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Abstract 
Accurate radiation boundary conditions for the time-dependent wave equation are formu- 
lated in the finite element method as an auxiliary problem for each radial harmonic on a 
spherical boundary. The method is based on residuals of an asymptotic expansion for the 
time-dependent radial harmonics. A decomposition into orthogonal transverse modes on 
the spherical boundary is used so that the residual functions may be computed efficiently 
and concurrently without altering the local/sparse character of the finite element equations. 
The method has the ability to vary separately, and up to any desired order, the radial and 
transverse modal orders of the radiation boundary condition. With the number of equations 
in the auxiliary Cauchy problem equal to the transverse mode number, the conditions are 
exact. If fewer equations are used, then the boundary conditions form high-order accurate 
asymptotic approximations to the exact condition, with corresponding reduction in work and 
memory. Numerical studies are performed to assess the accuracy and convergence properties 
of the radiation boundary conditions. The results demonstrate dramatically improved accu- 
racy for time domain simulations compared to standard boundary treatments and improved 
efficiency over the exact condition. 

INTRODUCTION 

Hagstrom and Hariharan [l] have derived a sequence of radiation boundary conditions involv- 
ing first-order differential equations in time and tangential derivatives of auxiliary functions 
on a circular or spherical boundary. They indicate how these local conditions may be effec- 
tively implemented in a finite difference scheme using only local tangential operators, but 
at the cost of introducing a large number of auxiliary functions at the boundary. In this 
paper we rederive the sequence of local boundary conditions described in [l] based on the 
hierarchy of local boundary operators used by Bayliss and Turkel [2] and a recursion relation 
for the expansion coefficients appearing in a radial asymptotic (multipole) expansion. We 
then reformulate in terms of spherical harmonics by using a decomposition into orthogonal 
transverse modes. The resulting procedure then involves a Cauchy problem involving sys- 
tems of first-order temporal equations, similar to that used in [3,4]. With this reformulation, 
the auxiliary functions are recognized as residuals of the local boundary operators acting on 
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the asymptotic expansion, and may be implemented efficiently with standard semidiscrete 
finite element methods without changing the symmetric and sparse structure of the matrix 
equations. 

CONSTRUCTION OF RADIATION BOUNDARY CONDITIONS 

We consider time-dependent scattering in an infinite three-dimensional region R c R3, 
surrounding an object with surface S. For computation, the unbounded region R is truncated 
by an artificial spherical boundary I, of radius I( 2 ]I= R, see Figure 1. 

Fig. 1: Illustration of unbounded region R sur- 
rounding a scatterer S. The computational do- 
main R c R is surrounded by a spherical trunca- 
tion boundary I’ of radius R, with exterior region 
D=7Z-f-L 

Within a, the solution 4(z, t) : R x [O, T] I+ R, satisfies the scalar wave equation, 

1 a2$J -- 
c2 at2 

= V2$ XEi-2, tE[O,T] (1) 

4(uN = 4ow7 4(O) = &4x), XER (2) 
and driven by the time-dependent radiation boundary condition on the surface S: 

84 
dn = 9(x, t>7 2 E s, t E [O, T] 

In linear acoustics, the scalar function $ may represent the pressure field or a velocity 
potential. The wave speed is assumed c > 0, and real. The initial data $0 and C& are assumed 
to be confined to the computational domain R, so that in the exterior region D = R - 0, 
i.e., the infinite region outside I’, the scalar field 4(x, t) satisfies the homogeneous form 
of the wave equation. In spherical coordinates (T, 0, cp), the external region is defined as, 
27 = {T > R , 0 5 0 5 K, 0 5 cp < 2n}, and the wave equation takes the form, 

1 a%$ a24 + 2 arb -- = __ 
c2 at2 ar2 ;dr + $n,h A&= -J--C 

sin 0 a0 (4) 

The general solution to (4) is given by the spherical harmonic expansion, 

(gr,e,cp,t) = 2 2 &m(r) t> xde@) 
n=O m=-n 

(5) 
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where Y,, are orthogonal spherical harmonics normalized on a unit sphere: 

Y,,(@ ‘p) = k P~mi(cos8) eimcp, Nnm = 
47r(n + Iml)! 

(2n + l)(n - ]mj)! 

The time-dependent modes, 

4nmh t) = 1’” l= Y,*,(R p) 4(r, 6 cp, t) sin 6 dedp, (7) 

satisfy the radial wave equation, 

1 ~2&.m a2 2 d n(n + 1) -- = 
c2 a2 [ SF+--- T dr r2 I 

$ 
nm, r>R, tyo 

(6) 

For outgoing waves, the solution to (8) may be represented by the radial asymptotic 
(multipole) expansion: 

n 
&m(r, t) = C r-lc-l &,(r - ct) 

k=O 

(9) 

Substituting (9) into (8), we obtain the recursion relation for derivatives of the wave functions 
appearing in the radial harmonic expansion: 

k 
(4 > 

’ 
nm 

= k(k - 1) - n(n + 1) @-l 

2k nm ) k = 1,2,...,n 

We rederive the local radiation boundary conditions of Hagstrom and Hariharan [l], 
and then reformulate in terms of spherical harmonics. Here, we use the hierarchy of local 
operators of Bayliss and Turkel [2], 

Bp=Lp(Lp-l(“‘(LZ(Ll)))), Lj= fg+s+y ( 
2j - 1 

) 
(11) 

We interpret the residuals of the operators (11) acting on the asymptotic expansion (9) as a 
sequence of functions with reduced radial order. We apply Br = L1 to the radial expansion 
(9), with the result, 

(12) 

uIA,(r, t) = 2 -k r-k-2&m 
k=l 

(13) 

The function wi, defines the remainder of the radial expansion. ith error O(E5) for n 1 2. 
In general, applying Bj+i to (9), we have by induction, 

Bj+l4nm = Lj+l(wi, I=( 
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where the residual of Bi is defined as, 

k=j 
CL; = (-l)jck “j,l. 

The order of the residuals are reduced, wikl = O(r-‘)wi,, wi,(r, t) = O(r-2j)$nm = 
O(rW2j-i), and Bj&m = 0 is exact for harmonics n < j. For j = 1,2,. s. ,p,, using the 
recursion relation for ($k,)’ given in (lo), and the definition for ai, we eliminate radial 
derivatives in (14) in favor of a recursive sequence for wim, with the result, 

r aYlm _ l -- - ,[j(j - 1) - n(n + l)] yi;’ - jyffm + yiL1 
c at 

where yim(r, t) = 2i-jrjwjnm, and yt, = &m. Applying the spherical harmonic expansion 
to (12) and (16), and making use of the eigenvalues for the spherical harmonics Y,,, we 
obtain, 

la a 1 -- &+%+; (17) 

7-a ( ) -&j Yjz4 Lli(j - 1) + nr]Yj-1 + 1Jj+l (18) 

where 
yj(r, 8, cp, t) = 2l-jrj C C WXm(r7 t> Km(o,cP) (19 

n>O Iml<n 

for j = 1,2,. . . , p, and yo = 2$,y,+r = 0. Applied to the radiation boundary r = R, (17), 
together with the sequence of p equations (18), is a scaled version of the sequence of local 
conditions involving tangential derivatives derived by Hagstrom and Hariharan [l]. If the 
solution 4 contains only N harmonics, then with p = N auxiliary functions, the radiation 
boundary condition is exact. 

Here, instead of solving the sequence of boundary conditions for the auxiliary functions 
yj (R, 0, cp, t> at points (t 94, on I, we opt to reformulate them as harmonics. First, we 
recognize that when evaluated on the artificial boundary at T = R, the sequence (16) forms 
a system of first-order ordinary differential equations in time for the auxiliary functions, 
wim(t) = yi,(R, t) = 2l+Ii!j wim(R, t). Let vnm(t) = {2i+Rj wim(R, t)}, j = 1,2,. . .p,, 
and define a time-dependent vector function of order p,, 

%m(t> = [VAm(t) > wXm(t) 7 ’ * ’ 7 uFm(t>lr (20) 
then the first-order system of equations may be written as a matrix differential equation for 
each spherical harmonic similar to the Cauchy problem appearing in [3,4]: 

gun,(t) = An Vnm(t) + bn dnm(4 t) 

Here, the constant p, x p,, tri-diagonal matrix A, = {AZ}, is defined with band: 
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The constant vector b, = {bjn} is defined by 

b = ++l)’ 11 - 2R [l ) 0) * - * Y OIT 

Taking the spherical harmonic expansion of (12), i.e., multiplying by Ynm, summing over 
n and m, and evaluating on the truncation boundary at r = R, gives the new boundary 
condition, 

ld -- 
c at 

+$+;)b=Re 2 vAm(t> Krn(Q, cP>, on l? 
n=l m=-72 

where the component z&,(t) satisfies the Cauchy problem for each harmonic defined by the 
first-order matrix system (21), with initial condition vnm(0) = 0, and driven by the radial 
modes $nm( R, t) , defined by the spherical harmonic transform (7), evaluated at r = R. 

The auxiliary functions in (21) satisfy the property, v/&l = O(R-2)ui,, so that v&l < 
Vfm. Thus for accurate solutions, it is sufficient to use a radial modal order which is less 
than the angular modal order, i.e. pn < n. In this case the boundary condition (24) forms 
a uniform asymptotic approximation to the exact condition. Computation of eigenvalues for 
the first-order system of residual functions verified solutions are stable [5]. We denote the 
truncated boundary condition (24) by RBCl(N, P), where N defines the number of terms 
included in the truncated series, and P < N defines the maximum number of equations, 
included in the Cauchy problem (21). In general, do to the rapid convergence of the functions 
vim, then P < N is sufficient for accurate solutions, with corresponding reduction in storage 
and work. When P = N, the boundary condition RBCl(N, N) is exact for modes n < N, 
with 0( Rs3) error for modes n > N. 

In [5], a linear transformation is used to established the equivalence of our exact version 
of the RBC to the non-reflecting boundary conditions (NRBC) derived in [3,4]. The analysis 
in [5], provides a straightforward derivation of the NRBC with a clear physical interpre- 
tation of the auxiliary functions, interpreted as wave functions appearing in the multipole 
expansion. Several improvements of our radiation boundary condition over the NRBC de- 
rived in [3,4] have been identified including a banded tri-diagonal coefficient matrix for the 
auxiliary variables, reduced memory and computational work needed to store and solve the 
auxiliary functions for each harmonic, and the ability to to vary separately the radial and 
transverse modal orders of the radiation boundary condition. Furthermore, using asymp- 
totic radial wave expansions and Fourier modes similar to that used in this paper for the 
three-dimensional wave equation, we have developed an efficient and accurate formulation 
on a circle in two-dimensions [6] - a result not possible with the approach used in [3,4]. 

FINITE ELEMENT FORMULATION 

The statement of the weak form for the initial-boundary value problem in the computational 
domain R may be stated as: Given g , c, find $(z, t) in 0 U 8fi2, such that for all admissible 
weighting functions 84, the following variational equation is satisfied, 

(25) 
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K(6Q,, 4) := /V&$V$dfl f #qh$dI’ 
R r 

F(S$) := J S 
64gdS + Re 2 ~~,/6~YnmdT 

n=lm=-n r 

(26) 

(27) 

Using a standard Galerkin semi-discrete approximation, $(z, t) M @‘(z, t) = N(z) 4(t), 
leads to the system of second-order ordinary differential equations in time: 

M&t) + c&(t) + l-q(t) = F(t), t>o (28) 

In the above, M, C, and K are standard arrays associated with the discretization of the 
wave equation and the local B1 operator; and F(t) is the discrete force vector composed 
of a standard load vector and a part associated with the auxiliary functions appearing 
in the radiation boundary condition. Here, we approximate the harmonics Y,,(O, ‘p) by a 
projection onto the finite-dimensional basis, P,“(cos 0) cos mcp z N(6, cp) $z,, where @nm = 
{Y,m,l}, 1 = 1, 2, *” 7 Nr , is a vector containing the nodal values of the harmonic defined 
by (n,m> on r, i.e., Am,1 = Y,,(& , cpl). A similar expression is used for the odd functions. 
Using this expansion in (27) we have, 

N n 

Fr(t) = R): C ’ Mr [ IctEm v&n,l(t) + tiirn virn,l(t) I (29) 
n=l m=O 

The functions $,,r and $,,r are the first element of the vector arrays vhm = (v~m,j}, and 
vim = {~~,j), which satisfy the system of first-order differential equations (21) driven by 
the even and odd radial modes at r = R. For the even modes, 

4Em(R> t> = j& +iL Ml? &Ct> nm 
In the above, @r(t) = {41(t)}, I = 1,2,. . . , Nr, is a vector of nodal solutions on the artificial 
boundary I? with Nr nodes. Mr is a symmetric Nr x Nr matrix defined by the inner-product, 
(N, N)r. This matrix may be diagonalized using nodal (Lobatto) quadrature to reduce 
cost/memory. This implementation does not disturb in any way the symmetric, and sparse 
structure of the finite element matrix equations (28). As discussed in [4], one time-integration 
approach is to apply the central difference method directly to (28). This explicit method 
requires only the forcing term F” = F((tk) at time step tk = kb. Therefore, to update the 
solution dk+l = @(tk+l), Only the WahatiOn Of Vk, = vnm(tk) is needed. To numerically 
solve (21), either the explicit second-order Adams-Bashforth method or the the implicit 
second-order Adams-Moulton method (trapezoidal rule) may be used. The computational 
work required in solving is negligible, since the matrices A,, are tridiagonal, relatively small 
(usually N 5 25), and remain constant. When p, < n, the work is further reduced. Complete 
algorithms for computing the solution concurrently with auxiliary functions on F, using either 
implicit or explicit time-integrators, are given in [4]. 

NUMERICAL EXAMPLES 
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Fig. 2: Scattering from a sphere with wave in- 
cident from the (0 = 7r) direction, and normal- 
ized frequency W-Z/C = 7~. Solution contours at 
steady-state (t = 15), using RBCl(lO,lO) and 
R/a = 1.75 

‘o-o s 10 15 N 
10” I 

0 I 2 3 4 5 6 
P 

Fig. 3: Maximum Lz error during steady-state measured at r/u = 1.25. Radiation boundary con- 
dition applied at truncation boundary r postioned at R/u = 1.25, 1.5, 1.75. Numerical solutions 
using (Left): RBCl(N, N), (Right): RBCl(8, P). As the radiation boundary is moved further away 
from the source, the number of modes iV required to obtain a fixed level of accuracy is reduced. 
The uniform approximation to the exact condition is sufficiently accurate with N/3 <_ P 5 N. 

In the first example, we study plane-wave scattering from a rigid sphere of radius T = a, The 
computation is driven from rest to steady-state with a time step At = 0.01. Contours for 
the scattered solution are shown in Figure 2. Figure 3 shows the maximum Lz error during 
steady-state. 

In the second example, we solve for transient radiation in a semi-infinite region defined 
by circular transducer of radius a = 1 mounted in an infinite rigid planar baffle. The normal 
velocity on the transducer surface is a Gaussian pulse. Figure 4 shows the pressure field 
solution. 

CONCLUSIONS 

Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and 
Hariharan for the time-dependent wave equation, are rederived based on the hierarchy of local 
boundary operators used by Bayliss and Turkel and a recursion relation for the expansion 
coefficients appearing in the asymptotic (multipole) expansion for radial wave harmonics. 
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Fig. 4: (Left) Solution contours of pressure field using RBC1(20,4), t = 0.9. The solution obtained 
using RBCl(20,4) is nearly identical to the analytical solution at all observation points. (Right) 
Time-history on-axis at 19 = 0, R = 1.125. Solid line denotes analytic solution; Dotted line denotes 
RBCl(20,O); Dashed line denotes RBC(20,l); Dashed-Dotted line denotes RBC1(20,3). The solu- 
tion for RBCl(20,O) and RBCl(20,l) exhibits large errors; both overshooting and undershooting 
the exact solution. The RBC1(20,3) condition matches the analytical solution well. Accurate so- 
lutions are obtained with the asymptotic form of RBCl(N,P). In this case it is sufficient to use a 
small number (P = 3) of auxiliary functions. 

By introducing a decomposition into spherical harmonics we reformulate the sequence of 
local boundary conditions as a Cauchy problem involving systems of first-order temporal 
equations, similar to that used in [3,4]. The use of spherical harmonics allows the boundary 
conditions to be implemented efficiently and concurrently without altering the local character 
of the finite element equations. The accuracy rapidly converges with the number of residual 
functions included in the Cauchy problem. 
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