t) /2 satisfies the same
first-order matrix system (34), for each harmonic (40). This
modified boundary condition may be implemented in the finite

element method using the procedures described in (Thompson

1999bh).

FINITE ELEMENT FORMULATION

In the following, we give the finite element formulation for
the initial-boundary value problem within the bounded redgiyn
supplemented by the radiation boundary condition (38).on

Variational Equation
The statement of the weak form for the initial-boundary
value problem in the computational dom&rmay be stated as:

Given: f,B1,B2,Y,C,
Find: @(x,t) in QUQ, such that for all admissible weighting
functionsg, the following variational equation is satisfied,

M(@, @) +C(@, ¢) +K(@, ¢) =Fs(@) +Fr(9)  (46)
with,
— 1 —0?
M(®, @) :zfngcpy(zp (47)
C(o, @) ::/S%a‘;—? dsS +/r%5‘;—‘t" dr (48)

K(g, 9) := /QDcB- DedQ

y - a -
+/SE(pcpdS + ﬁ/rcp(pdr (49)
Fs(@) = /Q of O+ /S 6& ds (50)
_ © Mo Vl _
F@= 3 3 in /r PYamdl (51)

In the abovey,, satisfies the system of first-order differential
equations (34), driven by the modesn(R,t) computed from
(40). The constart is defined in (8).

Finite element discretization

To obtain a finite element approximation to the solution of
the variational equation (46), the domdnis discretized into a
finite number of subdomains (elements), and we apply the stan-
dard Galerkin semi-discrete approximation,

o(x,t) ~ @'(x,t) = N(x) @(t) (52)

whereN(x) is a row vector of standar@® basis functions with
compact support associated with each node,@hgis a time-
scontinuous column vector containing the nodal valueg'ofrhe
superscriph denotes a finite-dimensional basis. Using this ap-
proximation in (46), we arrive at the following system of second-
order ordinary differential equations in time:

M@(t) + Cot) + Kg(t) =F(t), t>0 (53)

90)=0, @0)=q, (54)

In the aboveM, C, andK are standard banded/sparse arrays as-
sociated with the finite element discretization of the wave equa-
tion and the locaB; operator; andF (t) = Fs+ Fr is the discrete
force vector composed of a standard load veBtgrand a part
associated with the auxiliary functions appearing in the radiation
boundary condition:

N m
Fr(t) = z Vrr:m,l(t) fnm (55)
n=N; m=—mo
where,
fam:= [ NT(8)yam(8) o (56)
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In (55), the functiomﬂml is the first element of the vector
array Vi, = {Vi; } Which is a solution to the system of first-
order differential equations (34) driven lgf(t) = fil.- @(t).

The radiation boundary condition only requires inner products of
harmonics and finite element basis functions with compact sup-
port within the boundary vectdr, .. As a result, the components

of the force vector are easy to compute, either at each node on

the radiation boundarly, or over each element on the boundary

and using standard element vector assembly. We note that the

implementation does not disturb in any way the symmetric, and

banded/sparse structure of the finite element matrix equations. In

practice, for real boundary condition data®nit may be advan-

tageous to use real instead of complex harmonics. In this case

the real harmonic is composed of the real and imaginary parts of
(12) with a modified normalization.

Furthermore, the harmoniggy(8) may be approximated by
a projection onto the finite-dimensional basis. In particular, the
harmonics may be approximated by the interpolamtgf using
the expansion,

Yom(8) ~ ¥"(8) = N(8) Yo, (57)

whereY,m = {ynmi}, | =1,2,---,Nr, is a vector containing
the nodal values of the harmonic defined oym) onT, i.e.,
Yomi = Ynm(6). Using this expansion in (55) we have,

N m
Fr(t) = % Z thm,l(t) Mr Yom (58)
n=N; m==ny
whereMr is theNr x Nr symmetric matrix,
Mr ::/ NT N dr (59)
r

This matrix may be diagonalized using nodal (Lobotto) quadra-
ture, so that the the matrix-vector multiply is reduced to an
inner-product. For a uniform mesh dn the work in com-
puting the inner products in (55) and (58) can be reduced by
an order of magnitude by use of the Fast Fourier Transform
(FFT) in two-dimensions, and fast spherical transform algo-
rithms (Mohlenkamp, 1998; Driscoll, 1997) in three-dimensions.
As discussed in (Thompson, 1999a), one time-integration
approach is to apply the explicit central difference method di-
rectly to (53). This method requires the forcing teFf =
F(t) at time stepty = kAt. Therefore, to update the solu-
tion d“*1 = @(ty,1), only the evaluation of,, = Vom(te) is
needed. To numerically solve (34) either the explicit second-
order Adams-Bashforth method or the the implicit second-order

7

Adams-Moulton method (trapezoidal rule) may be used. The
computational work required in solving is negligible, since the
matricesA,,, are banded, relatively small (usuaNy< 25), and
remain constant. Wheg < n, the work is further reduced.

An alternative approach is to apply the Newmark family of
algorithms (and variations such as HidJ4n predictor/corrector
form to the semidiscrete equations (53), see (Thompson, 1999a).
Any of the members of the Newmark family may be used, includ-
ing the second-order accurate and unconditionally stable trape-
zoidal rule, and conditionally stable central difference method.
When solving using the explicit central difference method, the
equations may be decoupled using standard diagonal Mass
and damping matrice@, e.g. using nodal quadrature, row-sum
technique, or the HRZ lumping scheme. The solution of the
Newmark algorithm requires the forcing teffft?, and there-
fore VKt In this case the value$:!, may be computed con-
currently using an explicit time-integrator applied to (34); e.g.,
the explicit second-order accurate Adams-Bashforth algorithm.
Complete algorithms for computing the solution concurrently
with auxiliary functions onl", using either implicit or explicit
time-integrators, are given in (Thompson, 1999a).

NUMERICAL EXAMPLES

Numerical examples are performed to study the accuracy of
the radiation boundary condition defined in (38). In the follow-
ing we denote the truncated boundary conditiorRBC1(N, P),
whereN defines the number of terms included in the truncated
series, andP < N defines the maximum number of equations, in-
cluded in the Cauchy problem (34). In particular, we define the
number of equationls, used in (34), for each moae< N, to be:
{lh=n, forn< P, andl, =P, forn > P}.

Transient Radiation from a Piston on a Sphere
Consider time-dependent radiation from a circular piston on
a sphere with radiua = 0.5, such that

®(a,0,t) = f(8) sinwt H(t), 0o<e<m (60)
whereH (t) is the unit-step (Heaviside) function and,
1, 0°<6<0,;
f(6) %,mwgez (61)
0, otherwise

For this example, we s€ = 15°, and®, = 30°. This prob-
lem is challenging because the waves radiated at the piston pole
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Figure 2. RADIATION FROM A PISTON ON A SPHERE WITH RADIUS
a = 0.5 AND FREQUENCY wa/Cc = Tt SOLUTION CONTOURS AT
STEADY-STATE, USING RBC1(20,20). RADIATION BOUNDARY [ SET
ATR/a= 175

0 = 0° are attenuated by a geometric spreading loss as they travel
along longitudes down to the south péle- 18C°.

Since the problem is independentnft is sufficient to com-
pute the solution in the domaid defined by the€r,8) plane for
a<r <R, and 0< 8 <1t The computational domai is dis-
cretized with a uniform mesh of standard 4-node bilinear axisym-
metric finite elements. The boundalry is positioned at three
different locations defined br/a = [1.25, 1.5, 1.75], with cor-
responding meshes {if0, 20, 30] x 240 elements evenly spaced
in the region(0.5<r < R) x (0< 6 < m. The computation
is driven from rest to steady-state with a normalized frequency
wa/c =1and a time stepit = 0.005.

For reference, Figure 2 shows contours of the numerical so-
lution using RBC1(20,20) positioned BYfa = 1.75, for a rep-
resentative time = 4, during steady-state. Figure 3 shows the
solution at the observation poiR/a = 1.75 and® = 18(°. In
this difficult region, the solution usinB; andB, exhibits large
spurious reflections, while the solution using RBC1(20,20) gives
accurate solutions.

The instantaneous error measuretlimorm on a spherical
boundary with radius = R, is defined as,

VAGURS

where @ is the approximate finite element solution aqds
the exact steady-state solution. The maximbugnerror over
a steady-state intervdl € (t1,t2) is computed fromEmax =
mad, <t<t, E(t).

1/2

E(t) (62)

Exact
B1
B2 4
RBC1(20,20)

solution

time

Figure 3. TIME-HISTORIES AT OBSERVATION POINT ON R/a =
1.75ANDO =TT

Figure 4 (Top) shows the maximum error for RBC1{, N)
measured on a sphere with radRs/a = 1.25, when the radia-
tion boundary condition is moved frofR/a = 1.25 to R/a =
1.75, andN, increasing from 0 to 20. We observe that the so-
lutions using RBCIN,N) converge to approximately the same
minimum error value for each truncation boundary position. This
limiting error is controlled primarily by the discretization of the
spherical harmonic transforms. With the number of grid points
on the boundaryNr = 240, andN = 20, we haveNr /N = 12
angular grid points/mode. As the truncation boundary is moved
further away from the source, the number of moteequired
to obtain a fixed level of accuracy is reduced. For example, for
R/a=1.25,N =20 terms are needed to converge, whereas, when
R/ais increased to 1.75, only = 9 terms are required. Figure 4
(Bottom) shows the maximum error using RBGI1P) for fixed
N = 20, and with variabl® < 20. These results show that accu-
rate solutions are obtained using a valu@aignificantly lower
thanN, with corresponding reduction in work and memory.

In particular, for the case where the truncation boundiary
is positioned close to the sour@®/a = 1.25), such thalN = 20
modes are needed to obtain accurate solutions,Rieb is suf-
ficient to converge to the same limiting error value, i.e. the error
in RBC1(20,20)~ RBC1(20,5). The total number of auxiliary
equations using the exact condition RBC1(20,2@ 18, while
RBC1(20,5) only requires 90 equations, a significant reduction.
In general, we observe thBt> N/2 is sufficient to approximate
the accuracy of the exact condition.
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Figure 4. RADIATION FROM PISTON ON A SPHERE OF RADIUS a =
0.5 AND FREQUENCY wa/C = TL MAXIMUM L ERROR DURING
STEADY-STATE MEASURED AT r /a = 1.25. RADIATION BOUNDARY
CONDITION APPLIED AT TRUNCATION BOUNDARY [T POSTIONED
AT R/a= 1.25,1.5,1.75 NUMERICAL SOLUTIONS USING (Top):
RBC1(N, N), (Bottom): RBC1(20, P)

Transient Scattering of a Plane Wave by a Cylinder

Consider a cylinder of radius= 1, on which we assume a
homogeneous Neumann boundary condition,

% _

T 0, onr=a (63)

Figure 5. SCATTERING FROM A CYLINDER WITH WAVE INCIDENT
FROM THE (B = T1) DIRECTION, AND NORMALIZED FREQUENCY
Wa/C = Tt SOLUTION CONTOURS AT STEADY-STATE (t = 15), Us-
ING RBC1(10,10) AND R/a=1.75

If @is the acoustic pressure, this condition represents a ‘rigid’
scatterer. Let the incident wave be represented by a traveling
plane wave along theaxis at speedg, i.e.,

i) _ [ sink(z—z) —wt], t > 2
oV = { Kk (64)
0, t<Zle

Herek = w/c, andz is the location of the plane wave at time

t = 0. The total fieldg(r,0,t) is composed of a superposition of
the incident wavep!) (zt) and a scattered wawg® (r,0,t), i.e.

o= ¢ +¢9. With the Neumann boundary condition (63), the
scattered field is a solution to the wave equation subject to the
boundary condition,

299 ag)

a o

= —kcosucoseH(t—%), onr=a (65)

andu=k(z—z,) — ut, z=acosb.
The two-dimensional computational domahc R ¢ R,
is discretized with a uniform mesh of standard 4-node bilinear
finite elements with 240 evenly spaced elements 1 @< 1L
The radiation boundary is placed at three different r&jia =
[1.25, 1.5, 1.75], with corresponding mesh 240[10, 20, 30].
The computation is driven from rest a8 = —2, to steady-state
with a normalized frequenaya/c = tand a time stepit = 0.01.
Contours for the scattered solution computed using
RBC1(10,10) positioned &/a = 1.75 are shown in Figure 5.
Figure 6 shows time-histories of the scattered solution on the ar-
tificial boundaryl” defined byR/a = 1.25, and® = 0. Results are
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Figure 6. SCATTERING OF PLANE WAVE FROM A CYLINDER. TIME-

HISTORIES ON THE ARTIFICIAL BOUNDARY I, AT 6 = 0. RESULTS 10° :

COMPARED FOR LOCAL OPERATORS Bj, Bz AND RBC1(N,P) ——  RleeL2s

—8— a=1.
WITHN =P =10. | —%—  Rla=1.75

compared using the local operat@&s B, and RBC110,10). At

8 = 0, the local operatorB; andB; exhibit significant spurious
reflection. In contrast, the solution using RBC1(10,10) matched
the exact solution very well.

Figure 7 shows the maximui, error during steady-state
measured on a cylinder with radiRs/a = 1.25. For this exam-
ple, we observe that the solutions using RBE1(0) converge
rapidly withN. As the radiation boundary is moved further away
from the source, the number of modisrequired to obtain a R e
fixed level of accuracy is reduced. FRfa = 1.25,N = 8 modes
are needed to converge. As the radiation boundary is moved fur- .

10 E

L2 Error: RBC1(8,P)

ther away from the scatterer ®/a = 1.25, then onlyN = 6 0 ' 2 i 4 ° ®
modes are needed. The maximum error using RBICR) for

fixed N = 8, and with variabld® < 6, is shown in Figure 7 (Bot_ Figure 7. SCATTERING OF A PLANE-WAVE FROM A CYLINDER.
tom). These results again show that the uniform approximation MAXIMUM L ERROR DURING STEADY-STATE MEASURED AT I'/a =
to the radiation condition is sufficiently accurate wih> N/2. 1.25. RADIATION BOUNDARY CONDITION APPLIED AT TRUNCATION

BOUNDARY [ POSTIONED AT R/a= 1.25, 1.5, 1.75. NUMERICAL
SOLUTIONS USING (Top): RBC1(N, 10), (Bottom): RBC1(8, P)
CONCLUSIONS
Asymptotic and exact local radiation boundary conditions
first derived by Hagstrom and Hariharan for the time-dependent tions similar to that used in (Grote, 1995b; Thompson, 1999a).
wave equation, are rederived based on the hierarchy of local A modified version similar to the formulation given in (Thomp-
boundary operators used by Bayliss and Turkel and a recursionson, 1999b) is also reported. The use of harmonics allows the
relation for the expansion coefficients appearing in the multi- boundary conditions to be implemented concurrently with stan-
pole expansion for wave harmonics. With this interpretation, we dard finite element methods without changing the symmetric and
reformulated the the sequence of local boundary conditions in banded/sparse structure of the matrix equations.
terms of harmonics and defined a radiation boundary condition In three-dimensions, with the number of equations in the
(RBC) involving a Cauchy problem for systems of first-order or- Cauchy problem equal to the mode number, this reformulation is
dinary differential equations for time-dependent auxiliary func- exact. If fewer equations are used, then the boundary conditions
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form uniform asymptotic approximations to the exact condition.
Several improvements over the exact non-reflecting boundary
conditions derived in (Grote, 1995b; Thompson, 1999a) have
been identified including a banded tri-diagonal coefficient ma-
trix for the auxiliary variables, and reduced memory and compu-
tational work needed to store and solve the auxiliary functions
for each harmonic. Furthermore, using the approach used to
derive the boundary conditions for the sphere, high-order ac-
curate asymptotic RBC's are formulated using Fourier modes
for efficient finite element implementation on a circle in two-
dimensions.

use of radially asymptotic boundary operatogmput. Meth-
ods Appl. Mech. Engr@5 (1991), pp. 311-348.

P. M. Pinsky, L. L. Thompson, and N. N. Abboud,
‘Local high-order radiation boundary conditions for the two-
dimensional time-dependent structural acoustics problem’,
Acoust. Soc. An@1(3), 1992, pp. 1320-1335.

M. J. Grote and J. B. Keller, ‘Exact non-reflecting boundary
conditions for the time dependent wave equatid/AM J. of
Appl. Math, 55 (1995), pp. 280-297.

M. J. Grote and J. B. Keller, ‘Nonreflecting boundary con-
ditions for time dependent scattering., of Comput. Phys127

Numerical studies are performed to assess the accuracy and(1996), pp. 52—65.

convergence properties of both the 2D and 3D versions of RBC's.
The results demonstrate that the new formulation has dramati-
cally improved accuracy for time domain simulations compared
to the first- and second-order local boundary operators of Bayliss
and Turkel. Furthermore, for the 3D case, the work in computing
the RBC may be reduced using the asymptotic version without
significantly impacting accuracy. Further details on the develop-
ment and formulation of the radiation boundary conditions with
several additional numerical examples are reported in (Thomp-
son, 1999d; Huan, 1999) in two- and three-dimensions, respec-
tively, both for individual harmonics, and radiation/scattering
problems involving an infinite number of modes.
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