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ABSTRACT

Exact Dirichlet-to-Neumann (DtN) radiation boundary con-
ditions are derived in elliptic and spheroidal coordinates and for-
mulated in a finite element method for the Helmholtz equation
in unbounded domains. The DtN map matches the first N wave
harmonics exactly at the artificial boundary. The use of elliptic

and spheroidal boundaries enables the efficient solution of scat-

tering from elongated objects in two- and three- dimensions re-
spectively. Modified DtN conditions based on first and second
order local boundary operators are also derived in elliptic and
spheroidal coordinates, in a form suitable for finite element im-
plementation. The modified DtN conditions are more accurate
than the DtN boundary condition, yet require no extra memory
and little extra cost. Direct implementation involves non-local

spatial integrals leading to a dense, fully populated submatrix.
A matrix-free interpretation of the non-local DtN map for ellip-

tic and spheroidal boundaries, suitable for iterative solution of
the resulting complex-symmetric system is described. For both
the DtN and modified DtN conditions, we describe efficient and
effective SSOR preconditioners with Eisenstat’s trick based on
the matrix partition associated with the interior mesh and local
boundary operator. Numerical examples of scattering from ellip-
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INTRODUCTION

When modeling radiation and scattering from structures in a
medium which extends to infinity with a domain based compu-
tational method such as the finite element method, the far-field
is truncated at an artificial boundary surrounding the source of
radiation. The impedance of the far-field is then represented on
this boundary by either radiation boundary conditions, infinite
elements, or absorbing sponge layers. Survey articles of various
boundary treatments are given in (Tsynkov, 1998). If accurate
boundary treatments are used, the finite computational region can
be reduced so that the truncation boundary is relatively close to
the radiator, and fewer elements than otherwise would be possi-
ble may be used, resulting in considerable savings in both cpu
time and memory.

For time-harmonic scattering governed by the Helmholtz
equation, several accurate and efficient methods for represent-
ing the impedance of the far-field are well understood, including
the Dirichlet-to-Neumann (DtN) map on a circular or spherical
boundary (Pearson, 1989; Keller, 1989; Harari, 1992), and infi-
nite elements (Burnett, 1994; Astley, 1998). The DtN map re-
lates Dirichlet to Neumann data and matches the first N wave
harmonics exactly at the artificial boundary. DtN conditions in

tic and spheroidal boundaries are computed to demonstrate thecYlindrical and spherical coordinates are derived in (Pearson,
efficiency and accuracy of the boundary treatments for elongated 1989; Keller, 1989). In (Thompson, 1994), and independently

structures.

*Corresponding author.

in (Grote, 1995), exact DtN radiation conditions were first con-

structed for elliptic and spheroidal boundaries. The use of el-
liptic and spheroidal boundaries enables the efficient solution
of scattering from elongated objects in two- and three- dimen-
sions respectively. Finite difference implementations of both the
DtN and modified DtN based on first and second order operators
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which annihilate radial terms in a generalized multipole expan-
sion are given in (Grote, 1995). Numerical results using the DtN
condition in the finite element method on elliptical boundaries
are reported in (Ben-Porat, 1995).

In this paper, we derive modified DtN conditions based on
first and second order local radiation boundary conditions for el-
liptic and spheroidal boundaries in a form suitable for finite ele-
ment implementation using standatf regularity on the radia-
tion boundary. The modified DtN conditions are more accurate
than the DtN boundary condition, yet require no extra memory Figure 1. ILLUSTRATION OF UNBOUNDED REGION R € RY SUR-
and little extra cost. Direct implementation in the finite element ROUNDING A SCATTERER S. THE COMPUTATIONAL DOMAIN Q C
method involves non-local spatial integrals leading to a dense, R 1S SURROUNDED BY AN ELLIPTIC OR SPHEROIDAL BOUNDARY
fully populated submatrix. When the problem size is large, the I wiTH EXTERIORREGIOND =R — Q.
computational cost associated with the storage and factorization
becomes expensive. A matrix-free interpretation of the non-local
DtN map for elliptic and spheroidal boundaries, suitable for iter- and supplemented by a nonreflecting boundary condition
ative solution is described based on extensions of the procedures
given in (Malhotra, 1996; Oberai, 1998) for circular and spheri- 0
cal DtN maps. For both the DtN and modified DtN conditions for i
elliptic and spheroidal boundaries, we show how the SSOR pre-
conditioner with Eisenstat’s trick based on the matrix partition
associated with the discretization of the interior mesh and local
boundary operator provides an efficient and effective precondi-
tioner for the resulting complex-symmetric system. Numerical
examples of scattering from elliptic and spheroidal objects are . ) .

. : fined onS. The source is assumed to be confined to the com-
computed and compared to analytical solutions to demonstrate putational domaif®, so that in the exterior regiod = R — Q,

the efficiency and accuracy of the boundary treatments for elon- R . : . .
gated structures. i.e., the infinite region outside, the scalar field(x) satisfies the

homogeneous form of the Helmholtz equation,

r

M(p), xel (3)

The operatoM exactly represents the exterior impedance on the
boundary, such that the solution satisfies the Sommerfeld radi-
ation condition at infinity.

Herek is the wavenumber, arfly andg are functions de-

Do+ k@e=0 xeD (4)
THE EXTERIOR BOUNDARY-VALUE PROBLEM

We consider time-harmonic scattering and radiation of The pDtN on Prolate Spheroidal Boundaries

waves in an infinitel = 2 ord = 3 -dimensional regioR C R, In three-dimensions, we introduce prolate spheroidal coor-
surrounding an object with surfae For computation, the un-  ginatesx = X(14,6,0), 0< 8 < 1, and 0< ¢ < 21, such that
bounded regioR is truncated by an artificial boundary We - -

assume thdt is a surface defined by separable coordinates, i.e.,

an ellipse in two-dimensiongl(= 2), or a prolate spheroid in x = bsinBcosp (5)
three-dimensiongd(= 3). We then denote b C R, the finite y = bsinBsing (6)
subdomain bounded B0 =T US, see Figure 1. 7= acosh 7)
Within Q, the solutionp(x) : Q — C, satisfies the Helmholtz
equation,
a= fcoshy, b = f sinhu (8)
Do+ ko= —f(x), XxeQ 1)

wherea andb are the semimajor and semiminor axis of an ellipse
respectively, and = v/aZ —b? is the semi-interfocal distance.
The spheroid is defined by a constant valug,ofvith an ellipse
revolving around the majar-axis. Alternatively, the spheroid
90 may be parameterized by= x(§,n,¢), where§ = coshy, and
B, YO =9(), X€S 2 n = cosd, so thata= &, andb= f/E2— 1.

subject to an impedance condition on the surface
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The metrics for a prolate coordinate system are given by,

he = /(€2 -n?)/(E2-1) (©)
hy = f1/(€2—12)/(1-n?) (10)
hy = f1/(1-n?)(€2-1) (11)

In prolate spheroidal coordinates the Helmholtz equation (4)
may be written as,

62
f(&2— 1)622+2fé E+Ar+k2h§hnh¢}<p:o (12)
where
d [hshy 0 hghy, 92
Ar@i= NeNg 0@ | Nely (g (13)
on hq on hy 06
is the surface Laplacian, and
f(g2—1) = Cr
hg

We choose the artificial boundayto be a prolate spheroid
defined by a constant radial coordin&ige= coshuy. The so-
lution to the exterior radiation problem in the regigrn> &, =

coshy, can be expressed as an expansion in terms of orthogonal

eigenfunctions:

+ Rmn(c,€)
Z) Rmn (?E.O

+bmnwmn(C,n,¢)}

oE&n, ) = {amnWin(c,n, )

(14)

wherec = kf is a normalized wavenumber, afhn(c,§) are
the radial prolate spheroidal wave functions of the third kind
(Abramowitz,1968; Flammer, 1957). In (14), the prime after the
sum indicates that terms with = 0 are multiplied by 1/2.

The orthogonal eigenfunctions are defined by,

C . 1
Uin(©10) = —=Sm(cjcosmp  (15)
s ) 1 .

whereSnn(c, &) are the angular prolate spheroidal wave functions
of the first kind, and

m rl
:/;T[/;1 ®&o,n,b) lIJan(C,I’],(b) dndéd (17)

bmn

)= [ [ eEono)uicne) ande  8)

In the above we have used the standard normalization used by
Flammer (Flammer, 1957):

(I +2m)!
23 5

Nimn ( mn)2

+2m+ 1)l (19)

whered™(c) are the coefficients in the expansion for the angular
functionsSyn(c,n) in terms of associated Legendre functions. In
(19), the prime on the summation sign indicates that the summa-
tion is carried out for evehwhen(n—m) is even and for odd
when(n—m) is odd.

To derive the DtN map relating Dirichlet data to a normal
derivative onl’, we simply differentiate (14) with respect &
evaluated ak = &y = coshyp, and use the definition for normal
derivatives,

0p 109
The result is:
a, S S "z L (e 21
ond) = 35 2RO 3 Dmlend) (21
Dn(c,, ) : / 3 9010 b, [17,6) A (22)

Y1, 118" 1=~ Sm(C.) Swn(e.n') cosmp — ¢)
(23)

Rinn(C
Rmn(c

)

Zin(c) = (&3 - VR

3
6.5 (24)

In the abovedl" = Jsdnd¢, whereJs = hyhy is the surface
jacobian evaluated &y = coshyy. This DtN condition was
first-derived in (Thompson, 1994), and independently in (Grote,
1995); in the later, a different normalization factor was used to
scale the angular spheroidal functions, and the condition is left in
terms of a radial derivative with respectyoln practice the sum
overn, is truncated at a finite valug. For fixedN, the harmon-
icsn > N are evaluated with a homogeneous Neumann bound-
ary condition on". As a result, the accuracy of the harmonics
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n > N are poorly represented and a minimum valig, > cf is Applying theB; operator to the expansion (14), evaluated at
required to ensure unigueness (see (Harari, 1992) for values of¢&g, gives,
Nmin for spherical coordinates).

To eliminate the bound foNmin, @ modified DtN may be @ / B1[Rmn(C, £ )]
formulated by generalizing the normal derivative applied to the B1[qlle—¢, Zo 1[Rmn(C, 0 Dmn(c,n,0)  (30)
harmonic expansion for outgoing waves (14), with a local differ- Rann(C, EO)

ential operator representing an approximate radiation boundary
condition (Grote, 1995). The resulting modified DtN condition where
is unique for any choice df, and approximates the harmonics

n > N with greater accuracy than the original DtN condition.

Local boundary conditions are easily constructed by extend- B1[Rmn(c,&0)] =
ing the procedures employed in (Bayliss, 1982) for a circle or
sphere, where radial terms in a multipole expansion for outgoing
waves are annihilated. The generalization to spheroidal coordi-
nates is given by the asymptotic expansion given by (Holford,;
Burnett, 1994):

==

(Ron+ @1Rmn) (31)

Then dividing both sides of (30) g, and rearranging gives
the modified DtN condition in terms of the normal derivative on

_exp(icE) & gi(8,0;0) W_ Zaot 'Z¥(c Dmn 32
& & (@) (23) on =3 Zo ngo e G

wherec = kf, is the normalized wavenumber ahdbs the radial

coordinate in spheroidal coordinates. 1) )
Here a sequence of local operators which annihilate radial Zmn(€) = Zmn(C) +21 (33)
terms in the expansion (25) is constructed as a product of nor-
malized radial derivatives: with constant
2 :LJ(Lj—l("'(LZ(Ll)))) (26) 7 = f(E%—l)cxl (34)
178 o0 _ When the condition (32) is truncated at the finite valNjeit is
Lj= <0_E —ic+ JE ) (27) exact for harmonice < N, and approximates the harmonits

N with the local approximate conditioB1¢ = 0. The normal
_ derivative form derived in (32) is convenient for finite element
such thatBj@ = O([cg] 2I~1). Setting the remainder equal to  jmplementation as a ‘natural’ boundary condition in a Galerkin
zero defines the analogue of the boundary conditions derived in yariational equation. The modified condition given in (Grote,
(Bayliss, 1982) for a sphere. The first two boundary conditions 1995) is left in terms of a derivative with respectpgpand is
are: suitable for finite difference implementation.
The second-order operat®; provides a more accurate
Biop= 1 (ﬂ +cx1> =0, onr (28) bp_undary condition. To derive th_e set_:ond modified DtN con-
f \0¢g dition, we apply theB, operator defined in (29) to the expansion

(14), evaluated &g, with the result,

1/ 9 B - » B2[Rmn(C, &0)]
B20= o <022 +a E+013> ¢=0, onl  (29) Bo[@lls—z, = ZO 2Rmn (c Eo; Pm(e.n,0) - (39)
where _ The B, operator acting on the radial functiofnn(c,§)
o = (1-icko) /& e
Oy = (4— 2iCEo)/Eo 1
s = (2 dico (ko)) /83 BolRon(© &0)) = 77 (Ron + 02R + 03Rm) (39
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The functionRmn(c, §) satisfy the radial equation,

(c&)*+ Rnn (37)

(82— DR+ 28R = [Amn(C) — By

In the aboveAmn(C) are the characteristic values of the prolate
spheroidal wave functions.

Replacing the second-order derivatiwé:'gn appearing in
(36), using (37) ak = &g, we have

Bldlit, = frzg 2, 2 Zm©Dmlcnd) (39
where
22(0) = 200 + F [Amn+ ! +z2] (39)
&g-1
28
V=0— 2(2)—01 (40)
2 = (85— 1)az—c%E3 (41)

For ease of finite element implementation, we eliminate the
second-order radial derivative in tiB operator defined in (29)
in favor of tangential derivatives using the Helmholtz equation
(12), with the result:

1[0 1
Ba[¢][s_¢, = 12 [V£+ (0‘3 - kzh%) o— mﬂﬂp (42)

Using (42) in (38), dividing both sides g /{2, and rear-
ranging gives the second modified DtN condition,

0 1
a—(: = V_JS (&r — fcPn? - fzz) )
5 28 Dmn<c ne) 439
n=0 m=0

The normal derivative form and second-order tangential deriva-
tives appearing in (43) are easily implemented v@firegularity

in a standard Galerkin variational equation using integration-by-
parts on the boundafy. The form of the modified DtN condi-
tion (43) is different than the condition given in (Grote, 1995). In
(Grote, 1995), thd3, operator is left with second-order deriva-
tives in the radial coordinate suitable for finite difference ap-
proximation.

The DtN on Elliptic Boundaries

For an elliptic artificial boundary in two-dimensions, we
introduce elliptic coordinate = x(l,0), wherep, 6 are related
to rectangular Cartesian coordinaxeg by

X = acosh, y = bsin® (44)

wherea, b are the semimajor and semiminor axis defined by (8).
For a constant value gi, and 0< 6 < 2m, x andy describe a
confocal ellipse. The metrics for the elliptic system are given by,

hy = hg = fy/sinu+sir?e

With the artificial boundary set at = [, the solution to
the Helmholtz equation in the exterior regip» o may be ex-
pressed as,

(45)

on8) = = 5 MDD oo g ) [ g0,8)cen(6.q) 00
T[n, (“an) 0
132 Msy(pQ) 2m , , ;
+ = ————"_5g(0, ,0')se,(0',q)dO
T[nZlMSn(HO,Q) 6.9) | oo, 8)ser(6'.0)

(46)

In the aboveq = (kf/2)? is a normalized wavenumbeg, and

s, represent the angular Mathieu functions, and, andMs;

are the even and odd modified (radial) Mathieu functions of the
third kind, respectively (Abramowitz,1968; McLachlan, 1947).
The radial function#c, andMs, satisfy the modified Mathieu’s
equation,

d2

aF (47)

— (A —2qcosh2y)y =

whereA(q) is the separation constant (characteristic value) for
the Mathieu functions.

To derive the DtN map relating normal derivatives to Dirich-
let data, we simply differentiate (46) with respecitevaluated
atll = Mo, and use the relation,

109 _
hyop

109
hg au

0p

on (48)

The result is,

0

% 10,6) = Z}zé]”(q) D$(6,0)+ ¥ Zs (a)D5(6,0) (49)
n= n=1

on
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where
0 Mc; (Ko, 0, Msi(ko,q)
D5(8.0) = p=can®.0) | -0l &)ca®.yr (51)

1 1
D}(68.) = ——sa(6.0) [, - @(Ho,)sa(8/,c)dl” (52)
Tlhe r’ he/

wheredl" = hgd®.

This DtN condition was first derived in (Thompson, 1994),
and independently in (Ben-Porat, 1995) and (Grote, 1995); in the
later, the condition is left in terms of a radial derivative with re-
spect tqy, suitable for finite difference implementations. Numer-
ical results using the DtN condition in the finite element method
on elliptical boundaries are reported in (Ben-Porat, 1995).

For large values gfi, the solution admits the asymptotic ex-
pansion

exp(lka

(53)

Local boundary conditions for an elliptic boundary are eas-
ily constructed from expansion (53) by extending the procedures
employed in (Bayliss, 1982) for polar to elliptic coordinates, with
the first two of the series given by,

1 0
Blcp_m<al+[31>(p—0, onl (54)
B 1 (az +B a+[3> =0 onl (55)
2= f25|nhzl.l auz 2 3]9=0,
where
1 . .
B1= étanh,lo—|kfsmh|,lo

B2 = 3tanhug — 2ik f sinhpg — cothyg

Bs = §tanh"uo — K2 $?sint? po — 3ik f sinhygtanhpg

4

Applying theB; operator to the expansion (46), evaluated at
Mo, and after rearranging gives the first modified DtN condition,
09
(P+ Z) za(

c 1) s
== Deq+zzs<1 )DS(6,q)

(56)

(1)

zc (0)

—zc! (0)

G) @+B1, ZsP(@=z8(@)+p1  (57)

To derive the second modified DtN condition, we apply the
B, operator to both sides of (46) evaluatedugt To obtain a
form suitable for finite element implementation, we replace the
second derivatives dflc, andMs, in the DtN kernel using (47),
and the second-order radial derivativesgah favor of angular
derivatives using the Helmholtz equation written in elliptic coor-
dinates, with the result,

op 1 (02 22
an = m <@—B3+k he)‘P
+ ZDch A)DS(6,9)+ 5 247 (a)D3(8,q) (58)
n=1
2d?(q) = 24 (o) + é(xm ~2qcoshZ+Bs)  (59)
z9?(9) =25 (q As,n 2qcosh2io+B3)  (60)

In the aboveAcn(g) andAsy(q) are the separation constants for
Mc, andMs,, respectively. In (Grote, 1995), th& operator is
left with second-order derivatives in the radial coordinatand

is not suitable for direct finite element implementation.

FINITE ELEMENT FORMULATION
The weak form for the exterior Helmholtz problem defined

by (1) - (3) may be stated as: Fing(x) in T, such that for all

admissible weighting functiongin V, the following variational

equation is satisfied,

F(o)

with inner productg-,
ear forms,

):V xT — C defined by the sesquilin-

Ko(@,9) = [ (0o Do~ Kgg) da+ /S‘—é@cpds (62)

0.0) =~ [(oM(g) dr (63)
and conjugate linear form) : V. — C defined by,
_:/6fd9+/59ds (64)
Q s'B
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The function spaces are defined by,

T = {gloe HY(Q); If =0, theng(x) =
V := {gloe HY(Q); If =0, theng(x) =

g/a,x € S}(65)
0,xeS} (66)

HereH?! denotes the Sobolev space of degree one.
The nonreflecting boundary operatgf in the variational

equation is composed a nonlocal part, and in the case of the mod-

ified conditions, a local part:

k(@@= [oM@ dr =& @.9+2 @0 (©7)

The local part associated with the DtN is zero,

B (@

0,0 :=0 (68)

In prolate spheroidal case, the local part of the modified DtN
operators using; andB,, respectively are,

7 / 1 oodr (69)
rJs

[ S@+n)godr+ ] [ - D)
v JrJs vJr

BY (g, 9) :=

B (¢, ¢) =

For the case of the modifieB, condition, we have used
integration-by-parts over a closed spheroidal surface

/icEArcpdr: —/hE 0% - O%dr (71)
r Js r
where the gradient is defined by,
1 0¢
S P —
0%:= e] hy 96 (72)

To obtain the nonlocal part for prolate spheroidal boundary,
we make use of the following result,

1 — —
~/FJ_S (PDmn(C,ﬂ,q’) dr = ((p, llJﬁqn)l' ) ((p, llJﬁqn)l'

+((5: wﬁm)r . ((p, wﬁm)r (73)

where the inner-products ovErare defined by,
(@, Wrnr / 3 PWmn(c.n,6) d (74)
(@, Wrnr / 3 PWmn(c:n,0) d (75)

The nonlocal part for prolate spheroidal case is then given
by,

0

Z Z (p, qun) ) ((p, qJan)r
( o, l~|Jmn)r ' ((p7 llJﬁqn)l'}

3

(76)

+

wherle(nJ%, j =0,1,2 are the kernels defined in (24) for the DtN,
and (33),(39) for the modified DtN associated wigh and By,
respectively.

For the two-dimensional elliptic boundary, the local part as-
sociated with the DtN, and modified DtN operators udtagnd
By, respectively are,

B (@, ) =0 (77)
— 1 —
8" (9.9) == p1 | - @oar (78)
B2 2 10999
(@, ¢) = /h (Bs khe)cp<de+[32 he 96 06 dr
(79)

The form of the nonlocal part associated with elliptic bound-
ary is similar to the prolate spheroidal case, with the result:

P 1 0 . _
2,9 = -2 5z (@, canr - (@, canr
n=0

- zZséJ (@, s@)r- (@, sa)r  (80)

whereZq(qj) andZs(qj), j = 0,1,2 are the kernels defined in (50)
for the DtN, and (57),(60) for the modified DtN respectively. The
inner products over are defined by

(@, cen)r = /r h—le<pcen(6,Q) dr (81)

(@, se)r := /r h—19<psa1(9,Q) dr (82)

Finite Element Discretization

To obtain a finite element approximation to the solution of
the variational equation (61), the domdnis discretized into a
finite number of subdomains (elements), and we apply the stan-
dard Galerkin approximation,

(83)
(84)

Q%) ~
P(X) ~
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whereN e RYof js a row vector of standar@® basis functions
with compact support associated with each node,chgdCNdof
is a column vector containing the nodal valuegafHere,Ngof

is the total number of unknowns in the finite element model, and

the superscripth denotes a finite-dimensional basis.
Using this approximation in (61), we arrive at the following
system of linear algebraic equations:

Kd=f (85)

where the global arral{ € CNeor*Ndof s an indefinite complex-
symmetric matrix:

K=(Kq+Br)+Zr=K; + K> (86)

composed of a sparse/banded g&itassociated with the dis-
cretization of the Helmholtz equation @, and the local radi-

ation boundary operatcB(rj): K1 = Kg + Br, and a full/dense

part associated with the nonlocal DtN opereﬁfﬁ?: K2=Zr.In
the above,

Ko = Kq(NT,N) (87)
Br = B(NT,N) (88)
zr =7)(N"\N) (89)

Let Nr denote the number of unknowns on the boundary
With the unknowns off numbered last, their has zeros every-
where except for a fully populated- x Nr block on the lower

partition. In particular, for a prolate spheroidal boundary, we in-
troduce the finite element interpolation for the test and weighting

functions onl",
Nr
I=1

so that the matriX is defined by the product decomposition,

N n .
Zr =-— Z} z ZT(T{V)‘ {cmnan + smnsr-l;m} (91)
n=0 m=0
where
1
e = (NT, W = [ NT4(en ) dr  (92)
S
T S 1 T,,S
Smn = (N 7qun)r = /I' J_ N lIJmn(C,fl,qJ) dr (93)
S
8

A similar form is obtained for the elliptic case. The summation
overn is truncated at a finite numbat. Let Nt denote the total
number of harmonics included in the DtN or modified DtN con-
dition, thenNy = 2N + 1, andN(N + 1), for elliptic and prolate
spheroidal boundary, respectively. The storage of the dense ma-
trix Zr in the unknowns offf, associated with the nonlocal DtN
operator, requires (er) complex numbers. The storage for the
sparse matriXj is O(Ngot), SO that the total storage required for
K = K1 + K3 is O(Ngof + N2). For large models, the fully pop-
ulated submatrix oK, becomes prohibitively expensive to store
and factorize. However, when solving the system of equations
(85) using an iterative method requiring matrix-vector products
of the kindv = K p, at each iteration, the special structure of the
DtN matrix K2, as an multiplicative split involving the vectors
Cmn andsm, defined in (92) and (93), can be exploited to reduce
storage and cost (Malhotra, 1996).

Here, the matrix-vector product of the DtN block matix
K2 p, may be computed in “matrix-free” form as,

N n .
Ve Z) >3 Z0) £ 0tmnCrn + BranSmn} (94)
n=0 m=0
Omn = c-rl;mp (95)
Bmn = Sr-l;mp (96)

By calculating and storing the vectas, andsmn, for each har-
monic, the storage requirements and number of operations may
be reduced to MNyot + Ny Nr). SinceNy < Nr, the storage
and cost is considerably lower than a straightforward matrix-
vector product requiring storage and number of operations of
O(Ngof + N2). This matrix-free representation of the DtN block
matrix was first recognized in the context of circular and spher-
ical boundaries by Malholtra (Malhotra, 1996). In (Malho-
tra, 1996), it was also pointed out that the matrix-vector prod-
uct could be carried out at the element level, so that standard
element-based data structures can be used in the presence of the
DtN map. This can be accomplished by constructing element
vectorsp®, from the global vectop, using standard local des-
tination arrays formed by element-node connectivity data, and
computing element level matrix-vector products of the form,

N n .
Vo= z z Zr(f{f)W {afnnc%n + B?nnsﬁm}

n=0 m=0

(97)

Nre

Upn =3 CnP® (98)
e=1
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Nre

=Y sp°
e=1

(99)

(N°T, WS re

e
cmn

Sthn =

= [ ZNTUfen.0) dr (100

(N e = [ NTuimen.6) dr (10)

HereNr, is the number of elements on the radiation boundary,
e = Q°*NT are element boundaries adjacent to the radiation
boundary, andN€ is a row vector of element shape functions.

The final resulty is obtained from standard assembly of the ele-
ment vectors/®,

SSOR Preconditioner
In practice, the number of iterations required for conver-
gence can be reduced by using a preconditioner of the form
M = CC', and solving the transformed system
Ax=Db (102)
whereA = C!KC T, x=C"d, andb = C'f. Straight-
forward solution of the preconditioned system using iterative
methods requires a matrix-vector product of the preconditioned
matrix v = Ap, which involves one matrix-vector multiphp =
(K1 + K2)v; and two efficient solve€"v; = p andCv = vs.
Effective and efficient preconditioners are difficult to con-
struct at the element level in the context of matrix-free iterations.

This issue was studied using a hierarchical basis preconditioner,

in conjunction with matrix-free iterative computations in (Mal-
hotra, 1998). At the global level, an effective preconditioner for
complex-symmetric systems is the SSOR preconditioner in con-
junction with the QMR iterative solver (Freund, 1992; Freund,
1991), together with Eisenstat’s trick for matrix-vector multipli-
cation (Eisenstat, 1984). For systems such as (86), composed of
a sparse pa, and a full/dense paKs, storage and cost may
be reduced by not assemblikg, and basing the preconditioner
onKj, only (Oberai, 1998).

Extending the procedures described in (Oberai, 1998) for
the first modified DtN map on a circle or sphere, to first and
second modified DtN maps for elliptic and spheroidal surfaces,
we take advantage of the special structurdKef= Z; defined
in (91) as a product decomposition @, and sy to save both
storage and cost of the matrix-vector prodietv;. Without the
explicit computation of the fulK, block, we define the SSOR
preconditioner in terms of the symmetric, banded ma{rix=
Ko + Br, which is stored and factorized into,

Ki=L+A+LT (103)

whereA is a diagonal matrix andl is strictly lower triangular.
The preconditioner only involves the local part of the modified
DtN mapBr, yet provides a good approximation to the complete
matrix K1 + Zr, especially for the DtN condition modified with
the localB; operator. For the DtN condition, with no modifica-
tion with a local radiation boundary operat@®; = 0, and it is

not feasible to formulate a SSOR preconditioner based on a di-
rect additive split, since in this case, a preconditioner based on
K1 = Kgq is an inappropriate approximation to the full system
K =Kq +Zr. For the DtN, a preconditioner may be constructed
by adding and subtracting the local matBx to K, with the re-

sult, K = K1 + K5, whereK; = Kq + Br, andK, = Zr — Br.
HereK; is decomposed according to (103) for the SSOR pre-
conditioner anK, = Zr — Br is not assembled when performing
matrix-vector products.

For the modified DtN conditions, the matrix-vector products
are performed efficiently using Eisenstat’s trick, and the special
structure ofZr-. For the left SSOR precondition€,= L A‘l/z,
whereL = (A+ wL), and 0< w < 2, (Freund, 1992; Freund,
1991). Eisenstat’s trick is to write the preconditioned ma&ix
as (Eisenstat, 1984; Oberai, 1998):

A=CYKi+KyCT
=AY "N L+ A+ LT + KL TAY?
- %)Al/Z{L*T +L 10+ [(0— 2)A+ wKs]L

)} aéida)

so that the matrix-vector produet= A p can be calculated effi-
ciently as:

1.
2.

SolveLT p=AY?p for p.
Setp .= p+(w 2)AD

— w3 3 Z {(€TB) Cron +
Solvel p = }) for P.
Setv= 1AY2(p+p).

Since C is triangular, the SSOR preconditioner involves
two efficient back-solves with.. Eisenstat’s trick replaces the
matrix-vector multiply withK1, with two matrix-vector multi-
plies withaY?, a significant reduction in the number of required
operations. The storage and cost of computing the matrix-vector
multiply K, p is reduced from Q¥2) to O(Nt Nr) by exploiting
the product decomposition &, and storing the vectoig,, and
Smn defined in (92) and (93), respectively.

To reduce storage requirements further ttN®f ), the vec-
torscmn andsymy, may be recomputed, as needed. In this case, we
project the angular harmonics onto the finite-dimensional basis
using,

(ShnP) smn}-

3.
4,

6,0) =
6,9)

(105)
(106)

Whan(
Win(

N(6,¢)
N(8,0) Whn
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where@,, = {WUmn}, | =1,2,---,Nr, is a vector containing
the nodal values of the harmonic defined foym) on T, i.e.,
Wmni = WYmn(B1,91). A similar projection may be made for the
elliptic coordinated in 2D.

Using this expansion in (92) and (93), the vectors may be
approximated by

Cnn = Mr 5, (107)
Smn = Mr g, (108)
resulting in,
S < 70
Zr =—Mr ZO z Z"{” {wrcnn rCnTn"‘ q’fnn ?n-% Mr
n=0 m=0
(109)

whereMr is theNr x Nr sparse/banded symmetric matrix,

1
Mr = (NT,N)r:/ INTNar (110)
r Js

This matrix may be diagonalized using nodal (Lobotto) quadra-
ture. In this form, the matriMr is stored, and the matrix-vector
productv = K,p, may be performed efficiently using Algorithm
3.1.1. of (Oberai, 1998). For a circular or spherical boundiary
the interpolant of the angular harmonigsn, , for each mode and
for each node ofn, may be computed efficiently using recurrence

Scattering of a Plane Wave by an Elliptic Cylinder
Consider scattering of a plane wave representedfby=
e kx from an infinite elliptic cylinder withf = 1, andu=p=
0.1, with major and minor radiua = f coshiandb = f sinhy,
respectively, on which we assume a ‘soft’ boundary,

Qo= (p(') + (p(s) — 0’ onS = {H: 01,0 S 0 S 2T[} (111)

where the total fieldp(y, 0) is composed of the incident wave
@, and the scattered wave figptP .

For numerical computation, we set the artificial boundary
atp = 0.5, and take advantage of symmetry to form the compu-
tational domaiQ = {0.1 < p<0.5,0< 08 <1 }. The bounded
regionQ is then discretized with 48 240 standard 4-node bilin-
ear elements evenly spaced in bothfiend8 directions. Figure
2 shows contours for the real part of the scattered solution for
wavenumbek = 41t computed using the finite element formula-
tion of the modified DtN condition MDtN(B2) witthN = 15 terms
included in the series. For this problem, the vaNie- 15 was
sufficient to obtain an exact radiation boundary condition for the
fixed discretization defined by the finite element mesh.

The error in the approximate finite element solutighis
measured with a relativez(Q) norm defined over the entire
computational domain, i.e.

relations between successive complex exponential and Legendre

functions (Oberai, 1998). However, for elliptic and spheroidal

boundaries, direct computation of recurrence relations for Math-

ieu and Spheroidal functions are not as efficient as the circular . .

and spherical case. As a result, while the storage requirements/Nere@is the exact solution.

are low, the cost in recomputing the angular functions for each As shown in Figure 3, the solutions obtained using the el-
liptic DIN and MDtN all converge to a finite error value &bk

harmonic and node dn, at every iteration, is relatively high. Pt JUN-all - orva
is increased. This limiting error is controlled primarily by the

finite element discretization of the computational domain. The

NUMERICAL EXAMPLES results also show that when only a few tefshare included, the

We first compare the accuracy of the DtN and modified DtN  modified conditions yields more accurate results than the DtN
radiation boundary conditions as a function of the number of condition, as expected. In particular, the MDtN(B2) condition
harmonics included in the eigenfunction expansions for the DtN results in the lowest error, with no additional memory and very
map. Then, the performance of the SSOR-type preconditioners little extra cost.
in conjunction with Eisenstat’s trick is examined based on the Figure 4 shows the speedup in the convergence rate of the
number of QMR iterations required to achieve a given tolerence QMR iterative solver when using the SSOR-type preconditioner
on the solution residual. Solutions obtained using the DtN condi- based on the local, sparse/banded matrix partifan In the
tions are denoted ‘DtN’, while the first and second modified DtN figure, the abscissa represents the iteration numbend the
conditions are denoted ‘MDtN(B1) and ‘MDtN(B2)’, respec- ordinate axis represents the relative residiah ||z / || ro ||2-
tively. Both the DtN and MDtN conditions are exact for modes We observe that the DtN and MDtN(B1) formulations converge
n < N, however for modea > N, the DtN condition reduces to in approximately 1100 and 900 iterations, respectively, while
a rigid (homogeneous Neumann) condition, while the modified the solutions with the SSOR preconditioner based on the local
DtN conditions reduce to the first and second-order local radia- sparse/banded partition of the global matrix converges in only
tion boundary condition$;, andB,, respectively. 525 iterations, a significant speedup.

E: ||(d1_(p|||—2

(112)
Lo
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Figure 2. PLANE-WAVE SCATTERING FROM AN INFINITE ELLIPTIC
CYLINDER [ = 0.1 WITH 10:1 ASPECT RATIO. ARTIFICIAL BOUND-
ARY LOCATED AT 4 = 0.5. SOLUTION CONTOURS OF REAL PART
OF FE SOLUTION USING ELLIPTIC MDtN(B2) WITH N = 15 AND
WAVENUMBER K = 41T

10

— DIN
MDIN(B1)
— - MDIN(B2)

10 F k|

relative error

10°F ~ E

10™ I I I

N

Figure 3. SCATTERING FROM AN ELLIPTIC CYLINDER. RELATIVE
ERROR MEASURED IN L2(Q) NORM VERSUS THE NUMBER OF
HARMONICS N INCLUDED IN THE DTN BOUNDARY CONDITION (49)
AND MODIFIED CONDITIONS (56), (58).

Scattering of a Plane Wave by a Spheroid

We now consider the scattering of a plane walie= ez
from the spheroic, = cosh01, on which we assume a ‘soft’
(homogeneous Dirichlet) boundary. With the artificial boundary
I located até, = cosh05, the bounded domain is discretized
with a uniform mesh of standard 4-node bilinear axisymmetric
finite elements with 24& 40 evenly spaced elements ird® <
1, and 01 < p < 0.5, respectively.

Solution contours for the real part of the scattered solu-
tion computed using MDtN(B2) positioned & = cosh05 are
shown in Figure 5 for a normalized wavenumlget kf = 47t
Figure 6 shows the relativie,(Q) error in solutions obtained
using the DIN and modified DtN conditions MDtN(B1) and
MDtN(B2), with N varying from 0 to 15. Similar to the two-
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Figure 4. RATE OF CONVERGENCE OF QMR ITERATIVE SOLVER
WITH AND WITHOUT SSOR PRECONDITIONING.

dimensional case, both the DtN and MDtN solutions converge to
a finite error value abl is increased, and when only a few terms
N are included, the MDtN(B2) condition gives the most accurate
solution.

CONCLUSIONS

The DtN radiation condition relating normal derivatives and
Dirichlet data on elliptic and prolate spheroidal boundaries are
derived from harmonic expansions in two and three dimensions,
respectively. The use of elliptic and spheroidal coordinates al-
lows for a tight fit of the radiation boundary surrounding an elon-
gated structure, with corresponding reduction in the size of the
computational region required to model time-harmonic radiation
and scattering. Modified DtN conditions based on first and sec-
ond order local boundary operators are also derived in elliptic
and spheroidal coordinates, in a form suitable for finite element
implementation. The second modified DtN condition based on
the localB; operator is formulated in terms of second-order tan-
gential derivatives, which are then enforced weakly with standard
CO regularity at the artificial boundafy. This condition is more
accurate than the DtN boundary condition, yet requires no ex-
tra memory and little extra cost. The finite element formulation
of the elliptic and spheroidal DtN conditions retain the special
structure found in the circular and spherical cases; a multiplica-
tive split defined by the outer-product decomposition of linear
forms. This special structure allows for the matrix-free imple-
mentation of iterative solvers such as QMR, which do not require
the explicit storage of a full/dense block relating unknowns on
the boundaryr. A SSOR preconditioner with Eisenstat’s trick
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Figure 5. SCATTERING OF A PLANE WAVE FROM A PROLATE
SPHEROID | = 0.1 with 10:1 ASPECT RATIO. THE ARTIFICIAL
BOUNDARY IS LOCATED AT U= 0.5. SOLUTION CONTOURS FOR
THE REAL PART USING THE SPHEROIDAL MDtN(B2) CONDITION
WITH N = 15, AND NORMALIZED WAVENUMBER C = kf = 41T

10

— DIN
MDN(B1)
— - MDIN(B2)

100 | k|

=
e,
T
I

relative error
7/

=
S,
s
T
s
s
I

10~ I I I

10 15

N
Figure 6. SCATTERING FROM A PROLATE SPHEROID. RELATIVE
ERROR MEASURED IN L2(Q) NORM VERSUS THE NUMBER OF
HARMONICS N INCLUDED IN THE DTN BOUNDARY CONDITION (21)
AND MODIFIED CONDITIONS (32), (43).

based on the matrix partition associated with the discretization
of the interior mesh and local boundary operator provides an
efficient and effective preconditioner for the resulting complex-
symmetric system.
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