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Abstract 
Exact Dirichlet-to-Neumann (DtN) maps are derived on spheroidal boundaries for finite 
element implementation. The use of spheroidal boundaries enables the efficient solution of 
scattering from elongated objects. Comparisons of sparse preconditioned iterative solvers, in- 
cluding BiCG-Stab and QMR with Jacobi and SSOR preconditioning are discussed. Matrix- 
vector products are computed efficiently in block form using Level-2 BLAS and the special 
product decomposition structure of the DtN matrix. Preconditioners based on the sparse 
matrix partition associated with the interior mesh and local part of the radiation bound- 
ary operator are used to accelerate convergence of the Krylov-subspace iterative solution 
methods. In this way, the full DtN matrix block is never assembled. Three-dimensional 
numerical examples demonstrate the efficiency and accuracy of the boundary treatments for 
high-frequency scattering from elongated structures. 

INTRODUCTION 

We consider time-harmonic scattering in an infinite three-dimensional region surrounding an 
object with surface S. For computation, the unbounded region is truncated by an artificial 
boundary I’. We assume that I? is a surface defined by a prolate spheroid in three-dimensions. 
We then denote by R, the finite subdomain bounded by 8R = r U S, see Figure 1. Within 

Fig. 1: Illustration of the computational domain R, with exterior region DD. 
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R, the solution $(z) : s2 + c, satisfies the Helmholtz equation, 

V2$ + k2#J = 0, XEi-l (1) 

84 ,+r4 = 9, XES 

w -= 
692 

--Ad 44 XEF 

Here, Ic is the wavenumber, g is prescribed data on the scatterer S. Equation (3) defines 
the Dirichlet-to-Neumann (DtN) map relating Dirichlet data to the normal derivative of the 
solution on I’. The DtN operator M represents the impedance of the exterior region restricted 
to the boundary I, such that the solution satisfies the Sommerfeld radiation condition at 
infinity. In general the DtN map may be modified to include both a local part and a 
nonlocal part. For spherical truncation boundaries, several accurate and efficient methods 
for representing the impedance of the far-field are well understood, including the Dirichlet- 
to-Neumann (DtN) map, infinite elements, and absorbing layers. However for elongated 
scatterers, the use of spherical boundaries becomes expensive since a large computational 
domain must be used. To overcome this problem, spheroidal boundaries may be used to 
reduce the size of the computational domain, allowing for efficient solution of scattering 
from elongated objects. Axisymmetric finite difference implementations of both DtN and 
modified DtN conditions on prolate spheroidal boundaries based on first- and second- order 
differential operators which annihilate radial terms in a generalized multipole expansion 
are given in [l]. H ere, we modify the DtN conditions in a form suitable for finite element 
implementation. The modified DtN conditions are more accurate than the DtN boundary 
condition, yet require no extra memory and little extra cost. Our modified DtN map differs 
from that used in [l] in that second-order radial derivatives are replaced in favor of second- 
order tangential derivatives - allowing Co regularity in the variational equation. 

THE DTN CONDITION ON SPHEROIDAL BOUNDARIES 

In prolate spheroidal coordinates, the Cartesian coordinates may be parameterized by x = 
x(p,B,cp), 0 2 p < 00, 0 5 0 < K, and 0 5 cp < 27r, such that x = bsin0coscp,y = 
bsin@ sin cp, z = aces 0 where a = f cash ,u, b = f sinh p, are the semimajor and semiminor 
axis of an ellipse respectively, and f is the semi-interfocal distance. The spheroid is defined 
by a constant value of p, with a confocal ellipse revolvin around the major z-axis. Let 
5 = coshp, and q = cos0, so that a = f[, and b = f e c2 - 1. then the spheroid may also 
be parameterized by x = x(t,q, cp), 1 5 6 < 00, -1 5 7 5 1, and 0 5 cp < 27r. Solutions 
to (1) are obtained using separation of variables and eigenfunction expansions. Let c = Icf 
be a normalized wavenumber, then we denote by Smn(c, 7) the angular prolate spheroidal 
wave functions of the first kind. They form a complete orthogonal set over the interval 
-1 5 q 5 1. R$$ (c, 0, p = 1,2,3 are the radial prolate spheroidal wave functions of the 
first, second, and third kind respectively. The symmetry of the DtN map M, follows from the 
Green’s function for the problem in the exterior region D. Here we write the Green’s function 
for a spheroidal boundary I’, using an expansion of prolate spheroidal wave functions. Let 
G(x ] x’) be the Dirichlet Green’s function in the exterior region 27, which satisfies, 

(v2 + k2)G(X IX’) = -6(X - X’); G(X ( X’) = 0, 2’ E r (4 
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and the Sommerfeld condition at infinity. The Helmholtz boundary integral equation asso- 
ciated with this Green’s function is, 

4( I=/ 2 
dG(x I4 ($qx’) dr’ 

r an’ 
(5) 

Taking the normal derivative of (5), and setting x E I’, we obtain the DtN map expressed 
in terms of the Green’s function: 

84 -= 
an s 

m(x 1 XI) $(X/J dr’, m(~ 1 x’) = 
d2G(x 1 x') 

xa 
r h2.h' ' 

(6) 

The symmetry of the DtN kernel m, implies the symmetry of the bilinear form appearing in 
the Galerkin variational equation and this in turn implies the symmetry of the resulting finite 
element matrix equations. From (6), it is clear that the DtN map is an integral operator 
coupling all points over the artificial boundary r. To obtain the DtN map on a spheroidal 
boundary defined by t = < o, we expand the Dirichlet Green’s function in an infinite series of 
spheroidal wave harmonics [2], 

G(x I x’> = 2 2 ‘Gmn(t I t’>timn(r7, cp I rl’, cp’> (7) 
n=O m=O 

ti *- -&Sm&, 17) Smn(C, 7’) cosm(cp - cp’>, mn .- (8) 
In the above, N,, are normalization constants associated with S,,. G,, is defined in terms 
of the radial wave functions I$),, and I?$‘%. The solution to the Helmholtz equation in the 
exterior region c > to = coshpo is obtained from (5) by taking the derivative of the Green’s 
function with respect to n’, evaluated at c’ --+ (0, and using the Wronskian relation for 
independent solutions to the radial wave equation. The result is, 

d(Co, 7’7 cp’) timn h cp I 4, 9’) dA’ (9) 
n=O m=O 

where dA = dqdp = sin8dOdq. To obtain the DtN map relating normal derivatives to 
Dirichlet data on r, we simply differentiate (9) with respect to n evaluated at c + (0. The 
result is given by (6), with the DtN kernel, 

m(x ) 2’) = 5 2 ’ 2-g; -$ ~rnnh cp IT”, CP’L z-(O) (4 = fG - 1) 
Ri?z (c, (0) 

mn 
&il(c, Co) 

(10) 

n=O m=O s s 

and J, = h, h, is the surface Jacobian for a prolate spheroid. 

THE MODIFIED DTN CONDITIONS 

For numerical computation, the summation over n, in the infinite series defining the DtN 
map is truncated at a finite value N. Use of the the truncated DtN map on the spheroidal 
boundary r, will exactly represent all radial harmonics for n 5 N. For n > N, the harmonics 
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are evaluated with an incorrect homogeneous Neumann boundary condition on l?. As a 
result, resonance will occur at discrete eigenvalues kj. To eliminate resonance, a modified 
DtN is formulated by generalizing the normal derivative applied to the harmonic expansion 
for outgoing waves (9), with a local operator defining an approximate radiation boundary 
condition [l]. The resulting modified DtN condition is unique for any choice of N, and 
approximates the harmonics n > N with greater accuracy than the original DtN condition. 
A sequence of local boundary conditions are easily constructed in spheroidal coordinates by 
extending the procedures employed in for a circle or sphere, where radial terms in a multipole 
expansion for outgoing waves are annihilated. Applying the first differential operator Bi$ = 
4,n+ l/ Js) zr = 0 to the expansion (9), evaluated at &,, and rearranging leads to the modified 
DtN condition, 

30 

--+~l$++? e’ZiA(C)/ 4(JO)$JmndA, Z~~(C)=Z~~(C)+Z~, 
dn- s 

(11) 
’ n=O m=O -A 

and zi = f(Eg - 1) (1 - ~c<~O>/<~. When the condition (11) is truncated at the finite value 
N, it is exact for harmonics n 5 N, and approximates the harmonics n > N with the 
local boundary condition Bi4 = 0. The second-order operator provides a more accurate 
boundary condition. To allow for a natural finite element implementation, we eliminate the 
second-order radial derivative in the differential operator in favor of tangential derivatives 
using the Helmholtz equation written in spheroidal coordinates, with the result [2]: 

w B2 q5 = x - $-s2(b = 0, s2 := (ar - fc2q2 - fZ2) 
s 

where ar is the surface Laplacian with metrics defined for a spheroid. Then, applying the 
scaled operator B2 to (9), and using the eigenvalues for the angular harmonics we derive the 
new condition, 

84 -= 
dn $S24 + $2 f: ’ ZhZ(c) / 4((o) $mn dA, 

S ’ n=O m=O A 
(13) 

f 
Zgi(C) = Z:;(C) + v 

[ 

m2 
Am, + m + 22 

0 1 
24 = (r,” - 1) (2 - 4ic& - (c#) /r,” - c2#, v = (4 - 2icJo)/Jo - &. (15) 

In the above, X,,(c) are the characteristic values of the prolate spheroidal wave functions. 
When the series is truncated at mode N, the harmonics n > N are approximated by B& = 0, 
an improvement over the DtN condition modified with Bi. 

VARIATIONAL FORMULATION 

The weak form for the exterior Helmholtz problem defined by (1) - (3) may be stated as: 
Find: 4(x) E 7, such that Y admissible weighting functions $J E V, the following variational 
equation is satisfied, 

(VA w>n - k”($, #h+kYiA hs+(& w4r = (47 9)s (16) 
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The nonreflecting boundary operator in the variational equation is composed a nonlocal part, 
and in the case of the modified conditions, a local part: 

(4, w4r = &%J, $4 + zp@) 4) (17) 
The local operator associated with Bi, B2 follows from (11) and (13), respectively. For &, 

Bp(‘$, q$) := -1 / -3x2 + c2q2) $4 dI’ - ; s, h5 0’4 . V”i$ dl? 
v r s 

The nonlocal part of the boundary operator is given by, 

Z/!)(i) q$) := --b c 2 ’ $ {iimn - amn + bmn - b,,} 
n=O m=O mn 

(18) 

(19) 

with Z&$, j = 0, 1,2, and inner-products, 

a mn := ($(<o) , Smn(C,rl> cosmv)d, bmn := (d(to), Smn(Grl> sinmv)d (20) 

We apply the standard Galerkin approximation 4”(x) = NT(x) d, where N E ll@vdof is a 
column vector of standard Co basis functions, and d E @ Ndof is a column vector containing 
the nodal values of @, Here, Ndof is the total number of unknowns in the finite element 
model. Using this approximation in (16), we arrive at the following discrete system, (K’s + 
Kr)d = f, where the global array is an indefinite complex-symmetric (non-Hermitian) 
matrix composed of a sparse part KS associated with the discretization of the Helmholtz 
equation in s1, and the local radiation boundary operator BF’, and a full/dense part Kr, 
associated with the nonlocal DtN operator Z?. Let Nr denote the number of unknowns on 
the boundary F.. Projecting the angular harmonics onto the finite-dimensional basis using, 
Smn(c, 7) cosmcp = NT(8, cp) $$,, where +mn = {$+}mn, i = 1, 2, .+. , Nr, is a vector 
containing the nodal values of the harmonic. A similar interpolation is used for the odd 
functions. The matrix Zr is defined by a summation of rank-l updates for even, @L,, and 
odd, +&, vectors, 

Kr=&fr Nc1 e$k Mr (21) IT 
n=O m=O mn 

where Mr is the Nr x Nr sparse symmetric matrix, Mr := (IV, NT)r. 

SPARSE ITERATIVE SOLUTION METHOD 

Let NT = N(N+l) d enote the total number of harmonics n = 0, 1, . . . , N-l, m = 0, 1, . . . , n, 
included in the DtN or modified DtN condition. For a direct solve, the storage of the dense 
matrix Kr, associated with the nonlocal DtN operator, requires O(N:) complex numbers. 
The storage for the sparse matrix KS is O(Ndof), so that the total storage required for 
K = KS + Kr is O(Ndof + N;). For large models, the fully populated submatrix of Kr 
becomes expensive to store and factorize. However, when solving using an iterative method 
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requiring matrix-vector products of the kind v = Ku, at each iteration, the special structure 
of the DtN matrix Kr, as a summation of rank-l vector updates can be exploited to avoid 
assembling a dense matrix, thus significantly reducing storage and cost. Here, we organize 
the vectors ernn in order from j = 1,2, . . . , NT, and store the spheroidal harmonics at each 
node on the boundary r, in the matrix C = [@i, $2,. . . , +NT], of dimension (Nr x NT), with 
coefficients [Cij] = {$‘i}j, and write the DtN matrix in the form of a generalized rank-NT 
update, 

Kr = -Mr CD CTMr, (24 

where D is a NT x NT diagonal matrix of impedance coefficients, Zj t Zmn/~Nm,, organized 
from j = 1,2,..., NT. Using this construction, we compute the matrix-vector product of 
the DtN matrix v = Kr u, efficiently in block form using Level-2 BLAS and the following 
algorithm: 1. Set u = Mru, 2. Set w = CTu, 3. Set w = Dw, 4. Set v = Cw, 5. Set 
v = Mrv. Thus, we replace the assembly and matrix-vector product of the full matrix Kr, 
of size Nr x Nr, with two matrix-vector multiplies of reduced size, diagonal scaling, and 
two sparse matrix-vector multiplies with Mr. In this form, the storage requirements and 
number of operations are reduced to O(N dof + NT Nr). Since NT << Nr, the storage and 
cost is considerably lower than a straightforward matrix-vector product. requiring storage 
and number of operations of O(Ndof + N;). 

To accelerate convergence we use SSOR preconditioning with Eisenstat’s trick. Following 
the ideas in [3], we construct the SSOR preconditioner using the sparse matrix KS, which 
is stored and split into, KS = L + A + LT, where A := diag{Ks} is a diagonal matrix and 
L is a strictly lower triangular matrix. The preconditioner only involves the sparse matrix 
from the interior finite element mesh, and the local part of the DtN map, yet provides a very 
good approximation to the complete matrix K = KS + Kr. The SSOR preconditioner is 
defined by P = L Am1 LT, where ,C = (A + wL). Here 0 < w < 2, is a relaxation parameter. 
With w + 0, the SSOR preconditioner reduces to the diagonal (Jacobi) preconditioner, i.e., 
P = A. Using this sparse SSOR preconditioner, we solve the modified system, 

Ax= b, A = A1’2Lc-1 (KS + Kr)CeTA’12 (23) 

where x = A112CeTd, b = A1j2,Ce1f. Iterative solution of the preconditioned system (23) 
requires a matrix-vector product v = A u, where A is the complex-symmetric preconditioned 
matrix and u is an iteration vector. Here the matrix-vector product v = Au, is computed 
efficiently using Eisenstat’s trick, and the special structure of Kr written in the matrix 
outer-product form described earlier, 

A = AA1i2 (LwT + Lc-‘(I + [(w - 2)A - WMr CD CTMr]CeT)} A112. (24 

Eisenstat’s trick with SSOR replaces the matrix-by-vector multiply with KS, with two 
matrix-vector multiplies with diagonal matrix A1j2, and two efficient back-solves with tri- 
angular matrix C; a significant reduction in the number of required operations. The storage 
and cost of computing the matrix-vector multiply Kr ti is reduced from O(N;) to O(NT Nr) 
by exploiting the product decomposition of Kr. 

NUMERICAL EXAMPLE 
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Fig. 4: Iterative performance (c = 27r). (Left): Comparison of DtN, and MDtN conditions 
with Jacobi and SSOR preconditioning using quasi-minimal residual (QMR) solver [4]. Results 
show significant speedup with SSOR preconditioning. (Right): Convergence is accelerated with 
biconjugate gradient stabilized (BiCG-Stab) solver [5], compared to QMR. Both methods show 
almost monotonically decreasing residuals. Wall clock times less than 45 minutes using 300 Mhz 
UltraSparc cpu. 

Modifications are more accurate than the baseline DtN map, yet require no extra memory 
and little extra cost. The number of harmonics included in the modified DtN map can be 
increased as needed to accurately model high-frequency scattering. The special structure 
of the discrete DtN map as a rank-m update allows for efficient matrix-vector products in 
block form using Level-2 BLAS, without assembling the full DtN matrix. SSOR precon- 
ditioning based on the local operators for spheroidal boundaries, together with Eisenstat’s 
trick, provide an efficient means to accelerate convergence of Krylov-subspace iterative so- 
lution methods for the resulting complex-symmetric equation system. Iterative results show 
significant speedup with SSOR preconditioned BiCG-Stab compared to QMR. 

Support for this work was provided by the National Science Foundation under Grant CMS-9702082 
in conjunction with a Presidential Early Career Award for Scientists and Engineers (PECASE). 
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