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ABSTRACT
Asymptotic and exact local radiation boundary conditions

first derived by Hagstrom and Hariharan are reformulated as an
auxiliary Cauchy problem for linear first-order systems of ordi-
nary equations on the boundary for each harmonic on a circle or
sphere in two- or three-dimensions, respectively. With this re-
formulation, the resulting radiation boundary condition involves
first-order derivatives only and can be computed efficiently and
concurrently with standard semi-discrete finite element methods
for the near-field solution without changing the banded/sparse
structure of the finite element equations. In 3D, with the number
of equations in the Cauchy problem equal to the mode number,
this reformulation is exact. If fewer equations are used, then
the boundary conditions form uniform asymptotic approxima-
tions to the exact condition. Furthermore, using this approach,
we formulate accurate radiation boundary conditions for the two-
dimensional unbounded problem on a circle. Numerical studies
of time-dependent radiation and scattering are performed to as-
sess the accuracy and convergence properties of the boundary
conditions when implemented in the finite element method. The
results demonstrate that the new formulation has dramatically
improved accuracy and efficiency for time domain simulations
compared to standard boundary treatments.

INTRODUCTION
When modeling radiation from structures in an acoustic

medium which extends to infinity with a domain based compu-

�Corresponding author.

tational method such as the finite element method, the far-field
is truncated at an artificial boundary surrounding the source of
radiation. The impedance of the far-field is then represented on
this boundary by either radiation boundary conditions, infinite
elements, or absorbing sponge layers. Survey articles of various
boundary treatments are given in (Tsynkov, 1998). If accurate
boundary treatments are used, the finite computational region can
be reduced so that the truncation boundary is relatively close to
the radiator, and fewer elements than otherwise would be possi-
ble may be used, resulting in considerable savings in both cpu
time and memory. In the frequency domain, several accurate and
efficient methods for representing the impedance of the far-field
are well understood, including the Dirichlet-to-Neumann (DtN)
map (Keller, 1989; Grote, 1995a), and infinite elements (Burnett,
1994; Astley, 1998). However, efficient evaluation of accurate
boundary treatments for the time-dependent wave equation on
unbounded spatial domains has long been an obstacle for the de-
velopment of reliable solvers for time domain simulations. Ide-
ally, the artificial boundary would be placed as close as possible
to the source, and the radiation boundary treatment would be ca-
pable of arbitrary accuracy at a cost and memory not exceeding
that of the interior solver.

A standard approach is to apply local (differential) bound-
ary operators which annihilate leading terms in the radial multi-
pole expansion for outgoing wave solutions. A well known se-
quence of boundary conditions developed for a spherical trun-
cation boundary are the local operators derived by Bayliss and
Turkel (Bayliss, 1980). However, these and other approximate
local boundary conditions exhibit significant spurious reflection
for high-order wave harmonics, especially as the position of the
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truncation boundary approaches the source of radiation (Pinsky,
1991; Pinsky, 1992).

In recent years, new boundary treatments have been de-
veloped which dramatically improve both the accuracy and ef-
ficiency of time domain simulations compared to approximate
local radiation boundary conditions. In (Grote, 1995b; Grote,
1996), exact nonreflecting boundary conditions (NRBC) are de-
rived involving solution of an auxiliary Cauchy problem for lin-
ear first-order systems of time-dependent differential equations
on a spherical boundary for each harmonic. In (Thompson,
1999a), this NRBC is rederived based on direct application of
a result given in Lamb (Lamb, 1916), with improved scaling of
the first-order system of equations associated with the NRBC.
Formulation of the NRBC in standard semidiscrete finite ele-
ment methods with several alternative implicit and explicit time-
integrators is reported in (Thompson, 1999a; Thompson, 1999b).
In (Thompson, 1999b), a modified version of the exact NRBC
first derived in (Grote, 1996), is implemented in a finite element
formulation. In order to obtain a symmetric system, the NRBC
is reformulated with additional auxiliary variables on the trun-
cation boundary. The modified version may be viewed as an
extension of the second-order local boundary operator derived
by Bayliss and Turkel (Bayliss, 1980), and gives improved ac-
curacy when only a few harmonics are included in the spherical
expansion/transformation. In (Thompson, 1999c), a method is
described for calculating far field solutions concurrently with the
near-field solution based on the exact NRBC. At each discrete
time step, radial modes computed on a spherical artificial bound-
ary which drive the exact NRBC for the near-field solution, are
imposed concurrently as data for the radial wave equation in the
far-field. The radial grid is truncated at the far-field point of in-
terest with the modal form of the exact NRBC. The solution in
the far-field is then computed from an inverse spherical harmonic
transform of the radial modes.

Hagstrom and Hariharan (Hagstrom, 1998) have derived a
sequence of radiation boundary conditions involving first-order
differential equations in time and tangential derivatives of auxil-
iary functions on a circular or spherical boundary. They indicate
how these local conditions may be effectively implemented in a
finite difference scheme using only local tangential operators, but
at the cost of introducing a large number of auxiliary functions
at the boundary. Numerical experiments were conducted for a
model problem involving the Fourier modes of the wave equa-
tion in two-dimensions using a finite difference method. How-
ever, direct finite element implementation of this sequence in a
standard Galerkin variational equation would result in a nonsym-
metric system of equations.

In this paper we rederive the sequence of local boundary
conditions described in (Hagstrom, 1998) in terms of harmon-
ics and reformulate the recursive equations as a Cauchy prob-
lem involving systems of first-order ordinary differential equa-
tions on the boundary, similar to that used in (Grote, 1995b;
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Figure 1. ILLUSTRATION OF UNBOUNDED REGION R � Rd SUR-

ROUNDING A SCATTERER S . THE COMPUTATIONAL DOMAIN Ω �
R IS SURROUNDED BY A TRUNCATION BOUNDARY Γ OF RADIUS

R, WITH EXTERIOR REGION D = R �Ω.

Thompson, 1999a). A modified version similar to the formu-
lation given in (Thompson, 1999b) is also reported. The refor-
mulation is based on the hierarchy of local boundary operators
used by Bayliss and Turkel which satisfy truncations of the mul-
tipole expansion for each harmonic and a recursion relation for
the expansion coefficients. With this reformulation, the result-
ing radiation boundary conditions involves first-order derivatives
only, and as a result, may be implemented efficiently with stan-
dard semidiscrete finite element methods without changing the
symmetric and banded/sparse structure of the matrix equations.

INITIAL-BOUNDARY VALUE PROBLEM
We consider time-dependent scattering and radiation of

waves in an infinited-dimensional regionR � Rd, surrounding
an object with surfaceS . For computation, the unbounded region
R is truncated by an artificial boundaryΓ. We assume that the
hypersurfaceΓ is ad-dimensional ball of radiusk xxx k= R, i.e., a
sphere in three-dimensions (d= 3), or a circle in two-dimensions
(d=2). We then denote byΩ�R , the finite subdomain bounded
by ∂Ω = Γ[S , see Figure 1.

Within Ω, the solutionφ(xxx; t) : Ω� [0;T] 7! R, satisfies the
scalar wave equation,

1
c2

∂2φ
∂t2 = ∇2φ + f (xxx; t); xxx2Ω; t 2 [0;T] (1)
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with initial conditions,

φ(xxx;0) = φo(xxx); φ̇(xxx;0) = φ̇o(xxx); xxx2 Ω (2)

and driven by the time-dependent radiation boundary condition
on the surfaceS :

β1
∂φ
∂n

+β2
∂φ
∂t

+ γφ = g(xxx; t); xxx2 S ; t 2 [0;T] (3)

The wave speedc, andβ1;β2;γ are real, and we assumec>
0, andβ1;β2 � 0. The sourcef and initial dataφo and φ̇o are
assumed to be confined to the computational domainΩ, so that
in the exterior regionD = R �Ω, i.e., the infinite region outside
Γ, the scalar fieldφ(xxx; t) satisfies the homogeneous form of the
wave equation,

1
c2

∂2φ
∂t2 = ∇2φ; xxx2 D; t 2 [0;T] (4)

φ(xxx;0) = 0; φ̇(xxx;0) = 0; xxx2 Ω (5)

In the following, we introduce polar and spherical coordi-
nates(r;θθθ), whereθθθ = θ in two-dimensions andθθθ = (θ;ϕ) in
three-dimensions, respectively, such that the wave equation can
be written in separable form,

1
c2

∂2φ
∂t2 =

∂2φ
∂r2 +

2α
r

∂φ
∂r

+
1
r2 ∆Γφ (6)

where

∆Γφ =

8>><
>>:

∂2

∂θ2 ; d = 2

1
sinθ

∂
∂θ

�
sinθ

∂φ
∂θ

�
+

1

sin2 θ
∂2φ
∂ϕ2 ; d = 3

(7)

In the above, we have introduced the scaled dimensional
valueα = (d�1)=2, such that

α =

�
1=2; d = 2
1; d = 3

(8)

The general solution to (6) is given by the expansion,

φ(r;θ;ϕ; t) =

∞

∑
n=n0

m0

∑
m=�m0

φnm(r ; t) ynm(θθθ) (9)

n0 =

��∞; d = 2
0; d = 3

(10)

m0 =

�
0; d = 2
n; d = 3

(11)

and whereynm are orthogonal harmonics normalized onΓ:

ynm(θθθ) =

8>>>><
>>>>:

1p
2πR

exp(inθ); d = 2

s
(2n + 1)(n�jmj)!

4πR2(n + jmj)! Pjmj
n (cosθ)exp(imϕ); d = 3

(12)
The time-dependent modesφnm(r; t); r �R; t � 0 satisfy the

radial wave equation,

1
c2

∂2φnm

∂t2 =

�
∂2

∂r2 +
2α
r

∂
∂r
� n(n+2α�1)

r2

�
φnm (13)

φnm(r;0) = 0; φ̇nm(r;0) = 0; r � R (14)

For outgoing waves, the solution to (13) may be represented
by the multipole expansion:

φnm(r; t) =
K

∑
k=0

r�k�α φk
nm(r�ct) (15)

where

K =

�
∞; d = 2
n; d = 3

(16)

Substituting (15) into (13), we obtain the recursion relation
for the expansion coefficients:

�
φk

nm

�0

= ck
n φk�1

nm (17)

where

ck
n =

8>><
>>:

(k�1=2)2�n2

2k
; d = 2

k(k�1)�n(n+1)
2k

; d = 3

(18)
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Construction of Radiation Boundary Conditions
In the following, we derive high-order accurate radia-

tion boundary conditions suitable for numerical implementation,
based on the hierarchy of local operators used by Bayliss and
Turkel (Bayliss, 1980) which annihilate radial terms in the ex-
pansion (15). The local operators are easily constructed using a
product of radial derivatives:

Bj = Lj(Lj�1(� � � (L2(L1)))) (19)

Lj =

�
1
c

∂
∂t

+
∂
∂r

+
2( j�1)+α

r

�
(20)

However, the product formBpφnm, involves high order radial
derivatives which limits the orderj, which can be practically
used in a numerical method. Inspired by the local boundary con-
ditions of Hagstrom and Hariharan (Hagstrom, 1998), involving
a sequence of first-order equations in time with tangential deriva-
tives, we reformulate the Bayliss and Turkel boundary operators
as a recursive sequence involving first-order time derivatives only
for each mode. This sequence is then cast as a system of first-
order differential equations in time, for each harmonic, which
may be solved concurrently with the finite element equations.

In the following, we interpret the remainders of the Bayliss
and Turkel operators (19) acting on the multipole expansion (15)
as a sequence of functions with reduced radial order. We apply
B1 = L1 to the radial expansion (15), with the result,

B1φnm=

�
1
c

∂
∂t

+
∂
∂r

+
α
r

�
φnm= w1

nm (21)

The functionw1
nm defines the remainder of the radial expansion,

w1
nm(r; t) =

K

∑
k=1

�k r�k�1�αφk
nm (22)

As noted by Bayliss and Turkel,w1
nm(r; t) = O(r�2)φnm =

O(r�2�α). If we setw1
nm = 0, thenB1φnm = 0. Applying the

harmonic expansion to this result evaluated atr = R, gives,

B1φ = 0; on Γ (23)

which defines the first-order local boundary condition of Bayliss
and Turkel.

Applying the local operatorsLj ; j = 2; � � � to (22) will re-
duce the order of the remainder further. In general, applyingBj+1

to (15), we have by induction,

Bj+1φnm= Lj+1(Bjφnm) =

�
1
c

∂
∂t

+
∂
∂r

+
2 j +α

r

�
wj

nm= wj+1
nm

(24)
with wj

nm defined as,

wj
nm(r; t) =

K

∑
k= j

aj
k r�k� j�αφk

nm (25)

aj
k = (�1) j k(k�1) � � �(k� ( j�1)) = (�1) j k!

(k� j)!
(26)

We note,wj
nm(r; t) = O(r�2 j)φnm= O(r�2 j�α).

For j = 1;2; � � � ; ln we eliminate radial derivatives in (24) in
favor of a recursive sequence forwj

nm. To this end we rewrite,

Lj+1(w
j
nm) =

�
1
c

∂
∂t

+
∂
∂r

+
2 j +α

r

�
wj

nm= wj+1
nm ; (27)

as,

1
c

∂wj
nm

∂t
=

1
2

wj+1
nm � j

r
wj

nm�
1
2

�
∂
∂r

+
α
r
� 1

c
∂
∂t

�
wj

nm (28)

Now consider the last term in the brackets,

�
∂
∂r

+
α
r
� 1

c
∂
∂t

�
wj

nm=

K

∑
k= j

aj
kr

�k� j�α
n

2(φk
nm)

0� (k+ j)r�1φk
nm

o
(29)

Substituting the recursion relation for(φk
nm)

0 given in (17),
and the definition foraj

k given in (26), into (29) leads to,

�
∂
∂r

+
α
r
� 1

c
∂
∂t

�
wj

nm=�2 j c j
n

r2 wj�1
nm (30)

Using this key result in (28) defines the following recursive
sequence for the functionswj

nm(r; t); j = 1;2; � � � ; ln:

1
c

∂wj
nm

∂t
=

j c j
n

r2 wj�1
nm � j

r
wj

nm+
1
2

wj+1
nm (31)
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with w0
nm= φnm.

Rescaling the variables by 21� j , applying the harmonic ex-
pansion to (21) and (31), leads to the sequence of local ra-
diation boundary conditions given in Hagstrom and Hariharan
(Hagstrom, 1998) involving the tangential derivatives defined in
(7). While these conditions can be effectively implemented in
a finite difference scheme (Hagstrom, 1998), direct finite ele-
ment implementation in a standard Galerkin variational equation
would result in a nonsymmetric system of equations. To address
this difficulty, we recognize that when evaluated on the artificial
boundary atr =R, the sequence (31) forms a system of first-order
ordinary differential equations in time for the auxiliary functions,

vj
nm(t) = 21� j wj

nm(R; t) (32)

Here we setvvvnm(t) = f21� j wj
nm(R; t)g; j = 1;2; � � � ln, and define

a time-dependent vector function of orderln,

vvvnm(t) = [v1
nm(t) ; v2

nm(t) ; � � � ; vln
nm(t)]

T (33)

We then write the system of equations defined by (31) as a first-
order matrix differential equation for each harmonic:

d
dt

vvvnm(t) = AAAnvvvnm(t) + bbbn φnm(R; t) (34)

with constantln� ln, tri-diagonal matrixAAAn = fAi j
n g,

Ai j
n =

c
R

8>><
>>:

R if i = j � 1
�i if i = j
ici

n=2R if i = j + 1
0 otherwise

(35)

The constant vectorbbbn = fbj
ng is defined by:

bbbn =

8>><
>>:

(1�4n2)c
8R2 eee1; d = 2

�n(n+1)c
2R2 eee1; d = 3

(36)

whereeee1 is the unit vector,

eee1 = [1; 0; : : : ; 0]T (37)

We then define the radiation boundary condition by taking
the harmonic expansion of (21) and evaluating on the truncation

boundary atr = R:

�
1
c

∂
∂t

+
∂
∂r

+
α
r

�
φ =

∞

∑
n=n1

m0

∑
m=�m0

v1
nm(t)ynm(θθθ); on Γ (38)

where

n1 =

��∞; d = 2
1; d = 3

(39)

In the above, the functionv1
nm(t) = w1

nm(R; t) satisfies the
Cauchy problem for each harmonic defined by the first-order ma-
trix system (34), with initial conditionvvvnm(0) = 0, and driven by
the radial modes defined by the harmonic transform,

φnm(R; t) =
Z

Γ
y�nm(θθθ)φ(R;θθθ; t)dΓ (40)

where

dΓ =

�
Rdθ; d = 2
R2 sinθdθdϕ; d = 3

(41)

Here, the star indicates complex conjugate.
In three-dimensions, when the number of functionsvj

nm(t)
included in the system (34) is equal to the number of harmonics
in the solution, i.e. ln = n, thenvn+1

nm (t) = 0, and the bound-
ary condition is exact and is equivalent to the exact nonreflect-
ing boundary conditions derived in (Grote, 1995b; Thompson,
1999a). This result follows from the finite expansion (15),
with the index defined over the finite rangek = 0; 1; � � � ; n.
We also note that the auxiliary functions satisfy the property,
vj+1

nm = O(R�2)vj
nm, so thatvj+1

nm < vj
nm, andvj

nm = O(R�2 j�α).
Therefore, if fewer equations are used, i.e.ln < n, then the three-
dimensional boundary condition forms a uniform asymptotic ap-
proximation to the exact condition. In two-dimensions, the ex-
pansion (15) ranges over an infinite number of multipoles, so that
for a finite valueln, the boundary condition also forms a uniform
asymptotic approximation. We note several advantages of the
radiation boundary condition (38) compared to the nonreflect-
ing boundary conditions derived in (Grote, 1995b; Thompson,
1999a), including a banded tri-diagonal coefficient matrixAAAn, the
avoidance of an additional vector inner product to compute the
functionv1

nm(t), and the implementation as a uniform approxima-
tion to the exact condition, with corresponding reduced memory
and computational work.

In practice, the infinite sum overn in (38) is truncated at a
finite valueN:

B1 φ =

N

∑
n=N1

m0

∑
m=m0

v1
nmynm (42)
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where

N1 =

��N; d = 2
1; d = 3

(43)

For n> N, then the boundary condition reverts to the first-order
local boundary condition,B1φ = 0. To improve the approxi-
mation to the truncated harmonicsn > N, without affecting the
modesn � N, we define a modified boundary condition using
(24) for j = 1, andr = R:

B2 φ =

N

∑
n=N2

m0

∑
m=m0

2v2
nm(t)ynm(θθθ); on Γ (44)

where

N2 =

��N; d = 2
2; d = 3

(45)

In the above, the functionv2
nm(t) =w2

nm(R; t)=2 satisfies the same
first-order matrix system (34), for each harmonic (40). This
modified boundary condition may be implemented in the finite
element method using the procedures described in (Thompson,
1999b).

FINITE ELEMENT FORMULATION
In the following, we give the finite element formulation for

the initial-boundary value problem within the bounded regionΩ,
supplemented by the radiation boundary condition (38) onΓ.

Variational Equation
The statement of the weak form for the initial-boundary

value problem in the computational domainΩ may be stated as:

Given: f ; β1 ; β2 ; γ ; c,
Find: φ(xxx; t) in Ω[ ∂Ω, such that for all admissible weighting
functionsφ̄, the following variational equation is satisfied,

M(φ̄ ; φ)+C(φ̄ ; φ)+K(φ̄ ; φ) = FS(φ̄)+FΓ(φ̄) (46)

with,

M(φ̄ ; φ) :=
Z

Ω

1
c2 φ̄

∂2φ
∂t2 dΩ (47)

C(φ̄ ; φ) :=
Z

S

β2

β1
φ̄

∂φ
∂t

dS +

Z
Γ

1
c

φ̄
∂φ
∂t

dΓ (48)

K(φ̄ ; φ) :=
Z

Ω
∇φ̄ �∇φ dΩ

+

Z
S

γ
β1

φ̄φ dS +
α
R

Z
Γ

φ̄φ dΓ (49)

FS(φ̄) :=
Z

Ω
φ̄ f dΩ+

Z
S

φ̄
g
β1

dS (50)

FΓ(φ̄) :=
∞

∑
n=n1

m0

∑
m=�m0

v1
nm

Z
Γ

φ̄ynm dΓ (51)

In the above,v1
nm satisfies the system of first-order differential

equations (34), driven by the modesφnm(R; t) computed from
(40). The constantα is defined in (8).

Finite element discretization
To obtain a finite element approximation to the solution of

the variational equation (46), the domain̄Ω is discretized into a
finite number of subdomains (elements), and we apply the stan-
dard Galerkin semi-discrete approximation,

φ(xxx; t)� φh(xxx; t) = NNN(x)φφφ(t) (52)

whereNNN(xxx) is a row vector of standardCo basis functions with
compact support associated with each node, andφφφ(t) is a time-
continuous column vector containing the nodal values ofφh. The
superscripth denotes a finite-dimensional basis. Using this ap-
proximation in (46), we arrive at the following system of second-
order ordinary differential equations in time:

MMMφ̈φφ(t) + CCCφ̇φφ(t) + KKKφφφ(t) = FFF(t); t > 0 (53)

φφφ(0) = φφφo; φ̇φφ(0) = φ̇φφo (54)

In the above,MMM, CCC, andKKK are standard banded/sparse arrays as-
sociated with the finite element discretization of the wave equa-
tion and the localB1 operator; andFFF(t) =FFFS+FFFΓ is the discrete
force vector composed of a standard load vectorFFFS and a part
associated with the auxiliary functions appearing in the radiation
boundary condition:

FFFΓ(t) =
N

∑
n=N1

m

∑
m=�mo

vh
nm;1(t) fff nm (55)

where,

fff nm :=
Z

Γ
NNNT(θθθ)ynm(θθθ) dΓ (56)
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In (55), the functionvh
nm;1 is the first element of the vector

arrayvvvh
nm = fvh

nm; jg which is a solution to the system of first-

order differential equations (34) driven byφh
nm(t) = fff �T

nm � φφφ(t).
The radiation boundary condition only requires inner products of
harmonics and finite element basis functions with compact sup-
port within the boundary vectorfff nm. As a result, the components
of the force vector are easy to compute, either at each node on
the radiation boundaryΓ, or over each element on the boundary
and using standard element vector assembly. We note that the
implementation does not disturb in any way the symmetric, and
banded/sparse structure of the finite element matrix equations. In
practice, for real boundary condition data onS , it may be advan-
tageous to use real instead of complex harmonics. In this case
the real harmonic is composed of the real and imaginary parts of
(12) with a modified normalization.

Furthermore, the harmonicsynm(θθθ) may be approximated by
a projection onto the finite-dimensional basis. In particular, the
harmonics may be approximated by the interpolant ofynm, using
the expansion,

ynm(θθθ)� yh
(θθθ) = NNN(θθθ)yyynm (57)

whereyyynm = fynm;lg; l = 1; 2; � � � ; NΓ, is a vector containing
the nodal values of the harmonic defined by(n;m) on Γ, i.e.,
ynm;l = ynm(θθθl ). Using this expansion in (55) we have,

FFFΓ(t) =
N

∑
n=N1

m

∑
m=�m0

vh
nm;1(t) MMMΓ yyynm (58)

whereMMMΓ is theNΓ�NΓ symmetric matrix,

MMMΓ :=
Z

Γ
NNNT NNN dΓ (59)

This matrix may be diagonalized using nodal (Lobotto) quadra-
ture, so that the the matrix-vector multiply is reduced to an
inner-product. For a uniform mesh onΓ, the work in com-
puting the inner products in (55) and (58) can be reduced by
an order of magnitude by use of the Fast Fourier Transform
(FFT) in two-dimensions, and fast spherical transform algo-
rithms (Mohlenkamp, 1998; Driscoll, 1997) in three-dimensions.

As discussed in (Thompson, 1999a), one time-integration
approach is to apply the explicit central difference method di-
rectly to (53). This method requires the forcing termFFFk =

FFF(tk) at time steptk = k∆t. Therefore, to update the solu-
tion dddk+1

= φφφ(tk+1), only the evaluation ofvvvk
nm = vvvnm(tk) is

needed. To numerically solve (34) either the explicit second-
order Adams-Bashforth method or the the implicit second-order

Adams-Moulton method (trapezoidal rule) may be used. The
computational work required in solving is negligible, since the
matricesAAAn, are banded, relatively small (usuallyN � 25), and
remain constant. Whenln < n, the work is further reduced.

An alternative approach is to apply the Newmark family of
algorithms (and variations such as HHT-α) in predictor/corrector
form to the semidiscrete equations (53), see (Thompson, 1999a).
Any of the members of the Newmark family may be used, includ-
ing the second-order accurate and unconditionally stable trape-
zoidal rule, and conditionally stable central difference method.
When solving using the explicit central difference method, the
equations may be decoupled using standard diagonal massMMM,
and damping matricesCCC, e.g. using nodal quadrature, row-sum
technique, or the HRZ lumping scheme. The solution of the
Newmark algorithm requires the forcing termFFFk+1, and there-
fore vvvk+1

nm . In this case the valuevvvk+1
nm , may be computed con-

currently using an explicit time-integrator applied to (34); e.g.,
the explicit second-order accurate Adams-Bashforth algorithm.
Complete algorithms for computing the solution concurrently
with auxiliary functions onΓ, using either implicit or explicit
time-integrators, are given in (Thompson, 1999a).

NUMERICAL EXAMPLES
Numerical examples are performed to study the accuracy of

the radiation boundary condition defined in (38). In the follow-
ing we denote the truncated boundary condition byRBC1(N;P),
whereN defines the number of terms included in the truncated
series, andP�N defines the maximum number of equations, in-
cluded in the Cauchy problem (34). In particular, we define the
number of equationsln, used in (34), for each moden�N, to be:
fln = n; for n< P; andln = P; for n� Pg.

Transient Radiation from a Piston on a Sphere
Consider time-dependent radiation from a circular piston on

a sphere with radiusa= 0:5, such that

φ(a;θ; t) = f (θ) sinωt H(t); 0� θ� π (60)

whereH(t) is the unit-step (Heaviside) function and,

f (θ) =

8>>>><
>>>>:

1; 0o � θ� θ1

cosθ�cosθ2

cosθ1�cosθ2
; θ1 < θ� θ2

0; otherwise

(61)

For this example, we setθ1 = 15o, andθ2 = 30o. This prob-
lem is challenging because the waves radiated at the piston pole

7 Copyright  1999 by ASME



Figure 2. RADIATION FROM A PISTON ON A SPHERE WITH RADIUS

a = 0:5 AND FREQUENCY ωa=c = π. SOLUTION CONTOURS AT

STEADY-STATE, USING RBC1(20,20). RADIATION BOUNDARY Γ SET

AT R=a= 1:75.

θ = 0o are attenuated by a geometric spreading loss as they travel
along longitudes down to the south poleθ = 180o.

Since the problem is independent ofϕ, it is sufficient to com-
pute the solution in the domainΩ defined by the(r;θ) plane for
a� r � R, and 0� θ � π. The computational domainΩ is dis-
cretized with a uniform mesh of standard 4-node bilinear axisym-
metric finite elements. The boundaryΓ, is positioned at three
different locations defined byR=a= [1:25; 1:5; 1:75], with cor-
responding meshes of[10; 20; 30]�240 elements evenly spaced
in the region(0:5 � r � R)� (0 � θ � π). The computation
is driven from rest to steady-state with a normalized frequency
ωa=c= π and a time step∆t = 0:005.

For reference, Figure 2 shows contours of the numerical so-
lution using RBC1(20,20) positioned atR=a = 1:75, for a rep-
resentative timet = 4, during steady-state. Figure 3 shows the
solution at the observation pointR=a = 1:75 andθ = 180o. In
this difficult region, the solution usingB1 andB2 exhibits large
spurious reflections, while the solution using RBC1(20,20) gives
accurate solutions.

The instantaneous error measured inL2 norm on a spherical
boundary with radiusr = Ro is defined as,

E(t) =

�Z
Γ

�
φh�φ

�2
dΓ
�1=2

(62)

where φh is the approximate finite element solution andφ is
the exact steady-state solution. The maximumL2 error over
a steady-state intervalt 2 (t1 ; t2) is computed fromEmax =

maxt1�t�t2 E(t).
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Figure 3. TIME-HISTORIES AT OBSERVATION POINT ON R=a =

1:75, AND θ = π.

Figure 4 (Top) shows the maximumL2 error for RBC1(N;N)
measured on a sphere with radiusRo=a= 1:25, when the radia-
tion boundary condition is moved fromR=a = 1:25 to R=a =

1:75, andN, increasing from 0 to 20. We observe that the so-
lutions using RBC1(N;N) converge to approximately the same
minimum error value for each truncation boundary position. This
limiting error is controlled primarily by the discretization of the
spherical harmonic transforms. With the number of grid points
on the boundary,NΓ = 240, andN = 20, we haveNΓ=N = 12
angular grid points/mode. As the truncation boundary is moved
further away from the source, the number of modesN required
to obtain a fixed level of accuracy is reduced. For example, for
R=a= 1:25,N= 20 terms are needed to converge, whereas, when
R=a is increased to 1.75, onlyN = 9 terms are required. Figure 4
(Bottom) shows the maximum error using RBC1(N;P) for fixed
N = 20, and with variableP� 20. These results show that accu-
rate solutions are obtained using a value ofP significantly lower
thanN, with corresponding reduction in work and memory.

In particular, for the case where the truncation boundaryΓ
is positioned close to the source(R=a= 1:25), such thatN = 20
modes are needed to obtain accurate solutions, thenP= 5 is suf-
ficient to converge to the same limiting error value, i.e. the error
in RBC1(20,20)� RBC1(20,5). The total number of auxiliary
equations using the exact condition RBC1(20,20) is210, while
RBC1(20,5) only requires 90 equations, a significant reduction.
In general, we observe thatP� N=2 is sufficient to approximate
the accuracy of the exact condition.
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Figure 4. RADIATION FROM PISTON ON A SPHERE OF RADIUS a=

0:5 AND FREQUENCY ωa=c = π. MAXIMUM L2 ERROR DURING

STEADY-STATE MEASURED AT r=a= 1:25. RADIATION BOUNDARY

CONDITION APPLIED AT TRUNCATION BOUNDARY Γ POSTIONED

AT R=a = 1:25; 1:5; 1:75. NUMERICAL SOLUTIONS USING (Top):

RBC1(N;N), (Bottom): RBC1(20;P)

Transient Scattering of a Plane Wave by a Cylinder

Consider a cylinder of radiusa= 1, on which we assume a
homogeneous Neumann boundary condition,

∂φ
∂r

= 0; on r = a (63)

Figure 5. SCATTERING FROM A CYLINDER WITH WAVE INCIDENT

FROM THE (θ = π) DIRECTION, AND NORMALIZED FREQUENCY

ωa=c= π. SOLUTION CONTOURS AT STEADY-STATE (t = 15), US-

ING RBC1(10,10) AND R=a= 1:75

If φ is the acoustic pressure, this condition represents a ‘rigid’
scatterer. Let the incident wave be represented by a traveling
plane wave along thez-axis at speedc, i.e.,

φ(i) =
�

sin[k(z�zo)�ωt]; t � z�zo
c

0; t < z�zo
c

(64)

Herek = ω=c, andzo is the location of the plane wave at time
t = 0. The total fieldφ(r;θ; t) is composed of a superposition of
the incident waveφ(i)(z; t) and a scattered waveφ(s)(r;θ; t), i.e.
φ = φ(i)+φ(s). With the Neumann boundary condition (63), the
scattered field is a solution to the wave equation subject to the
boundary condition,

∂φ(s)

∂r
=�∂φ(i)

∂r
=�k cosu cosθH(t� z�zo

c
); on r = a (65)

andu= k(z�zo)�ωt, z= a cosθ.
The two-dimensional computational domainΩ � R � R2,

is discretized with a uniform mesh of standard 4-node bilinear
finite elements with 240 evenly spaced elements in 0� θ � π.
The radiation boundary is placed at three different radiiR=a =

[1:25; 1:5; 1:75], with corresponding mesh 240� [10; 20; 30].
The computation is driven from rest atzo = �2, to steady-state
with a normalized frequencyωa=c= π and a time step∆t = 0:01.

Contours for the scattered solution computed using
RBC1(10,10) positioned atR=a = 1:75 are shown in Figure 5.
Figure 6 shows time-histories of the scattered solution on the ar-
tificial boundaryΓ defined byR=a= 1:25, andθ = 0. Results are
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Figure 6. SCATTERING OF PLANE WAVE FROM A CYLINDER. TIME-

HISTORIES ON THE ARTIFICIAL BOUNDARY Γ, AT θ = 0. RESULTS

COMPARED FOR LOCAL OPERATORS B1, B2 AND RBC1(N;P)
WITH N = P= 10.

compared using the local operatorsB1, B2 and RBC1(10;10). At
θ = 0, the local operatorsB1 andB2 exhibit significant spurious
reflection. In contrast, the solution using RBC1(10,10) matched
the exact solution very well.

Figure 7 shows the maximumL2 error during steady-state
measured on a cylinder with radiusRo=a= 1:25. For this exam-
ple, we observe that the solutions using RBC1(N;10) converge
rapidly withN. As the radiation boundary is moved further away
from the source, the number of modesN required to obtain a
fixed level of accuracy is reduced. ForR=a= 1:25,N = 8 modes
are needed to converge. As the radiation boundary is moved fur-
ther away from the scatterer toR=a = 1:25, then onlyN = 6
modes are needed. The maximum error using RBC1(N;P) for
fixedN = 8, and with variableP� 6, is shown in Figure 7 (Bot-
tom). These results again show that the uniform approximation
to the radiation condition is sufficiently accurate withP� N=2.

CONCLUSIONS
Asymptotic and exact local radiation boundary conditions

first derived by Hagstrom and Hariharan for the time-dependent
wave equation, are rederived based on the hierarchy of local
boundary operators used by Bayliss and Turkel and a recursion
relation for the expansion coefficients appearing in the multi-
pole expansion for wave harmonics. With this interpretation, we
reformulated the the sequence of local boundary conditions in
terms of harmonics and defined a radiation boundary condition
(RBC) involving a Cauchy problem for systems of first-order or-
dinary differential equations for time-dependent auxiliary func-
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Figure 7. SCATTERING OF A PLANE-WAVE FROM A CYLINDER.

MAXIMUM L2 ERROR DURING STEADY-STATE MEASURED AT r=a=

1:25. RADIATION BOUNDARY CONDITION APPLIED AT TRUNCATION

BOUNDARY Γ POSTIONED AT R=a= 1:25; 1:5; 1:75. NUMERICAL

SOLUTIONS USING (Top): RBC1(N;10), (Bottom): RBC1(8;P)

tions similar to that used in (Grote, 1995b; Thompson, 1999a).
A modified version similar to the formulation given in (Thomp-
son, 1999b) is also reported. The use of harmonics allows the
boundary conditions to be implemented concurrently with stan-
dard finite element methods without changing the symmetric and
banded/sparse structure of the matrix equations.

In three-dimensions, with the number of equations in the
Cauchy problem equal to the mode number, this reformulation is
exact. If fewer equations are used, then the boundary conditions
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form uniform asymptotic approximations to the exact condition.
Several improvements over the exact non-reflecting boundary
conditions derived in (Grote, 1995b; Thompson, 1999a) have
been identified including a banded tri-diagonal coefficient ma-
trix for the auxiliary variables, and reduced memory and compu-
tational work needed to store and solve the auxiliary functions
for each harmonic. Furthermore, using the approach used to
derive the boundary conditions for the sphere, high-order ac-
curate asymptotic RBC’s are formulated using Fourier modes
for efficient finite element implementation on a circle in two-
dimensions.

Numerical studies are performed to assess the accuracy and
convergence properties of both the 2D and 3D versions of RBC’s.
The results demonstrate that the new formulation has dramati-
cally improved accuracy for time domain simulations compared
to the first- and second-order local boundary operators of Bayliss
and Turkel. Furthermore, for the 3D case, the work in computing
the RBC may be reduced using the asymptotic version without
significantly impacting accuracy. Further details on the develop-
ment and formulation of the radiation boundary conditions with
several additional numerical examples are reported in (Thomp-
son, 1999d; Huan, 1999) in two- and three-dimensions, respec-
tively, both for individual harmonics, and radiation/scattering
problems involving an infinite number of modes.
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