A POSTERIORI ERROR ESTIMATION AND ADAPTIVE COMPUTATION OF VISCOELASTIC FLOWS

L. N. Ntasin, W. W. Miles and V. J. Ervin DEPARTMENT OF MATHEMATICAL SCIENCES L. L. Thompson DEPARTMENT OF MECHANICAL ENGINEERING

Objectives

- Study and implement adaptive algorithms to simulate viscoelastic flows.
- Develop and implement *a posteriori* error estimates for viscoelastic flow models.
- Develop and implement using a posteriori error estimation techniques, optimal or near-optimal control strategies for computing important visco-elastic flow parameters.

Motivation

- Singularities arise in the solution of visco-elastic flow models, making it difficult to resolve some of the variables.
- Coupling an elliptic problem with a hyperbolic problem in the modeling equations yields a "fragile system."
- Discretized visco-elastic flow problems yield very large linear systems, limiting the use of fine meshes over the entire domain for real applications.

Elastic-Viscous Stress Splitting (EVSS) Formulation

Problem (O): Find (τ, u, p) such that

```
\tau + \lambda(u \cdot \nabla)\tau + \lambda\beta_a(\tau, \nabla u) - 2\alpha \mathbf{d}(u) = 0 \text{ in } \Omega,

-2(1 - \alpha)\nabla \cdot \mathbf{d}(u) - \nabla \cdot \tau + \nabla p = f \text{ in } \Omega,

\nabla \cdot u = 0 \text{ in } \Omega,

u = g \text{ on } \Gamma,

\tau = h \text{ on } \Gamma_{\text{in}},
```

where

 $\beta_t(\tau, \nabla u) = w(u) \cdot \tau - \tau \cdot w(u) - a(\mathbf{d}(u) \cdot \tau + \tau \cdot \mathbf{d}(u)),$

and

$$w(u) = \frac{1}{2}(\nabla u - (\nabla u)^T)$$
 and $\mathbf{d}(u) = \frac{1}{2}(\nabla u + (\nabla u)^T)$.

Theorem 1 Let $[u, \tau, p]$ be a variational solution of Problem (O) and let $[u_0, \tau_0, p_0] \in X_h$ be a Finite Element approximation of the solution of

 $(F_k([u_h,\tau_h,p_h]],[v_h,\sigma_h,q_h])=0, \quad \forall \; [v_h,\sigma_h,q_h]\in X_k,$

Then the following a posteriori error estimate holds

$$\begin{split} & \left\{ \| u - u_h \|_{1,2}^2 + \| \tau - \tau_h \|_{0,2}^2 + \| |p - p_h||_{0,2}^2 \right\}^{1/2} \approx c_1 \Big\{ \sum_T \eta_T^2 \Big\}^{1/4} \\ & + c_2 \Big\{ \| u_h \|_{1,2}^2 \sum_T \frac{\delta(T)}{h_T} \| R_\theta \|_{0,2,T}^2 \Big\}^{1/2}. \end{split}$$

where

$$\begin{split} \eta_T :=& \left\{ \| \tau_h + \lambda(a_h \cdot \nabla) \tau_h + \lambda \beta_s(\tau_h, \nabla u_h) - 2\alpha \mathbf{d}(u_h) \|_{H,2,\Gamma}^2 \\ &+ h_T^2 \| - \nabla \cdot \tau_h - 2(1-\alpha) \nabla \cdot \mathbf{d}(a_h) + \nabla p_h - f \|_{H,2,\Gamma}^2 \\ &+ \| |\nabla \cdot u_h \|_{H,2,T}^2 + h_E \| [\tau_h \cdot \mathbf{n}_E - p_h \mathbf{n}_E + \mathbf{d}(u_h) \cdot \mathbf{n}_E]_E \|_{L,F}^2 \right\} \end{split}$$

 $R_s := \tau_b + \lambda(u_b \cdot \nabla)\tau_b + \lambda\beta_s(\tau_b, \nabla u_b) - 2\alpha d(u_b).$

Also we have a local lower bound as

$$q_T \le c_3 \Big\{ ||u - u_k||^2_{1,3,w_T} + ||\tau - \tau_k||^2_{0,3,w_T} + ||p - p_k||^2_{0,2,w_T} \Big\}^{1/2}$$

 $+ c_4 \Big\{ \sum_{T' \subseteq w_T} h^2_{T'} ||f - \pi_{k,T'}f||^2_{0,2,T} \Big\}^{1/2}.$

Ongoing and Future Work

- Incorporating developed error estimators into a Theta-methodbased solution scheme for the EVSS, EVSS-G, and AVSS-G formulations.
- Evaluate the performance of the error estimator and the relative importance of each term in the estimator.
- Develop goal-oriented a posteriori error estimates.
- Implement and investigate the developed goal-oriented estimators.

Acknowledgements: This work was supported in part by the ERC Program of the National Science Foundation under Award Number EEC09731680.