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ABSTRACT
Comprehensive adaptive procedures with efficient

sparse multi-level iterative solution algorithms for the time-
discontinuous Galerkin space-time finite element method
(DGFEM) including high-order accurate nonreflecting
boundary conditions (NRBC) for unbounded wave prob-
lems are developed. The strategy requires only a few itera-
tions per time step to resolve the solution to high accuracy.
Further cost savings are obtained by decoupling the mass
and boundary damping matrices in the algebraic structure
giving rise to an explicit iterative method. An h-adaptive
space-time strategy is employed based on a superconvergent
patch recovery (SPR) technique, together with a temporal
error estimate arising from the discontinuous jump between
time steps in the DGFEM. For accurate data transfer (pro-
jection) between meshes, new superconvergent interpolation
(SI) procedures are developed. Numerical studies of tran-
sient acoustic scattering demonstrate the accuracy, reliabil-
ity and efficiency gained from the adaptive strategy.

INTRODUCTION
The accurate numerical simulation of waves gov-

erned by hyberbolic equations is important in many fields
of physics, including computational hydro-acoustics, bio-
acoustics, and aero-acoustics. To model wave propagation
governed by the second-order wave equation in unbounded
domains, often an artificial truncation boundary is intro-
duced. Various treatments have been proposed to model
the exterior field on this boundary. Promising methods in-

clude accurate nonreflecting radiation conditions, infinite
elements, and absorbing layers.

The resulting bounded interior problem is often dis-
cretized with finite elements, resulting in a second-order
system of ordinary differential equations in time, which are
then solved with a finite difference time-stepping scheme
such as the explicit central difference method or the im-
plicit Newmark family and related methods. For modeling
wave propagation, the conventional approach is to use ex-
plicit methods which avoid matrix factorization to advance
solutions at discrete time-steps. However, a difficulty with
these methods is that they are only conditionally stable,
requiring a small time step below a limit dictated by the
size of the smallest elements in the mesh. As a result, they
typically require a fixed quasi-uniform mesh. Because of
this limitation, conditionally stable methods are not suit-
able for self-adaptive methods which require the freedom to
automatically select time-step size and unstructured mesh
distributions.

For adaptive methods, unconditionally stable time-
stepping methods are needed. A standard approach is to ap-
ply second-order implicit methods commonly used for struc-
tural dynamics applications, such as trapezoidal and se-
lect Newmark and related methods. However, for problems
involving the propagation of pulses with broad band fre-
quency content over large distances, commonly used second-
order accurate numerical algorithms may exhibit significant
dispersion errors causing misrepresentation of arrival time
and directionality at a distant target. High-order accurate
methods reduce these problems significantly.
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One of the most promising high-order time-stepping
methods are the time-discontinuous Galerkin space-time fi-
nite element methods (DGFEM) which employ finite ele-
ment discretization of the time domain as well as the usual
discretization of the spatial domain, [1-10]. The DGFEM
possesses high-order accuracy and is unconditionally stable
[1]. The principal features of the proposed DGFEM are: (i)
higher-order polynomial approximations with self-adaptive
unstructured meshes in both space and time dimensions,
(ii) exponential rates of convergence can be achieved in
space and time, (iii) algebraic form provides natural set-
ting for predictor/corrector and iterative solvers for high-
performance parallel computation.

Collectively, these features give promise of significant
advances in efficiency, reliability, and flexibility in simula-
tion software designed for transient acoustic waves. High-
order space-time finite element methods are capable of de-
livering very high accuracies for wave propagation simula-
tions over large distance and time, particularly for problems
involving sharp gradients in the solution which typically
arise in the vicinity of fluid-structure interfaces and near in-
homogeneities such as stiffeners, structural joints, and ma-
terial discontinuities. In these problems, solutions obtained
with standard second-order time-integration methods may
have difficulty resolving the discontinuities in the physical
solution – large spurious oscillations may appear which pol-
lute the entire solution.

In this work, comprehensive adaptive procedures using
the DGFEM including the high-order accurate nonreflect-
ing boundary conditions given in [11-16], for unbounded
wave problems are developed. In particular, a multi-field
DGFEM is formulated for the coupled interior/boundary
equation problem with independent displacement and ve-
locity variables for the interior wave equation together with
auxiliary functions appearing in the nonreflecting boundary
conditions. For problems of acoustics, the independent field
variables in the multi-field formulation are pressure and ve-
locity potential fields, [8].

To obtain efficient solutions, matrix structures are de-
rived for the time-discontinuous Galerkin finite element
methods (DGFEM) for hyperbolic equations. A sparse
multi-level iterative scheme based on the Gauss-Seidel
method is developed to solve the resulting fully-discrete sys-
tem equations for the interior hyperbolic equations coupled
with the first-order temporal equations associated with the
nonreflecting boundary conditions. Due to the local na-
ture of wave propagation, the strategy requires only a few
iterations per time step to resolve the solution to high ac-
curacy. In this work, the methods are implemented in two-
dimensions, however, the procedures are also valid in three-
dimensions.

The goal of an adaptive solution is to control space

and time approximation error with minimal cost. The tools
which enable the adaptive process are: 1. Error estima-
tion, 2. Adaptation of the spatial mesh and/or time step
size, and 3. Data transfer (projection) of solutions from
a previous mesh to a current mesh. In this paper we use
an adaptive strategy similar to Li and Wiberg [9,10]. An
h-adaptive space-time strategy is employed based on the
Zienkiewicz-Zhu [17,18] spatial error estimate using a super-
convergent patch recovery (SPR) technique, together with
a temporal error estimate arising from the discontinuous
jump in solutions between time steps. As wave pulses prop-
agate throughout the mesh, elements are refined near wave
fronts, and unrefined where the solution is smooth or qui-
escent, providing efficient wave tracking over large distance
and time. Errors in the time integration of both the inte-
rior equations and auxiliary functions in the nonreflecting
boundary conditions are monitored with time-step adjust-
ments to maintain given error tolerances.

Adaptive space-time finite element methods require
projection of solutions from the previous space-time mesh
to the current space-time mesh. For low-order elements,
standard nodal interpolation may lead to significant accu-
mulation of error over time. To correct this difficulty, we de-
velop a new superconvergent interpolation (SI) method for
the low-order 3-node triangle. The solution from the pre-
vious time-step is post-processed with the SPR technique
with recovered gradients evaluated at midpoints between a
node in the current mesh and interpolated between nodes in
an element of the previous mesh. The result is a correction
to standard interpolation with improved accuracy. The SI
procedures are easily extended to tetrahedra.

WAVE EQUATION ON UNBOUNDED DOMAINS
We consider time-dependent acoustic waves in an infi-

nite two-dimensional region R, surrounding an object with
surface S. For computation, the unbounded region R is
truncated by an artificial circular boundary Γ, of radius R.
We then denote by Ω ⊂ R, the finite subdomain bounded
by ∂Ω = Γ ∪ S, see Fig. 1. Within Ω, the solution u(x, t),
satisfies the scalar wave equation,

1
c2

v̇ = ∇2u + f(x, t), v = u̇, (1)

with initial conditions, u(x, 0) = u0(x), v(x, 0) = v0(x).
Here and elsewhere a superimposed dot indicates differen-
tiation with respect to time. We assume the wave speed is
real valued with c > 0. For acoustics, u may be considered
the pressure fluctuation from a reference state. Assuming
linear irrotational fluids, u may also represent a velocity po-
tential field. To specify radiation or scattering directly on
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Figure 1. Illustration of two-dimensional unbounded region surrounding

a scatterer S .

the surface S, we can specify a Neumann boundary condi-
tion,

∂u

∂n
= g(x, t), x ∈ S. (2)

In linear acoustics, the condition g = 0, corresponds to
a ‘rigid’ scatterer. The solution evaluated on the circular
truncation boundary at r = R, is denoted by,

uΓ(θ, t) = u(R, θ, t), vΓ(θ, t) = u̇Γ. (3)

Let w(θ, t) = {wj(θ, t)}J
j=1, be defined as a time-

dependent vector of J , real valued scalar auxiliary func-
tions, w = (w1 , w2 , · · · , wJ). We expand the auxiliary
functions w(θ, t) and solution on the truncation boundary
uΓ(θ, t) by a Fourier series with M modes,

uΓ(θ, t) =
M∑

m=−M

um(t) eimθ, (4)

w(θ, t) =
M∑

m=−M

wm(t) eimθ (5)

In the above, um(t), and wm(t) = {wm,j}J
j=1, are complex-

valued modes defined by the tangential Fourier transform:

um(t) =
1
2π

∫ 2π

0

uΓ(θ, t) e−imθ dθ, (6)

wm(t) =
1
2π

∫ 2π

0

w(θ, t) e−imθ dθ. (7)

Here um = u∗
−m, and wm = w∗

−m, with the asterisk denot-
ing the complex conjugate, and i =

√−1. The use of com-
plex valued functions is used for conciseness of presentation;
in practice the Fourier series is coded with real valued even
cos mθ, and odd sinmθ, functions.

Using this expansion we then approximate the exte-
rior impedance on Γ, by the high-order accurate radiation
boundary conditions derived in [12]:

∂u

∂r

∣∣∣∣
r=R

+
1
c
vΓ(θ, t) +

1
2R

uΓ(θ, t) =
1
R

M∑
m=−M

wm,1(t) eimθ

(8)

ẇm(t) + Am wm(t) = bm um(t), m ∈ (−M,M) (9)

with initial condition wm(0) = 0. In the above, wm(t)
are time-dependent vector functions of order J , and Am =
{Aij

m}J
i,j=1, is a tri-diagonal matrix for each mode m, defined

with band:

Am =
c

4R

[
m2 − (j − 1/2)2 , 4j , −4

]
(10)

The constant vector bm = {bm,j}J
j=1 is defined by bm =

c
8R (1 − 4m2)e1, e1 = {δj1}J

j=1.
The system (9) is a set of coupled first-order ordinary

differential equations for each vector wm(t), with dimension
J , and driven by the boundary modes um(t). We denote
the sequence of boundary conditions by RBC(M,J), where
M defines the number of modes included in the Fourier
series, and J defines the boundary condition order. Typi-
cally, J � M , with the number of modes M dictated by
the number of terms needed to resolve the solution uΓ(θ, t)
with a Fourier series on the circular truncation boundary.
In [12], it has been shown that the boundary equations are
well-posed and stable. The right-hand-side of (8) may be
considered a correction to the approximate local B1 oper-
ator of Bayliss and Turkel [20]. As more functions J , are
included, the function w1 on the RHS of (8) approaches
an asymptotically exact correction to the approximate B1

boundary condition.

TIME-DISCONTINUOUS GALERKIN FORMULATION
The development of the space-time method proceeds

by considering a partition of the total time interval, t ∈
(0, T ), of the form: 0 = t0 < t1 < · · · < tN = T , into
N time intervals In = {(tn, tn+1)}N−1

n=0 . The length of the
variable time step is given by ∆tn = tn+1 − tn. Using
this notation, Qn = Ω × In, are the nth space-time slabs.
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Figure 2. Illustration of two consecutive space-time slabs with different

meshes.

Fig. 2 shows an illustration of two consecutive space-time
slabs Qn−1 and Qn, each with different meshes. Within
each space-time element, the trial solution and weighting
function are approximated by a finite basis which depend
on both spatial x, and temporal t, dimensions. The basis
functions are assumed C0(Qn) continuous throughout each
space-time slab, but are allowed to be discontinuous across
the interfaces of the slabs. The space of finite element basis
functions in a multi-field representation is stated in terms
of independent variables u, and v.

An important component in the stability and robust-
ness of the space-time method is the incorporation of dis-
continuous temporal jump terms at each space-time slab
interface. We define the one-sided limits of a piecewise con-
tinuous function u, as, for s > 0:

u(x , t+n ) = lim
s→0

u(x, tn + s),

u(x , t−n ) = lim
s→0

u(x, tn − s)

and set the jump operator across space-time slabs as the
difference in the discontinuous solution,

[[u(tn)]] = u(x , t+n ) − u(x , t−n ).

In the following we define standard L2 inner products by,
(w , u) =

∫
Ω

w u dx equipped with norm ||u||Ω = (u , u)1/2.

Integrals on boundaries are defined by, (w , u)Γ =
∫
Γ

w u dΓ,
(w , u)S =

∫
S

w u dS. For the circular radiation boundary
Γ, we define the norm,

||u||2Γ :=
1

2R
(u, u)Γ =

1
2R

∫ 2π

0

u2
Γ(θ, t)R dθ (11)

From Parseval’s equality, limM→∞ ||uM ||2Γ = ||u||2Γ,

||uM ||2Γ = π

M∑
m=−M

u2
m(t) (12)

Define the real and imaginary part as, uc
m = 2Re(um),

us
m = −2 Im(um), then,

||uM ||2Γ =
π

2

{
1
2
(uc

0)
2 +

M∑
m=1

[(uc
m)2 + (us

m)2]

}

The problem statement using the time-discontinuous
Galerkin method (DGFEM) may be stated as,
Given: Load data f , g, and initial conditions
{u(x, t−n ), v(x, t−n )}, wm(t−n ), from the previous time
step, then for each space-time slab, n = 0, 1, . . . , N − 1;
Find: u = {u(x, t), v(x, t)}, and wm(t), x ∈ Ω ∪ ∂Ω,
t ∈ In = (tn, tn+1), such that for all admissible functions
ū = {ū(x, t), v̄(x, t)}, and w̄m(t), m ∈ (−M,M), the
following coupled integral equations are satisfied,

A(ū , u)n+BΓ(ū , u)n = FS(v̄)n+2π
M∑

m=−M

FΓ(v̄m, wm,1)n

(13)

AΓ(w̄m , wm)n = bm,1 FΓ(w̄m,1, um)n, m ∈ (−M,M)
(14)

4 Copyright c© 2002 by ASME



with

A(ū , u)n :=
∫

In

(v̄ ,
1
c2

v̇) dt +
∫

In

(∇v̄ , ∇u) dt

+
∫

In

(∇ū , ∇u̇ −∇v) dt

+(v̄(t+n ) ,
1
c2

[[v(tn)]]) + (∇ū(t+n ) , [[∇u(tn)]])

BΓ(ū , u)n :=
∫

In

1
c
(v̄ , v)Γ dt +

∫
In

1
2R

(v̄ , u)Γ dt

+
∫

In

1
2R

(ū ,
∂u

∂t
− v)Γ dt

+
1

2R
(ū(t+n ) , [[u(tn)]])Γ

AΓ(w̄m , wm)n :=
∫

In

w̄m(t) · ẇm(t) dt

+
∫

In

w̄m(t) · Am wm(t) dt

+ w̄m(t+n ) · [[wm(tn)]]

FS(v̄)n :=
∫

In

{(v̄ , f) + (v̄ , g)S} dt

FΓ(v̄m, wm,1)n :=
∫

In

v̄m(t)wm,1(t) dt,

FΓ(w̄m,1, um)n :=
∫

In

w̄m,1(t)um(t) dt,

v̄m(t) =
1

2πR
(v̄ , eimθ)Γ

um(t) =
1

2πR
(u , e−imθ)Γ

The solution is obtained by solving the coupled vari-
ational problem (13)-(14), for a time interval In =
(tn, tn+1) = (t1, t2), with length ∆tn = t2 − t1 > 0. The
source f(x, t), Neumann data g(x, t), initial conditions from
the previous time-step {u(x, t−n ), v(x, t−n )}, and wm(t−n ),
are the known data on the current time slab. Coupling
occurs through drivers wm(t) on the right-hand-side of Eq.
(13), and boundary modes um(t), defined by (6) on the
right-hand-side of (14). The far-field solution in the exte-
rior region D = R−Ω. may be computed concurrently with
the solution in Ω using the methods described in [12,14].

The jump terms across space-time slabs are crucial for
establishing an unconditionally stable algorithm for adap-
tive and unstructured space-time finite element discretiza-
tions, [1-3,16].

SPACE-TIME DISCRETIZATION

In this work, we assume we assume an orthogonal space-
time discretization, within the space-time slabs, Qn = Ω ×
In,

u(x, t) =
2∑

i=1

uh
i (x)φi(t) = Nn(x)

2∑
i=1

φi(t)di (15)

The temporal approximation is assumed linear with basis
functions {φi}2

i=1 ∈ P1(In). In general, the basis func-
tions may be high-order spectral, defined by continuous La-
grange interpolation, or hp-version, defined by hierarchical
Legendre polynomials. The FE approximations {uh

i (x)}
are defined by a linear combination of spatial basis func-
tions NA(x), and nodal values di = {uA(ti)}D

A=1, where
D is the number of spatial nodes. The solution at the be-
ginning of a time-interval is denoted, t1 = t+n , and end,
t2 = t−n+1, the initial condition from the previous step is
denoted t0 = t−n = t+n−1. Similarly,

v(x, t) =
2∑

i=1

vh
i (x)φi(t) = Nn(x)

2∑
i=1

φi(t)vi. (16)

Finally, the time-dependent auxiliary functions are approx-
imated by,

wm(t) =
2∑

i=1

φi(t)wm(ti) (17)

MATRIX EQUATIONS

Substituting the space-time approximations (15)-(17)
into the variational equation (13) and integrating over a
time interval (t1, t2), leads to the fully discrete matrix prob-
lem,

[
M̂ M̂12

M̂21 M̂

] {
v1

v2

}
=

{
r̂1

r̂2

}
(18)
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M̂ = M +
∆t

4
C,

M̂12 =
1
6
M − ∆t

12
C − (∆t)2

12
K,

M̂21 =
3
2
M +

3∆t

4
C +

(∆t)2

4
K,

r̂1 =
∆t

12
(3f1 − f2 − 2Kd0) +

1
6
Mv0,

r̂2 =
∆t

4
(3f1 + f2 − 4Kd0) +

5
2
Mv0,

In the above, the symmetric and sparse, mass, boundary
damping, and stiffness matrices, are defined by,

M = [MAB ], MAB =
1
c2

(NA, NB) (19)

C = [CAB ], CAB =
1
c
(NA, NB)Γ (20)

K = [KAB ], KAB = (∇NA,∇NB) +
1

2R
(NA, NB)Γ

(21)

The contribution to the right-hand-side load vectors defined
at the beginning f1, and end f2, of a time-step due to the
coupling from the auxiliary function wm,1(t) are given by,

fj = 2π

M∑
m=−M

wm,1(tj)Fm, j = 1, 2

where, for each tangential mode,

Fm = {Fm,A}, Fm,A =
1

2πR
(NA, eimθ)Γ

Once v1 and v2 are solved, then d1 and d2 may be computed
by simple vector updates,

d1 = d0 +
∆t

6
(v1 − v2); d2 = d0 +

∆t

2
(v1 + v2).

A remarkable feature of this form is that for spectral
interpolation in space, nodal quadrature may be used to
diagonalize both M and C, resulting in a complete de-
coupling of the equations of the upper and lower sub-block
diagonals. In this case, each time step requires only matrix-
vector products with M̂12 at each iteration in the solution
for c1 and c2. Wiberg and Li [9], derived a different form,
with M̂ = M + ∆t

2 C + ∆t
6 K; this submatrix cannot be

conveniently diagonalized because of the presence of K.

The time discretization for the first-order boundary
equations takes the form,

[
I −Â+

m

Â−
m I

] {
wm,1

wm,2

}
=

{
f̂m,1

f̂m,2

}
(22)

where

Â+
m =

1
3
(I + ∆tAm); Â−

m = (3I + ∆tAm),

f̂m,1 =
1
3
(2wm(t−n ) − ∆t um,2 bm);

f̂m,2 = 4wm(t−n ) + ∆t um,1 bm.

The solution for wm,1 and wm,2 is driven by um,j , the dis-
crete Fourier transform of the interior field uΓ(θ, t), via (6),
evaluated on the radiation boundary Γ:

um(t) =
2∑

j=1

φj(t)um(tj), um(tj) = F ∗
m · dj (23)

In the above, the star indicates the complex conjugate of
the vector Fm. In practice, the complex form of Fm and
F ∗

m are implemented as real valued vectors. Efficient imple-
mentation schemes for the discrete Fourier transform are
given in [12].

The order J used in the radiation boundary is typically
J < 10, resulting in relatively small matrices Am. Since the
system (22) is block diagonal, we use static condensation to
write the Schur complement, and first solve,

Âm,2 wm,2 = f̂m,2 − Â−
m f̂m,1, (24)

with coefficient matrix,

Âm,2 = (I + Â−
mÂ+

m)

then update, wm,1 = f̂m,1 + Â+
mwm,2.

The number of modes m ∈ (−M,M) included depends
on the complexity of the solution as measured by the am-
plitude of spatial angular wavelengths on the boundary Γ;
typically M � NΓ, where NΓ is the number of nodes on the
boundary. The primary cost in implementing the high-order
radiation boundary conditions is not the solution of the rela-
tively small equation system (22), or (24), but in the compu-
tation of the discrete Fourier transform um,j = F ∗

m ·dj . The
vector F ∗

m must be re-evaluated at each adaptive remesh-
ing. Nevertheless, this cost is always less that that required
to solve the interior equations (18); see [12] for complexity
estimates and efficient methods for computing F ∗

m.
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MULTI-LEVEL ITERATIVE SOLUTION ALGORITHM
For efficient equation solution, a multi-level iterative

method is developed; system (18) is solved with a simple
Gauss-Seidel iterative algorithm, while the relatively small
system (22) is solved directly. Using the initial predictor
from the previous time-step, only a few iterations are
needed to solve the coupled equations within a small error
tolerance. The algorithm is summarized in the following:

Denote the initial conditions by,
d0 = d(t−n ), v0 = v(t−n ), v−1 = v(t+n−1).

1. Predict from previous step solution,

d0
1 = d0, d0

2 = d0 + v0∆tn

v0
1 = v0, v0

2 = v0 + a0∆tn, a0 = (v0 − v−1)/∆tn

Two-Level Iterative Method:
Outer Iteration Loop: For k = 0, 1, . . .

2. Compute boundary modes: uk
m,i = F ∗

m · dk
i .

3. Solve boundary equations (24):
4. Update: wk

m,1 = f̂k
m,1 + Â+

mwk
m,2.

Set: v
(0)
i = vk

i , i = 1, 2.
G-S Iteration Loop: For l = 0, 1, . . .

5. Using the G-S method for the system:
M̂v2 = r̂k

2 − M̂21 v
(l)
1 , update v

(l+1)
2 .

6. Using the G-S method for the system:
M̂v1 = r̂k

1 − M̂12 v
(l+1)
2 , update v

(l+1)
1 .

If converged, Exit G-S Iteration Loop
End G-S Iteration Loop

Set: vk+1
i = v

(l+1)
i , i = 1, 2.

7. Update:
dk+1

1 = d0 + ∆t
6 (vk+1

1 − vk+1
2 ),

dk+1
2 = d0 + ∆t

2 (vk+1
1 + vk+1

2 ).
If converged, Exit Outer Iteration Loop.

End Outer Iteration Loop.
When performing the Gauss-Seidel (G-S) iterate in

Steps 5 and 6, only the nonzero coefficients in the sparse
matrices M̂ ,M̂12,M̂21 together with pointers to appro-
priate row/column numbers are stored in memory. When
M̂ = M +(∆t/4)C is diagonalized using nodal quadrature
the algorithm consists of simple scaling in Steps 5 and 6,
with super fast solves. In this case the algorithm for the in-
terior equations may be viewed as an unconditionally stable
explicit multi-corrector method.

SUPERCONVERGENT INTERPOLATION
Projection of the solution from the previous to the cur-

rent space-time slab is obtained by nodal interpolation. For
low-order elements in space, standard nodal interpolation

introduces significant error. To correct this difficulty, we
have developed a new superconvergent interpolation scheme.
Prior to projecting, the solution on the top of previous time-
slab, t+n−1 = t−n , is interpolated with,

u(x, t−n ) =
Dn−1∑
A=1

N−
A (x)

[
uh

A(t−n ) + x̂A · ∇u∗
A(xc

A, t−n )
]
(25)

where, x̂A = x − xA, and the vector, ∇u∗
A(xc

A, t−n ) is the
recovered gradients obtained by superconvergent patch re-
covery (SPR) at node A, evaluated at the midpoint be-
tween node xA, and position x. A similar technique is used
for v(x, t−n ). This scheme may be viewed as a correction
to standard interpolation, and provides nearly an order-of-
magnitude improvement in accuracy. It can be shown, that
the extension to quadrilateral and tetrahedron elements is
straightforward.

TEMPORAL ERROR INDICATOR
Define a norm composed of the total energy in the in-

terior domain, Ω, plus an additional term consistent with
the radiation boundary condition on Γ,

||u||2n =
1
c2

∫
Ω

{
v2(tn) + (∇u(tn))2

}
dx+

1
2R

∫
Γ

u2(tn) dΓ.

(26)
Consistent with the space-time variational equation

(13), a natural measure of the temporal error at time tn, is
defined by the local temporal jump terms (residuals) across
space-time slab interfaces,

||et||2n =
∫

Ω

{
1
c2

[[v(tn)]]2 + [[∇u(tn)]]2
}

dx+
1

2R

∫
Γ

[[u(tn)]]2 dΓ

(27)
When solutions from the previous time-step are interpo-

lated to the nodes of the current mesh, and for orthogonal
space-time discretization of the form (15), then, (26) and
(27) may be expressed in the quadratic matrix form,

||u||2n = dn(tn) · Kndn(tn) + vn(tn) · Mnvn(tn) (28)

||et||2n = [[dn(tn)]] ·Kn[[dn(tn)]]+[[vn(tn)]] ·M [[vn(tn)]] (29)

where Kn and Mn are mass and stiffness matrices for the
current step defined in (19),(21). A similar temporal er-
ror indicator was used for structural dynamics problems in
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[9,10]. In that case, the boundary integral in (26) and (27),
was neglected.

To maintain a specified level of accuracy at a given time
step, the relative error is enforced to be below a specified
tolerance:

ηt(tn) =
||et||n
||u||n

≤ ηTOL
t (30)

A new time step ∆tnew
n is determined from the asymp-

totic temporal error estimate for the local error using a
strategy similar to [10]. We introduce two real parame-
ters βt1 < 1.0 and βt2 > 1.0 and one integer Kt > 0 to
control the time step change. If ηt > ηTOL

t , then the so-
lution is rejected and a time-step refinement is performed.
If ηt < βt1η

TOL
t , occurs Kt successive times, then the solu-

tion is accepted, and the time-step size is increased for the
next time step. The parameter βt2 > 1.0 is used as a safety
factor for accepting a new time-step size. For this purpose,
we use a smaller value ηTOL

t /βt2 in place of the tolerance
ηTOL

t in the formula in determining the new time step size.
In this way, the error resulting from the new time-step will
always satisfy ηt < ηTOL

t .
To control the temporal error in solving the radiation

boundary functions, we define at each time step n, the L2-
norm on the boundary Γ,

||w||2n =
∫ 2π

0

(w(θ, t−n ))2 dθ = 2π

J∑
j=1

||wj ||2n. (31)

||wj ||2n =
M∑

m=−M

(wm,j(t−n ))2. (32)

In the above, J is the number of auxiliary boundary
functions used for each mode. Typically, M = 20, J = 6.

A local measure of the temporal error is then obtained
by computing the residuals of the discontinuous solution at
a time-step,

||ew||2n = 2π
M∑

m=−M

([[wm(tn)]])2 (33)

We then monitor the relative error,

ηw =
||ew||n
||w||n < ηTOL

w . (34)

If the relative boundary error (34) exceeds the tolerance
ηTOL

w , the time step can be redefined similar to that used for
the internal field variables u and v. In practice, the relative
boundary error (34) is typically of the order of the error in
the field variables, and the time step change for the coupled
interior/boundary system is controlled by (30).

Typically, the acoustic field is initially localized to a
compact region internal to the computational domain Ω.
In this case, nonzero amplitudes for the field variables u
and v will take time to reach the truncation boundary Γ,
as dictated by the wave speed c. In this case, solutions to
the boundary functions wm can be ‘turned-off’, reducing to
the local first-order B1 condition. To identify the first oc-
currence of a nonzero amplitude, the boundary norm (12) is
monitored, and the magnitude checked against a small toler-
ance. When the boundary norm exceeds this tolerance, then
the boundary functions wm are ‘turned-on’ in the coupled
solution algorithms described earlier, with error monitored
by (34).

SPATIAL ERROR ESTIMATION
For an estimate of the spatial error at a given time-step,

we compute the difference between SPR and FEM gradients
measured in the L2 norm. The error is computed over each
element Ωe, and summed to give the global error,

||es||2n =
ne∑

e=1

||es||2n,e (35)

||es||2n,e =
∫

Ωe

[∇u∗(x, t−n+1) −∇uh(x, t−n+1)]
2 dx

In the above, ∇u∗ is the gradient obtained from the su-
perconvergent patch recovery (SPR) technique [17], while
∇uh, is the constant gradient approximation within each
element. Since the recovered gradient ∇u∗ converges at a
higher rate than the FEM gradient ∇uh, the effectivity of
the error indicator, as measured by the ratio of the esti-
mated error to the true error, is asymptotically exact, i.e.,
as the mesh is refined, the effectivity index will approach
the optimal value of one, [18].

To control the spatial accuracy, the estimated relative
error is kept below a specified tolerance:

ηs(tn) =
||es||n
||uh||n

≤ ηTOL
s (36)

Once the estimated error is calculated, and it is determined
that a new mesh is required, an optimal mesh is obtained
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by assuming equal distribution of error with the least num-
ber of required elements. The refinement condition which
satisfies this optimal criteria is determined from,

hnew
e = hold

e /ξe (37)

where hold
e denotes the characteristic size of element e, in

the previous (old) mesh, and hnew
e is the desired size of the

new elements in the region covered by that old element. The
refinement parameter is defined on each element by [19]:

ξe =
η
1/(p+1)
e

(ηTOL
s )1/p

[
Ne∑
e=1

η2/(p+1)
e

]1/2p

, ηe =
||es||n,e

||uh||n,e

(38)
In the above, p is the polynomial degree of the basis func-
tions used in the mesh, and ηe is the contribution from
element e to the estimated relative global error, ηs.

Similar to the adaptive strategy used to change time
step size, we introduce two real parameters βs1 < 1.0 and
βs2 > 1.0, and one integer Ks > 0. If ηs > ηTOL

s , then the
solution is rejected and a mesh refinement is performed. If
ηs < βs1η

TOL
s , occurs Ks successive times, then the solu-

tion is accepted, and the mesh is redistributed to a coarser
mesh. In order to satisfy ηs < ηTOL

s with the new mesh, we
use ηTOL

s /βs2 in place of the ηTOL
s in (38). To maintain ge-

ometric fidelity of boundary features, a maximum element
size is enforced, he < hmax.

OVERVIEW OF ADAPTIVE STRATEGY
The overall adaptive solution process may be summa-

rized in the following:

1. Generate initial mesh, and set initial time step size.
2. Loop over time steps,

(a) Time Step Control within interval (tn, tn+1).
i. Predict from previous step solution.
ii. Solve coupled interior/boundary equations us-

ing multi-level iterative method.
iii. Temporal error estimation.
iv. If new time-step, update and return to 2(a).

(b) Spatial error estimation.
(c) If new mesh required, remesh and transfer

(project) solution from previous mesh to new
mesh, reform matrices and return to 2(a).

3. End Time Step Loop.

To manage cost, only one remesh is allowed per time-
step.

1 SINUSOIDAL SCATTERING
To validate the accuracy of the DGFEM formulation

with the multi-level iterative algorithm against a known so-
lution, we first consider an incident plane-wave defined by
a steady sinusoidal function for all time t > ν · (x − x0)/c:

u(i)(x, t) = − sin[ω(t − ts)] H(t − ts) (39)

Here H(t) is the unit-step (Heaviside) function.
We then consider the problem of scattering of an inci-

dent plane-wave traveling off-axis from an infinite elliptic
cylinder. The ellipse is defined by coordinates x = a cos θ,
and y = b sin θ, (a, b) = f(cosh µ, sinhµ). Here we choose
the radial coordinate µ0 = 0.1, with foci f = 1, such that
(a, b) = (1.005, 0.100), resulting in a 10:1 ratio. The cylin-
der is assumed rigid and infinite in the z-direction.

The direction of the incident plane-wave is determined
by the unit wave vector ν = [cos α, sin α], where α = 30o

is the angle between the lines of constant phase and the x-
axis. The time delay, ts = ν · (x − x0)/c, is proportional to
the wave speed and position of the incident wave as it moves
past the ellipse. Here x0 = [x0, y0] defines the position of
the initial wave front at t = 0.

For the space-time finite element solution, the radius
of the circular radiation boundary Γ is set at R = 1.25,
with RBC of order J = 6, and M = 20 circumferential
modes. From previous studies, [12], the use of J = 6 is
found to give accurate solutions for problems of this type.
The initial mesh is shown in Fig. 3. The computation is
driven from rest to steady-state with c = 1, and frequency
k = ω/c = 2π.

Fig. 7 shows the scattered field solution obtained by
DGFEM. The corresponding adaptive mesh is shown in Fig.
8. The initial scattered field is localized to a compact region
near the LHS of the ellipse. As the solution progresses the
mesh is redistributed to efficiently track the transient wave
front of the scattered field.

Fig. 9 shows the total energy norm for the scattered
field within the computational domain. The energy starts
from an initial zero state, and then increases as the incident
wave progresses. After approximately t = 2, the transient
solution reaches an initial steady-state. A full steady solu-
tion is reached after t = 8.

Fig. 5 shows the time-history at a representative obser-
vation point 1 on the bottom surface of the elliptic scatterer,
see Fig. 4. The results show that the DGFEM solution with
the high-order radiation boundary conditions are very ac-
curate.

Fig. 6 shows the instantaneous L2 error on Γ. By
setting a smaller error tolerance in the adaptive solution,
the error is reduced accordingly.
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Figure 3. Computational domain defined by elliptic cylinder surrounded

by circular radiation boundary. Initial mesh: 5700 elements, 2989 nodes.

1

2

Figure 4. Illustration of observation points (0,±b) = (0,− sinh 0.1)
on the bottom/top surface of the elliptic scatterer.

Fig. 10 and 11 shows the number of DOF and time-
step size ∆tn during the adaptive solution process. The
results show that in order to control the accuracy during
the initial transient wave solution, the number of DOF in
the mesh increases. At the same time, the time-step size
is increased until the initial steady-state has been reached,
near t = 2. After this time, both the spatial and temporal
errors fall within the bounds set, and no remeshing or time-
step changes are needed.
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Figure 5. Solution at observation point 1.
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Figure 6. L2 error on radiation boundary, with ηTOL
s =

(15%, 10%, 7%). Max L2 error = (0.0268, 0.0130, 0.0076)

RICKER PULSE SCATTERING
We next set the incident wave to be the finite duration

wavelet,

u(i)(x, t) = g(t − ts) h(x, t), (40)

defined by the modified Ricker pulse,

g(t) =
(0.25β2 − 0.5)e−0.25β2 − 13e−13.5

0.5 + 13e−13.5
(41)

h(x, t) = H(t − ts) − H(t − ts − 6
√

6/ωr)
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Figure 7. Scattered field DGFEM solution for sinusoidal incident plane

wave at 30o angle, at snapshots in time: t=0.5, 1.0, 1.5, 2.0.

Figure 8. Adaptive mesh for sinusoidal incident plane wave problem at

snapshots in time: t=0.5, 1.0, 1.5, 2.0.
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main Ω.

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

Time

N
o.

 o
f E

qu
at

io
ns

0 2 4 6 8 10 12

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time

R
el

at
iv

e 
S

pa
tia

l E
rr

or

Figure 10. Adaptive mesh based on control parameters: ηTOL
s =

10%. (βs1, βs2) = (0.5, 1.2), Ks = 20, hmax = 0.12.
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Figure 11. Adaptive time-steps based on control parameters: ηTOL
t =

0.6%. (βt1, βt2) = (0.8, 1.1). Kt = 10.

In the above, β = ωrt − 3
√

6 where ωr is the dominant
frequency of the excitation. A Ricker pulse wavelet is chosen
for its well defined and controllable frequency band, see [14].

We use our adaptive DGFEM with high-order accurate
radiation boundary conditions to track the scattered field
as the Ricker pulse reflects from the rigid ellipse.

Fig. 12 shows the adaptive DGFEM scattered field so-
lution at representative snapshots in time. The contours are
rescaled at each time step, so that the max/min values at a
given time step are distributed evenly between thirty con-
tour lines. Fig. 13 shows the corresponding mesh efficiently
tracking the scattered field as the wave pulse moves through
the computational domain. A fine mesh is distributed in re-
gions of high gradient while a coarse mesh is distributed in
quiescent regions. Initially, the scattered field is localized
near to the surface of the scatterer and then expands as the
plane-wave pulse progresses past the elliptic scatterer. The
incident wave leaves the computational domain just after
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Figure 12. Scattered field solution from Ricker pulse at snapshots in

time: t = (1.0, 2.5), δt = 0.5 Figure 13. Adaptive mesh tracking Ricker pulse scattered solution.
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Figure 14. Total energy norm (28) computed within the computational

domain Ω.
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Figure 15. Adaptive mesh controlled by: ηTOL
s = 10%. (βs1, βs2) =

(0.5, 1.1), Ks = 20, hmax = 0.12.
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Figure 16. Adaptive time-steps controlled by: ηTOL
t = 0.5%,

(βt1, βt2) = (0.7, 1.2). Kt = 10.

t = 3.5. The backscatter continues with significant ampli-
tude up to t = 5.

The global energy norm defined in (26),(28) is com-
puted and monitored as the solution progresses. As shown
in Fig. 14, initially the energy of the scattered field builds-
up within the computational domain as the incident wave
pulse progresses. After some time, the scattered field waves
are transmitted through the circular truncation boundary
Γ, giving rise to radiation damping.

Fig. 15 shows the total degrees-of-freedom (DOF)
count as the solution progresses in time. The number
of DOF adapt to maintain a maximum spatial error of
ηs ≤ 10%. The results also show that if the initial uniform
mesh of 2989 nodes is fixed for all time, the spatial error is
significantly higher than the 10% target and requires many
more DOF compared to the adaptive solution. The adap-
tive time-step size is shown in Fig. 16. Initially the time
steps are small and then gradually increase to maintain a
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Figure 17. Error estimate for radiation boundary equations. (Top) L2-

norm ||w||n, defined in (31). (Bottom) Relative error ηw , as measured

from temporal jump conditions.

target temporal error range, with maximum relative error
ηt ≤ 0.5%.

Fig. 17 shows the norm of the auxiliary boundary func-
tions, ||w||n, defined in (31) and relative temporal error
ηw defined in (34). The results show that the norm of the
boundary functions is approximately zero up until the initial
time, t = 0.8, at which significant amplitudes of the inte-
rior scattered field reaches the circular truncation boundary.
For this simulation, the relative error is below the tolerance
ηw < 1.0%, for all time-steps.

Fig. 18 shows a comparison of the adaptive and fine
mesh solution at the bottom surface of the ellipse as illus-
trated in Fig. 4. The results show that by decreasing the
estimated error tolerances, we are able to match the fine
mesh solution accurately with significantly fewer nodes and
time-steps.

Figure 19 shows that only a few iterations per time-step
are needed to advance the solution using our multi-level
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Figure 18. Adaptive solution compared with a fine mesh solution at ob-

servation point 1: (0,−b); (Top) ηTOL
s = 10%. (Bottom) ηTOL

s =
6.5%.
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Figure 19. Total number of iterations = 4747 over interval t=(0,5).
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iteration algorithm with error tolerance ε = 10−6.

CONCLUSIONS

Comprehensive adaptive procedures with efficient solu-
tion algorithms for the time-discontinuous Galerkin space-
time finite element method (DGFEM) including high-order
accurate nonreflecting boundary conditions for unbounded
wave problems are developed. The procedures are im-
plemented in two-dimensions but are also valid for three-
dimensional problems as well.

Computationally efficient matrix structures are derived
for high-order polynomial interpolation, reducing the size
of the equations to be solved in half. The coupled inte-
rior/boundary equations are solved efficiently using sparse
multi-level iterative algorithms based on the Gauss-Seidel
method. Due to the local nature of wave propagation, the
iterative strategies require only a few iterations per time
step to resolve the solution to high accuracy. Further cost
savings are obtained by diagonalizing the mass and bound-
ary damping matrices. In this case the algebraic struc-
ture decouples the diagonal block matrices for the velocity
equations, giving rise to a very fast, unconditionally sta-
ble explicit iterative method. For accurate data transfer
(projection) between adaptive meshes, a new superconver-
gent interpolation (SI) method was developed for low-order
3-node triangle elements. The procedures are easily ex-
tended to quadrilaterals and tetrahedra. Numerical studies
of transient scattering demonstrate as wave pulses propa-
gate throughout the mesh, elements are refined near wave
fronts, and unrefined where the solution is smooth or quies-
cent. Time-steps are also adjusted to maintain given error
tolerances. The result, is a very efficient, accurate and reli-
able, self-adaptive method.

Further work we are currently pursuing is the imple-
mentation of the iterative solution methods presented with
quadratic and higher-order polynomials in space and time,
within our reduced algebraic matrix structure, and com-
bined with an hp-adaptive strategy in both space and time.
Using this approach, it is expected that exponential rates
of convergence can be achieved, not only in space, but also
in time. We are also developing local space-time elements
constructed from sub-time steps within different elements
in a space-time slab. The end result, will be a truly lo-
cal hp-adaptive method which can distribute elements lo-
cally in both space and time to efficiently track transient
waves from structures subjected to scattering and/or radia-
tion with high-frequency, compact wavelet pulses including
explosive shock waves with sharp gradients.
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