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ABSTRACT

Local space-time adaptive methods are developed including
high-order accurate nonreflecting boundary conditions (NRBC)
for time-dependent waves. The time-discontinuous Galerkin
(TDG) variational method is used to divide the time-interval into
space-time slabs, the solution advanced from one slab to the
next. Within each slab, a continuous space-time mesh is used
which enables local sub-time steps. By maintaining orthogo-
nality of the space-time mesh and pre-integrating analytically
through the time-slab, we obtain an efficient yet robust local
space-time adaptive method. Any standard spatial element may
be used together with standard spatial mesh generation and vi-
sualization methods. Recovery based error estimates are used
in both space and time dimensions to determine the number and
size of local space-time elements within a global time step such
that both the spatial and temporal estimated error is equally dis-
tributed throughout the space-time approximation. The result is
an efficient and reliable adaptive strategy which distributes lo-
cal space-time elements where needed to accurately track time-
dependent waves over large distances and time. Numerical ex-
amples of time-dependent acoustic radiation are given which
demonstrate the accuracy, reliability and efficiency gained from
this new technology.

∗Corresponding Author

INTRODUCTION
For wave modeling, a standard approach is to use explicit

methods which do not require matrix factorization to advance
solutions in time at discrete time-steps. However, a difficulty
with these methods is that they are only conditionally stable, re-
quiring a small time step below a limit dictated by the size of the
smallest elements in a discretization of the computational do-
main. Often for unstructured and adaptive meshes for complex
structures, there may be a small number of patches in a mesh with
relatively small element size compared to the majority of larger
elements in other regions. To ensure reliability, a smaller time
step than required for accuracy is often used, resulting in a po-
tentially inefficient solution. For example, a sufficiently accurate
solution may be obtained with 20 time-steps per wave period,
yet to ensure stability throughout the entire mesh, often the time-
step requirement is run at over 100 time-steps per wave period,
resulting in a large number of time steps to advance the solution
over large time-intervals found in many applications including
radiation and scattering of acoustic and elastodynamic waves.

Unconditionally stable implicit time-stepping methods com-
monly used in structural dynamics such as the Newmark and re-
lated family of second-order methods exhibit significant disper-
sion and or amplitude decay errors for wave pulses with broad-
band frequencies traveling over large distances and time, causing
misrepresentation of arrival time and directionality at a distant
target. To minimize these errors, higher-order accurate methods
are needed. Time-discontinuous Galerkin (TDG) finite element
methods employ finite element discretization of the time domain
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as well as the usual discretization of the spatial domain, [1]- [13],
and provide a foundation on which to built high-order accurate
and adaptive time-stepping methods. TDG methods are charac-
terized by allowing for discontinuous solutions at the beginning
of each time step.

In this work we propose high-order accurate and uncondi-
tionally stable TDG space-time finite element methods with the
ability to adaptively distribute local sub-time steps for different
elements in an adaptive spatial mesh in order to reliably and effi-
ciently track localized waves over large distances and time.

In [11]- [14], comprehensive adaptive procedures for a
multi-field TDG space-time finite element method includ-
ing high-order accurate nonreflecting boundary conditions for
unbounded wave problems were developed. The solution
method used a multi-level iterative solver for the coupled inte-
rior/boundary equation system built from independent displace-
ment and velocity field variables together with auxiliary func-
tions appearing in nonreflecting boundary conditions for wave
problems in unbounded domains. The adaptive methods were
demonstrated for the scalar wave equation in two spatial dimen-
sions with independent pressure and velocity potential field vari-
ables in the TDG-FEM for acoustic radiation and scattering prob-
lems. The TDG-FEM formulation for acoustic variables was first
given in [7,8].

An h-adaptive space-time strategy was employed based on
the Zienkiewicz-Zhu [17] spatial error estimate using the super-
convergent patch recovery (SPR) technique for the spatial mesh
at the end of a time-step. Using this adaptive strategy, as wave
pulses propagate throughout the mesh, elements are refined near
wave fronts, and unrefined where the solution is smooth or qui-
escent, providing efficient wave tracking over large distance and
time.

In [9], [11]- [13], [14], a global time-stepping strategy was
used based on measuring the jump, i.e., the difference in the
discontinuous solution at each time-step measured in an energy
norm. The effectiveness of the jump in discontinuous solutions
as an error indicator was shown in [14] to be due to the super-
convergent property of the TDG solution at the end of a time-
step. A limitation of this previous work was that while the global
time step size could be adjusted to maintain a given estimated
error tolerance, the same time step size had to be used for ev-
ery spatial element in the computational domain. In this work,
a generalization of the above strategy to include the use of local
sub-time step sizes for each spatial element is developed. Simi-
lar to the adaptive distribution of spatial elements, for localized
wave pulses propagating throughout the computational domain,
elements near wave fronts will have small sub-time step sizes
within a global space-time slab in the TDG-FEM. Fewer, sub-
time steps are used where the solution is smooth or quiescent,
providing improved efficiency in tracking localized waves over
large distances and time.

Adaptive time-stepping methods require projection methods

to transfer solutions from a previous mesh to a current mesh.
For low-order elements, standard nodal interpolation may lead
to significant accumulation of error over time. To minimize this
difficulty, a new superconvergent interpolation (SI) method de-
veloped in [14] will be used in this work.

The most general strategy is to treat the time-domain as an-
other dimension on par with the spatial dimensions. For exam-
ple, for a problem in two space dimensions, the time dimen-
sion would create an unstructured mesh of three-dimensional
space-time elements such as hexahedra or tetrahedra within a
space-time slab. In this strategy, there is no distinction between
space and time, and an unstructured three-dimensional space-
time mesh could be used. A difficulty with this approach is
that for problems in three spatial dimensions, the fourth time-
dimension on unstructured space-time element meshes requires
special 4-dimensional elements to be formulated with compli-
cated Jacobian transformations to a four-dimensional reference
element, and requires special 4-dimensional mesh generation and
visualization schemes.

A slightly more restrictive yet greatly simplified strategy
proposed here is to limit the local space-time elements within
a mesh to be orthogonal with respect to space and time. In this
strategy element edges in the time direction remain orthogonal to
the spatial dimension. This results in an uncoupled space-time el-
ement Jacobian transformation. As a result, the integration over a
local sub-time step is independent of the spatial coordinates and
thus can be evaluated analytically in closed-form for each ele-
ment. This has the advantage that any standard spatial element
may be used; the time integration carried out independently. For
example, for structural acoustics problems, standard acoustic and
shell elements may be used.

While solutions remain discontinuous at the beginning of
a global space-time slab, local space-time elements are contin-
uous within the global slab. Our approach could then be de-
scribed as a mixed Time-Discontinuous Galerkin (TDG) method
for global time-stepping with local continuous approximation
within a global step. To match continuity in time for adjacent
space-time elements, transition elements with a single mid-edge
node in the time-dimension are developed to connect elements
with different sub-time step sizes. Other standard approaches
may be used to enforce continuity, including constraint condi-
tions used in hp-FEM. In contrast to an unstructured space-time
mesh strategy, the strategy of maintaining orthogonality of space
and time enables the straightforward implementation of prob-
lems in both two- and three- spatial dimensions. No special
four-dimensional mesh generators or complicated visualization
techniques are required.

When introducing local sub-time steps for different elements
within a global space-time slab, the temporal error estimator
based on the difference (jump) in solutions between time slabs
used in our previous work proved unreliable. In order to obtain
an effective temporal error estimator three alternatives are pro-
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posed. In the first, the temporal error estimator is based on the
difference between the independent velocity variablevh and the
time-derivative of the displacement variableduh/dt. In the sec-
ond, the recovered temporal derivatives using the superconver-
gent patch recovery (SPR) technique are compared to the lower
order finite element approximation to the time derivative. The
third approach uses the SPR recovered time-derivatives with the
superconvergent interpolation (SI) method applied in the time
dimension to obtain improved temporal solutions. This super-
convergent interpolation uses the more accurate recovered time-
derivatives to obtain more accurate solutions within an element.
Based on the local temporal error estimates within each ele-
ment, a local temporal h-adaptive strategy is proposed to redis-
tribute sub-time steps such the error is approximately equally dis-
tributed. When a given temporal error tolerance is exceeded, the
error is redistributed by using more sub-time steps in elements
with large temporal errors.

The assembled coupled interior/boundary equation system
is solved using a restarted Generalized Minimal Residual (GM-
RES) iterative solver [19] with Incomplete Lower-Upper factor-
ization with dual truncation (ILUT) [20] preconditioning. A sim-
pler Jacobi preconditioner is used for the boundary equations.
To accurately model the unbounded region, the high-order local
radiation boundary conditions (RBC) derived in Hagstrom and
Hariharan [15, 16] are applied on an artificial truncated bound-
ary; here implemented with the TDG-FEM.

Exterior Acoustic Wave Problem

Γ

S

Ω

D

R

Figure 1. Illustration of two-dimensional unbounded region R surround-

ing a scatterer S . The computational domain Ω ⊂ R is surrounded

by a circular truncation boundary Γ of radius R, with exterior region

D = R −Ω.

Consider time-dependent waves in an infinite two-
dimensional regionR , surrounding an object with surfaceS . For
computation, the unbounded region is truncated by an artificial
circular boundaryΓ, of radius||xxx|| = R, resulting in a finite do-
mainΩ ⊂ R , see Figure 1. WithinΩ, the solutionu(xxx, t), satis-
fies the scalar wave equation with wave speedc > 0,

1
c2

∂v
∂t

= ∇2u + f (xxx, t), v =
∂u
∂t

, xxx∈ Ω, t > 0 (1)

with initial conditions, u(xxx,0) = u0(xxx),v(xxx,0) = v0(xxx). The
source f and initial datau0 andv0 are assumed to be confined
to the computational domainΩ, so that in the exterior region
D = R −Ω, the scalar fieldu(xxx, t) satisfies the homogeneous
form of the wave equation. For acoustics,u may be considered
the pressure fluctuation from a reference state. Assuming lin-
ear irrotational fluids,u may also represent a velocity potential
field. To specify radiation or scattering directly on the surfaceS ,
a Neumann boundary condition is specified,

∂u
∂n

= g(xxx, t), xxx∈ S , t > 0 (2)

In linear acoustics, the conditiong = 0, corresponds to a ‘rigid’
scatterer. For later use, the solution evaluated on the circu-
lar truncation boundary atr = R, is denoted by,uΓ(θ, t) =
u(R,θ, t), θ ∈ [0,2π), t > 0, Similarly,vΓ(θ, t) = ∂uΓ/∂t.

Let www(θ, t) = {wj(θ, t)}p
j=1, be defined as a time-dependent

vector of p, real valued scalar auxiliary functions. We then de-
fine a sequence of high-order accurate local radiation boundary
conditions (RBC) on the artificial truncation boundaryΓ, by [16]

∂u
∂r

∣∣∣∣
r=R

+
1
c

vΓ(θ, t)+
1

2R
uΓ(θ, t) =

1
R

w1(θ, t) (3)

The boundary functionw1(θ, t) is the first coefficient in the vec-
tor www, and is found by solving the following first-order partial
differential equation system in time: GivenuΓ(θ, t), Findwww(θ, t),
such that,

1
c

∂www
∂t

+
1

4R

(
AAA1 +AAA2

∂2

∂θ2

)
www(θ, t) = bbbuΓ(θ, t), (4)

In the above,AAA1 andAAA2 are constantp× p, tri-diagonal and uni-
diagonal matrices, respectively, defined with band:

AAA1 = Band

[
−( j − 1

2
)2 , 4 j , −4

]
;

AAA2 = Band[−1, 0, 0] . (5)
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The vector operator,

bbb =
1
R

(
b1 +b2

∂2

∂θ2

)
eee1, b1 = 1/8, b2 = 1/2 (6)

is defined byeee1 = {δ j1}p
j=1; the scaled unit vector of orderp.

In the above, the recursive sequence has been scaled by{wj} =
{Rj zj}, where{zj} are the original boundary functions derived
in [15]. This rescaling renders the coefficient matricesAAA1 and
AAA2 to be independent ofR. Since both (3) and (4) contain the
boundary functionsw1(θ, t) anduΓ(θ, t), the equations (1) and
(4) are coupled. This sequence of boundary conditions have been
implemented in [16] and shown to be increasingly accurate as the
number of functionsp is increased.

TDG FEM Formulation with Local RBC
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Figure 2. Illustration of two consecutive space-time slabs showing local

sub-time steps within different space-time elements.

The development of the space-time method proceeds by
considering a partitionN of the total time interval,t ∈ J =
(0,T),0< T < ∞, of the form: 0= t0 < t1 < · · ·< tN = T , intoN
time steps{In}N−1

n=0 given byIn = {(tn, tn+1)}. The length of the
variable time step is given by∆tn = tn+1−tn. Using this notation,
Qn = Ω× In, are thenth space-time slabs. Figure 2 shows an il-
lustration of two consecutive space-time slabsQn−1 andQn, each
with different meshes. Within each space-time element, the trial

solution and weighting function are approximated by a finite ba-
sis which depend on both spatialxxx, and temporalt, dimensions.
The basis functions are assumedC0(Qn) continuous throughout
each space-time slab, but are allowed to be discontinuous across
the interfaces of the slabs. The space of finite element basis func-
tions in a multi-field representation is stated in terms ofindepen-
dentvariablesu, andv, [7,8].

In the following, the space-time finite element formulation
for the initial-boundary value problem within the bounded com-
putational regionQn = Ω× In, supplemented by the local radia-
tion boundary conditions (RBC) given in (3) and (4) onΓ× In, is
given. The statement of the time-discontinuous Galerkin (TDG)
method may be stated as,Given: source and boundary data
f , g, and initial conditions{u(xxx, t−n ),v(xxx, t−n )}, andwww(θ, t−n ), pro-
jected from the previous time step, then for each space-time slab,
n= 0,1, . . . ,N−1; Find: uuu= {u(xxx, t),v(xxx, t)}, andwww(θ, t), where
xxx∈ Ω∪ ∂Ω, t ∈ In = (tn, tn+1), andθ ∈ (0,2π), such that for all
admissible functions̄uuu = {ū(xxx, t), v̄(xxx, t)}, and w̄ww(θ, t), the fol-
lowing coupled variational equations are satisfied,

A(ūuu, uuu)n +BΓ(ūuu, uuu)n = FS(v̄)n +FΓ(v̄,w1)n (7)

AΓ(w̄ww, www)n = FΓ(w̄ww,u)n (8)

In the above,

A(ūuu, uuu)n :=
∫

In

{
(v̄,

1
c2

∂v
∂t

)+(∇v̄, ∇u)+(∇ū, ∇
∂u
∂t

−∇v)
}

dt

+(v̄(t+n ) , [[
1
c2 v(tn)]])+(∇ū(t+n ) , [[∇u(tn)]]) (9)

BΓ(ūuu, uuu)n :=
∫

In

{
1
c
(v̄, v)Γ +

1
2R

(v̄, u)Γ +
1

2R
(ū,

∂u
∂t

−v)Γ

}
dt

+
1

2R
(ū(t+n ) , [[u(tn)]])Γ (10)

FS(v̄)n :=
∫

In
{(v̄, f )+(v̄, g)S} dt (11)

AΓ(w̄ww, www)n =
∫

In

{
1
c
(w̄ww,

dwww
dt

)Γ +(w̄ww,AAAwww)Γ

}
dt

+
1
c
(w̄ww(t+n ), [[www(tn)]])Γ (12)

FΓ(v̄,w1)n =
∫

In
(v̄, w1)Γ dt (13)

FΓ(w̄ww,u)n =
∫

In
(w̄ww, bbbu)Γ dt (14)

Integration is taken over a typical time intervalIn = (tn, tn+1),
with size∆tn = (t−n+1− t+n ) > 0. The parenthesis notation(· , ·),
denotes a standard integral (L2 inner product) defined overΩ. In
the above, integration-by-parts on the boundary is used to bal-
ance the angular derivatives appearing in the local boundary op-
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erators,

(w̄ww,AAAwww)Γ =
1

4R
(w̄ww,AAA1www)Γ − 1

4R
(

∂w̄ww
∂θ

,AAA2
∂www
∂θ

)Γ (15)

(w̄ww, bbbu)Γ = (w̄ww, bbb1u)Γ − (
∂w̄ww
∂θ

, bbb2
∂u
∂θ

)Γ (16)

Local Space-Time Discretization

t

x

tn+1

tn

Figure 3. Illustration of local space-time elements within a time slab for

one spatial dimension. The example shows a maximum of eight sub-time

steps with transitions to four, then two, then one sub-time step.

To maintain decoupling of the space-time dimensions, an
orthogonal space-time finite element discretization is assumed
within a space-time slabQn = Ω× In. As shown in Figure 2,
we first discretize the space-time domainQn into space-time
columns based on spatial elements, then divide some of these
columns with smaller sub-time steps. At a spatial elementΩe

n,
there areNe

t non-overlapping sub-time steps with intervals,

I e
n,i = (te

n,i , t
e
n,i+1), i = 1, . . . ,Nt

such thatIn =
⋃Ne

t
i=1 I e

n,i . With this construction, the local space-
time elements are defined asQe

n,i = Ωe
n× I e

n,i , i = 1, . . . ,Ne
t .

The local sub-time step size is defined by∆te
n,i = te

n,i+1 −
te
n,i , wherete

n,1 = t+n andtn,Ne
t +1 = t−n+1 are the beginning and end

of the global time slab. In order to simplify the discretization,
all sub-time steps at one spatial element are restricted to have
the same size, i.e.,∆te

n = ∆te
n,i , i = 1, . . . ,Ne

t ; see Figure 3. This
restriction is not required in the formulation, yet will simplify the
adaptive space-time mesh generation.

Within a local space-time elementΩe
n,i , the finite element

approximation is defined as the linear combination of the usual
spatial basis functionsNa(xxx),

u(xxx, t) =
nen

∑
a=1

Na(xxx)ua(t) = NNNe(xxx)uuu(t). (17)

In the above,xxx ∈ Ωe
n, t ∈ I e

n,i = (te
n,i , t

e
n,i+1), anda = 1, . . . ,nen

is the spatial element node number; for an element withnen

spatial nodes, e.g. for a triangle element with three vertices,
nnen = 3. The solution vector associated with each spatial node
is uuu(t) = {ua(t)}nen

a=1. Within the ith sub-time stepI e
n,i , the time-

dependent nodal solutionua(t) can be expressed with the tempo-
ral interpolation,

ua(t) =
ra

∑
p=1

φa,p(t)ua(tp) = φφφa(t)ddda, t ∈ I e
n,i (18)

where{φa,p(t)}ra
p=1 are time-dependent basis functions associ-

ated with spatial nodea, and ddda = {ua(tp)}ra
p=1 is the solu-

tion vector of temporal degrees-of-freedom associated with node
a. The number of temporal degrees-of-freedom associated with
nodea is defined asra. Within a time-slab continuity is main-
tained, so that standardC0(In) continuous basis functions such as
linear or high-order Lagrange or hierarchical interpolation func-
tions may be used. For simplicity, we have implemented linear
Lagrange interpolation; typical nodes havera = 2. Transition el-
ements have an additional midside degrees-of-freedom along the
temporal direction to allow for continuous one-half sub-time step
divisions between adjacent elements.

In summary, the approximation within a space-time element
Qe

n,i , may be stated as

u(xxx, t) = NNNe(xxx)φφφe(t)ddde (19)

whereφφφe(t) is an array of nodal temporal interpolation functions
with partitionsφφφa(t). Here,ddde is the solution vector containing
all degrees-of-freedom for the space-time element,

ddde = {ua(tp)}, a = 1, . . . ,nen, p = 1, . . . , ra.

When the number of temporal degrees-of-freedom is the same
for each node in the element, i.e.,ra = r, a = 1, . . . ,nen, then the
approximation may be written as,

u(xxx, t) = NNNe(xxx)
r

∑
p=1

φφφp(t)ddd(tp) (20)

where, φφφ(t) = φp(t)III nen×nen, and ddd(tp) is the vector,
{ua(tp)}, a = 1, . . . ,nen. A similar approximation is given
for the independent field variablev(xxx, t) and auxiliary functions
www(θ, t).

Matrix Equations
Substituting the local space-time element approximations

into (7), and after assembly, the space-time matrix equation for
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each time slab takes the form,

[
KKK1 −KKK2

KKK2 MMM +CCC

]{
uuu
vvv

}
=
{

FFFu

FFFv

}
(21)

In the above, the global arrays are the assembly of space-time
element matrices defined by,

(mmm)e,i = [mmmpq]+ [δ1pδ1qδ1immme], mmmpq =
∫

Ie
n,i

φφφT
p(t)mmmeφ̇φφq(t)dt

(kkk1)e,i = [kkkpq
1 ]+ [δ1pδ1qδ1ikkke], kkkpq

1 =
∫

Ie
n,i

φφφT
p(t)kkkeφ̇φφq(t)dt

(kkk2)e,i = [kkkpq
2 ], kkkpq

2 =
∫

Ie
n,i

φφφT
p(t)kkkeφφφq(t)dt

(ccc)e,i = [cccpq], cccpq =
∫

Ie
n,i

φφφT
p(t)ccceφφφq(t)dt

The space-time element force vectors are given by,

( fff u)e,i = {δ1pδ1ikkkeddd(t−n )}
( fff v)e,i = fff Γ + fff S+{δ1pδ1immmevvv(t−n )}

with

fff Γ = { fff p
Γ}, fff p

Γ = ∑
q

kkkpq
Γ wwwe

1,q, kkkpq
Γ =

∫
Ie
n,i

φφφT
p(t)kkkΓeφφφq(t)dt

fff S = { fff p
S}, fff p

S =
∫

Ie
n,i

φφφT
p(t)(Na , f (xxx, t))Ωe dt,

In the above, the spatial element mass, damping and stiffness
matrices, are defined by standardL2 inner products for a spatial
elementΩe and boundary elementΓe

mmme = [mab]e, mab :=
1
c2 (Na , Nb)Ωe,

ccce = [cab]Γe, cab :=
1
c
(Na , Nb)Γe,

kkke = [kab]e, kab := (∇Na , ∇Nb)Ωe +
1

2R
(Na , Nb)Γe

kkkΓe = [kab]Γe, kΓe,ab = (Na , Nb)Γe

The addition of standard mass and stiffness matrices
[δ1pδ1qδ1immme] and [δ1pδ1qδ1ikkke] result from the jump terms ap-
pearing in the time-discontinuous variation equation at the be-
ginning of the time slab. The Kronecker delta notationδ1pδ1qδ1i

indicates that they are assembled into the global matrices only

at the beginning (p = 1,q = 1) of every 1st (i = 1) space-time
element in the time direction. The size of the matrices are deter-
mined by the total number of degrees-of-freedom for the space
time element, defined bym= ∑nen

a=1 ra.
The time integration is performed analytically in closed-

form. Due to the assumed orthogonality of the space-time dimen-
sions, when implemented at the component level, the element
spatial matrix coefficients are independent of time allowing for
simple time-integration of polynomial basis functions. For ex-
ample, the components of the space-time mass matrixmmmpq are
computed from the integration of,

mpq
ab = mab

∫
Ie
n,i

φp(t)φ̇q(t)dt

for a,b = 1, . . . ,nen, p = 1, . . . , ra andq = 1, . . . , rb.
While not required, for efficiency we assume that within

a spatial elementΩe, each sub-time step is the same size, i.e.,
∆e

n,i = ∆e
n,1, i = 1, . . . ,Ne

t , so that the space-time element matri-
ces are computed once for all sub-time stepsI e

n,i , i = 1, . . . ,Ne
t .

The global matricesKKK1 andMMM are unsymmetric, while the
coupling matrixKKK2 and damping matrixCCC is symmetric. This
system is solved iteratively using the GMRES method with ILUT
preconditioning.

Substitution of local space-time approximations into (8), the
matrix equations for the nodal unknowns of the boundary auxil-
iary functions take the form,

(CCCw +KKKw)www = FFFw (22)

Boundary global matricesCCCw andKKKw and forcing vectorFFFw are
formed by assembly of boundary space-time element array,

cccw = [cccpq
w ]+ [δ1pδ1qδ1iccc

e
w], cccpq

w =
∫

Ie
n,i

φφφp(t)ccce
w φ̇φφq(t)dt(23)

kkkw = [kkkpq
w ], kkkpq

w =
∫

Ie
n,i

φφφp(t)kkke
w φ̇φφq(t)dt(24)

fff w = [ fff p
w]+{δ1pδ1iccc

e
wwww(t−n )}, fff p

w = ∑
q

kkkpq
u uuue

Γ,q (25)

where

kkkpq
u =

∫
Ie
n,i

φφφp(t)kkke
u φφφq(t)dt.

In the above, spatial boundary element damping and stiff-
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ness matrices are defined as

ccce
w = [cccw,ab]e, cccw,ab :=

1
c
(Na , Nb)ΓeIII

kkke
w = [kkkw,ab]e, kkkw,ab :=

1
4R

(Na , Nb)ΓeAAA1− 1
4R

(
∂Na

∂θ
,

∂Nb

∂θ
)ΓeAAA2

with boundary element force vector,

fff e
w = { fff w,a}e, fff w,a :=

nen

∑
b=1

ku,abuΓ,beee1

kkke
u = [ku,ab], ku,ab := (Na , Nb)Γeb1− (

∂Na

∂θ
,

∂Nb

∂θ
)Γeb2

These boundary element arrays can be computed in closed-form,
for details see [16]. The force vector is coupled to the field solu-
tion evaluated on the boundaryuuuΓ.

A multi-level iterative method is used to solve the coupled
interior and boundary equation system defined by (21) and (22).
A restarted version of Generalized Minimal Residual (GMRES)
method with ILUT preconditioner is used to solve both the inte-
rior and boundary equation systems. An outer iterative loop is
used around the interior and boundary equation solvers to obtain
converged solutions for the coupled system.

LOCAL ADAPTIVE STRATEGY
When using different numbers of sub-time steps for different

elements, the temporal error estimator used in [9], [11]- [13],
[14], based on the jump terms at the beginning of a global time
slab, cannot be used to predict new sub-time step sizes. For this
reason, new temporal error estimators are developed for the TDG
FEM with continuous local temporal adaptivity within a space-
time slab.

Temporal Error Estimators
For time slabn, the total energy norm is the summation of

energy over each spatial element in the computational domain,

||uuu||2n = ∑
e
||uuue||2n (26)

The total energy over each element in a time-slab is obtained by
adding contributions from each sub-time step for that element,

||uuue||2n =
1

∆tn

Ne
t

∑
i=1

∫
Ie
n,i

{uuu(t) ·kkkeuuu(t)+vvv(t) ·mmmevvv(t)} dt (27)

t n+1
-

t n
+

t n
-

t e

t e

t e

t
N  +1

e

t

Nt

2

1

Figure 4. Illustration of local sub-time step numbers used for temporal

error estimation.

Figure 4 shows an illustration of local sub-time steps used in
the summation. Hereuuu(t) andvvv(t) are the time-dependent solu-
tion vectors of dimension equal to the number of spatial element
nodes. The estimated temporal error for each spatial element
measured in the energy norm can be written as

||eee∗t ||2e =
1

∆tn

∫
In
{eee∗u(t) ·kkkeeee

∗
u(t)+eee∗v(t) ·mmmevvv

∗
v(t)} dt

=
1

∆tn

Ne
t

∑
i=1

∫
Ie
n,i

{eee∗u(t) ·kkkeeee
∗
u(t)+eee∗v(t) ·mmmevvv

∗
v(t)} dt(28)

whereeee∗u(t) andeee∗v(t) are error estimates for the field variables
in each element.

The estimated total temporal error for the time stepn is then
the summation over all elements,

||eee∗t ||2n = ∑
e
||eee∗t ||2e (29)

Three alternative recovery based error indicators are devel-
oped to drive the local sub-time step adaptive process.

I. e∗v = vh− duh

dt , e∗u = 0

II . e∗v = (du
dt )

∗ − duh

dt , e∗u = 0
III . e∗v = v∗ −vh, e∗u = u∗ −uh

Each of these three temporal error indicators are compared nu-
merically in [23].
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Temporal Error Estimate I
Taking advantage of the dual-field space-time formulation,

for a spatial node within a sub-time step, we define the error in-
dicator from,

e∗v = vh− duh

dt
, e∗u = 0

The independent field variablevh is one order higher more ac-
curate than the derivativeduh/dt. Then this error estimate is
asymptotically optimal. The temporal convergence rate is dic-
tated by the temporal gradientduh/dt, so thate∗u = u∗ − uh �
e∗v ⇒ eu ≈ 0, and with sufficient regularity, the convergence
rate is, ||eee∗t ||n ∼ O(∆t p

n ), where p is the polynomial order in
the temporal approximation. For example, space-time elements
with linear polynomial approximation in time, within each sub-
time step,vh varies linearly whileduh/dt is a constant, and
||eee∗t ||n ∼ O(∆t1

n).

Temporal Error Estimate II
Based on a superconvergent patch recovery (SPR) of sub-

time step nodes, the error can be estimated from

e∗v = (
du
dt

)∗ − duh

dt
, e∗u = 0

Here (du/dt)∗ is the more accurate gradient recovered from a
one-dimensional superconvergent patch recovery in the time-
dimension of the discontinuous finite element temporal gradi-
entsduh/dt. For improved accuracy we form a patch for each
node (xxxA, t+n ) at the beginning of a current time slab, we use
(xxxA, t−n −∆tA

n−1); where∆tA
n−1 is the sub-time step size at node

xA in the previous time slab. Using this measure, the conver-
gence rate is,||eee∗t ||n ∼ O(∆t p

n ). For linear polynomials in time,
p = 1.

Temporal Error Estimate III
Based on the superconvergent interpolation (SI) method de-

rived in [14], here applied for temporal error estimation. With
improved temporal derivatives by SPR, use one-dimensional SI
method to obtain improved solutionsu∗(xxx, t) andv∗(xxx, t) within
each sub-time step. Define the estimated displacement and ve-
locity errors as

e∗u = u∗ −uh, e∗v = v∗ −vh

Using this measure, the convergence rate is,||eee∗t ||n ∼ O(∆t p+1
n ).

Adaptive Sub-time Step Size and Distribution
To maintain a specified level of accuracy at a given time step,

the estimated temporal relative error is enforced to be below a
specified tolerance:

ηt =
||eee∗t ||n
||uuuh||n

≤ ηTOL
t (30)

If ηt > ηTOL
t , a new time slab with new global time step size and

sub-time step distribution is needed. In order to obtain an opti-
mal distribution, the temporal error is uniformly redistributed. A
temporal error density ¯e (temporal error per unit area) is defined
to quantify the uniformity of the distributed temporal error. An
optimal mesh implies a uniform distribution of the error density.
For current time slabn, we define the permissible error density
tolerance over the total computational domainΩ, as

ēTOL =
ηTOL

t ||uh||n√
AΩ

(31)

whereAΩ is the total area of the computational domainΩ.
To obtain uniformly distributed temporal error, the permis-

sible temporal error for elementΩe is set to be
√

AeēTOL, where
Ae is the area of elementΩe. Based on the convergence rate for
norm I and II,‖eee∗t ‖e ∼ O(∆t p

e ), where∆te = ∆te
n is the sub-time

step size for elementΩe, a new optimal sub-time step size∆t ′e for
each element can be predicted from,

∆t ′e =
∆te
ξe

, ξe =
( ||e∗t ||e√

AeēTOL

)1/p

(32)

where∆te is the old sub-time step size for this element, andξe is
the refinement parameter. In practice, it is not possible to use this
optimal time step since the sub-time steps are assumed equally
spaced for simplicity and must add up to the total time-slab size
for all elements in the space-time mesh. For norm III,p→ p+1.

The optimal new sub-time step distribution is approximated
using the following strategy. The idea is to find a minimum
new sub-time step size for the new time slabn, denoted∆t ′min,
based on an average time-step from an equivalent single-step
time slab. The new sub-time steps for each spatial element are
determined by comparing the predicted values from (32) within
finite intervals defined by multiples of the minimum time step,
e.g.∆t ′min,2∆t ′min,4∆t ′min, . . ..

An average global time step size∆t̄, is determined by con-
verting the current time slab into an approximately equivalent
slab with the same temporal error and only one sub-time step ev-
erywhere. Based on the order of accuracy‖eee∗t ‖2

e ∼ O(∆t2p
e ), and
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equating the total estimated temporal error with the total tem-
poral error for an equivalent slab with only one sub-time step
everywhere, we have

||eee∗t ||2n ' ∑
e

(
∆t̄
∆te

)2p

||eee∗t ||2e (33)

then the average time step size is approximated as,

∆t̄ ' (||eee∗t ||n)1/p

ξ
, ξ =

(
∑
e

||eee∗t ||2e
(∆te)2p

)1/2p

(34)

To satisfy the required toleranceηTOL
t , the new average time step

size would be

∆t̄ ′ =
(

ηTOL
t

ηt

)1/p

∆t̄ (35)

The new minimum sub-time step size is then defined by a
fraction of this average time step size,∆t ′min = γt∆t̄ ′ Hereγt <
1 is a parameter used to control the sub-time step distribution.
Numerical studies given in [23] show that the efficiency of the
temporal error distribution is relatively insensitive to the exact
choice for the parameterγt .

The prescribed maximum number of sub-time steps for each
time slab is set to beNmax = 2Kt , Kt = 0,1,2, . . ., resulting in a
global time slab size∆tn = Nmax∆t ′min For each element, if the
predicted sub-time step size computed in (32) satisfies

If (0 < ∆t ′e < ∆t ′min), Set: ke = 0
If (20∆t ′min ≤ ∆t ′e < 21∆t ′min), Set: ke = 1

...
...

...
If (2Kt−2∆t ′min ≤ ∆t ′e < 2Kt−1∆t ′min), Set: ke = Kt −1
If (2Kt−1∆t ′min ≤ ∆t ′e), Set: ke = Kt

The number of sub-time steps for this element isNe
t =

2Kt−ke, while the new adjusted sub-time step size is then

∆t ′e = 2ke∆t ′min (36)

With new sub-time step sizes adjusted in (36),∆t ′min also
needs to be adjusted to ensure the new temporal relative error
ηt satisfies the toleranceηTOL

t . Based on the order of accuracy
‖eee∗t ‖2

e ∼ O((∆te)2p), and‖eee′t‖2
e ∼ O((∆t ′e)2p) the new temporal

error is estimated from,

||eee′t ||2n = ∑
e
||eee′t ||2e = ∑

e

(
∆t ′e
∆te

)2p

‖eee∗t ‖2
e

Then the new minimum sub-time step size which will result in
the tolerance being satisfied is determined from,

∆tmin =
∆t ′min

ξt
, with ξt =

( ||eee′t ||n
ηTOL

t ‖u‖n

)1/p

Finally, for each spatial element, the new sub-time step size is
now ∆tnew

e = 2ke∆tmin, and the global time slab size is∆tn =
Nmax∆tmin.

For example, withNmax= 4, the adaptive distribution of lo-
cal sub-time step sizes for each element will fall into the follow-
ing categories∆tmin = ∆tn/4,2∆tmin = ∆tn/2,4∆tmin = ∆tn, where
∆tn is the adaptive global time-slab size.

Local Temporal Basis Functions

t
y

x

Figure 5. Combination of three different kinds of elements showing tran-

sition of two sub-time steps for the element on the left to adjacent ele-

ments with one time step. The two elements with no transition nodes on

the left have one-half the sub-time step size, as the two transition ele-

ments; the center element with two transition edges, and the element on

the right with one transition edge.

Although not required, in order simplify the adaptive solu-
tion within a space-time slab, the following restrictions on the
division of sub-time steps are followed.

• Orthogonal space-time elements; the time direction of each
element is perpendicular to the spatial dimensions.

• Piecewise linear basis functions in the time dimension are
used for all elements within a space-time slab.

• Permissible sub-time steps and sizes to increase by order
two.

• Transition elements with hanging nodes at the middle points
of temporal edges introduced to maintain continuity of solu-
tions across space-time elements within a time-slab.
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An illustrative space-time mesh with these assumptions is shown
in Figure3.

As stated earlier, within a space-time elementΩe
n× I e

n,i , the
solution is interpolated in time using,

u(xxx, t) =
nen

∑
a=1

Na(xxx)ua(t), where ua(t) =
ra

∑
p=1

φa,p(t)ua(tp)

Herera is the number of temporal nodes at spatial nodea within
a sub-time step. A linear temporal interpolation is employed with
standard Lagrange basis functionsφa,p(t). Using a standard lin-
ear mapping

t =
t1 + t2

2
+

τ
2
(t2− t1), t1 = te

n,i , t2 = te
n,i+1

with the jacobiandt/dτ = ∆te
n,i/2. The basis functions associated

with the beginning and end of a sub-time step interval at a typical
nodea are defined by,

φa,p(τ) =
1
2
(1+ τpτ), p = 1,2, where (τ1,τ2) = (−1,1)

To maintain continuity across adjacent elements with
smaller (by 1/2) sub-time step sizes, a transition node is intro-
duced at the middle point of the temporal edge. In this case the
following piecewise linear shape functions are used,

φa,p(τ) =
{

(1−δp2)(δp3(1+ τ)+ τpτ) , τ ≤ 0;
(1−δp1)(δp3(1− τ)+ τpτ) , τ > 0.

with p = 1,2,3, and(τ1,τ2,τ3) = (−1,1,0).
The space-time element is defined by the temporal projec-

tion of a spacial element. For problems in two-spatial dimen-
sions, the space-time element defined by the temporal projection
of a standard 3-node linear triangle element can be visualized as
a three-dimensional wedge. To maintain mesh continuity, three
possible kinds of space-time elements are developed, see Figure
(5). The first is a standard space-time wedge element with no
transition nodes. Two possible transition elements are possible;
elements with one transition node on an edge, and elements with
two transition nodes, one on each edge.

By maintaining orthogonality of the space-time mesh and
pre-integrating analytically through the time-slab, we obtain an
efficient yet robust adaptive method where any standard spatial
element may be used with no modifications. The procedures have
been implemented in two- spatial dimensions with linear inter-
polations, but the procedures are valid for three-dimensions and
higher-order interpolations as well, including hp-meshes, with
combinations of low-order and high-order space-time interpola-
tions.

Spatial Error Estimation
In this work, we useh-adaptive solution methods with un-

structured spatial meshes. Other spatial adaptive schemes may
also be used, includinghp-adaptive meshes. For an estimate of
the spatial error at a given global time-step, we compute the dif-
ference between superconvergent patch recovery (SPR) gradients
∇u∗, [17], and constant finite element gradients∇uh measured in
theL2 norm. The error is computed over each elementΩe, and
summed to give the global error,

||eees||2n =
ne

∑
e=1

||eees||2n,e (37)

||eees||2n,e =
∫

Ωe

[∇u∗(xxx, t−n+1)−∇uh(xxx, t−n+1)]
2 dxxx

Since the recovered gradient∇u∗ converges at a higher rate than
the FEM gradient∇uh, the effectivity of the error indicator is
asymptotically exact.

To control the spatial accuracy, the estimated relative error
is kept below a specified tolerance:

ηs(tn) =
||eees||n
||uh||n

≤ ηTOL
s (38)

Once the estimated error is calculated, and it is determined that
a new mesh is required, an optimal mesh is obtained by assum-
ing equal distribution of error with the least number of required
elements. The refinement condition which satisfies this optimal
criteria is determined from,

hnew
e = hold

e /ξe (39)

wherehold
e denotes the characteristic size of elemente, in the

previous (old) mesh, andhnew
e is the desired size of the new ele-

ments in the region covered by that old element. The refinement
parameter is defined on each element by [18]:

ξe =
η1/(p+1)

e

(ηTOL
s )1/p

[
Ne

∑
e=1

η2/(p+1)
e

]1/2p

, ηe =
||eees||n,e

||uh||n,e
(40)

In the above,p is the polynomial degree of the basis functions
used in the spatial mesh, andηe is the contribution from element
e to the estimated relative global error,ηs.
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Superconvergent Interpolation
For adaptive meshes, the solution at a global time-step must

be transferred from the old mesh to the new mesh. For low-
order elements in space, standard nodal interpolation may in-
troduce significant accumulation of error. To correct this prob-
lem, we have developed a newsuperconvergent interpolation
scheme [14]. Prior to projecting, the solution on the top of pre-
vious time-slab,t+n−1 = t−n , is interpolated with,

u(xxx, t−n ) =
nnodes

∑
a=1

N−
a (xxx)

[
uh

a(t
−
n )+ x̂xxa ·∇u∗a(xxx

c
a, t

−
n )
]

(41)

where,x̂xxa = xxx− xxxa, and the vector,∇u∗a(xxxc
a, t

−
n ) is the recovered

gradients obtained by superconvergent patch recovery (SPR) at
nodea, evaluated at the midpoint between nodexxxa, and position
xxx. A similar technique is used forv(xxx, t−n ). This scheme may
be viewed as a correction to standard interpolation, and provides
significantly improved accuracy. Extensions to tetrahedron ele-
ments is straightforward.

NUMERICAL EXAMPLE
An illustrative example of our local space-time adaptive so-

lution strategy is presented for the problem of radiation from a
line element on a circle, driven by a modified Ricker pulse [21].
Details for this problem are given in [14]. The ratio of the inner
radiating circle of radiusa to the outer artificial truncation bound-
ary is fixed atR/a = 1.75 The local radiation boundary condi-
tions are employed on the encircling truncation boundary with a
total of p = 3 auxiliary boundary functions; previous studies for
this example problem have shown that this number is sufficient
for a highly accurate non-reflecting boundary.

Results are shown with the relative temporal error measured
in norm II controlled by a tolerance ofηt = 4%. The minimum
sub-time step size distribution parameter defined in () is set at
γt = 0.4. The maximum allowed sub-time step number isNmax=
4, resulting in either 1, 2 or 4 sub-time steps per spatial element.
The initial spatial mesh has 3400 three-node triangle elements
resulting in 1806 nodes. The adaptive mesh is controlled by a a
spatial error norm maintained belowηs = 10%.

Figure 6 shows the contours for the field solutionu(xxx, t)
at representative snapshots in timet. For ease of visualiza-
tion, the contours are rescaled at each time step, so that the
max/min values at a given time step are distributed evenly be-
tween twenty contour lines. The initial wave-front reaches the
truncation boundary att = c(R− a) = 0.375. Examining the
time-history of the total energy norm within the computational
domainΩ, most of the radiated energy has left the computational
domain aftert = 1. Figure 7 shows the adaptive mesh track-
ing the wave pulse through the computational domain. Figure 8
and Figure 9 shows the corresponding temporal error estimation

Figure 6. Solution contour at snapshots in time between t = (0.4,0.8).
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Figure 7. Adaptive mesh at snapshots in time between t = (0.4,0.8).

Figure 8. Temporal error norm II, with γt = 0.4. Estimated temporal er-

ror with adaptive global time-slab size ∆tn and adaptive distribution of lo-

cal sub-time step sizes ∆tmin = ∆tn/4,2∆tmin = ∆tn/2,4∆tmin = ∆tn.
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Figure 9. Temporal error norm II, with γt = 0.4. Adaptive sub-time step

distribution with sub-time step sizes: (Red) ∆tn/4; (Green) ∆tn/2; (Blue)

∆tn
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Figure 10. (Top) Relative spatial error controlled by tolerance, ηTOL
s =

10%, and parameters (βs1,βs2) = (0.5,1.15), Kt = 20. (Bottom)

Number of equations in the corresponding adaptive mesh. The results

show a significant reduction in the number of equations within a space-

time slab with local adaptive sub-time steps compared to a uniform distri-

bution of sub-time steps.

and resulting local sub-time step distributions, respectively. Both
spatial element and sub-time step distributions are seen to track
the solution well.

Figure 10 (Top) shows the estimated relative spatial error is
controlled to be below the toleranceηs = 10%. The mesh is re-
distributed to maintain the specified error tolerance. Figure 10
(Bottom), compares the number of space-time equations within
a space-time slab using local adaptive sub-time step distributions
with Nmax= 4 with the number of space-time equations required
if a constant time-step distribution is used with the minimum sub-
time step size andN = 4 sub-time steps for each spatial element.
It can be seen that by using local temporal adaptivity, a signif-
icant reduction in the number of equations within a space-time
slab is achieved compared to a uniform distribution of sub-time
steps.
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Figure 11. (Top) Relative temporal error controlled by parameters,

ηTOL
t = 4%, (βt1,βt2) = (0.7,1.2), Kt = 10. (Bottom) Correspond-

ing adaptive global time-step sizes.

Figure 11 shows the relative temporal error estimate based
on norm II as a function of time with the corresponding global
time slab size change. The global time-step size and sub-time
step distribution is changed such that the error tolerance is satis-
fied. The plot also compares the time step sizes withNmax = 4
andNmax= 1. For the case ofNmax= 4, local temporal adaptivity
provides for different sub-time step sizes for different spatial el-
ements. For the caseNmax= 1, global temporal adaptivity is per-
formed with each element having the same time-step size. The
results demonstrate that our local temporal adaptive strategy al-
lows for much larger time slab sizes to achieve the same required
temporal relative error.

CONCLUSIONS
We have proposed a new local adaptive space-time finite

element strategy for solving second-order hyperbolic systems.
The methods are demonstrated for the scalar wave equation

governing time-dependent acoustic waves, but also are applica-
ble to other systems including elastodynamics and other wave
problems. The time-discontinuous Galerkin (TDG) variational
method is used to divide the time-interval into space-time slabs,
the solution advanced from one slab to the next, similar to stan-
dard time-stepping methods. Within each slab, a continuous
space-time mesh is used. By maintaining orthogonality of the
space-time mesh and pre-integrating analytically in the time-
dimension through each local element in the time-slab, we ob-
tain an efficient yet robust adaptive method where any standard
spatial element may be used with no modifications; for example
for structural acoustics applications standard acoustic and shell
elements may be used. No complicated 4-dimensional unstruc-
tured space-time mesh generation and visualization schemes are
required. The methods are implemented in two spatial dimen-
sions with linear interpolations, but the procedures are valid for
three spatial dimensions and higher-order interpolations as well.
As far as we know, our new temporal error indicators to adap-
tively distribute local sub-time steps in different elements, to-
gether with synchronized global step sizes, are the first use of
superconvergent recovery-based procedures for finite elements
in the time-dimension.

In summary, the new ideas developed in this work are:

• Use the time-discontinuous Galerkin method to divide the
time interval into time slabs, but allow for local continuous
space-time elements within each slab.

• Restrict the time-edge of local space-time elements to be or-
thogonal to the space dimension so that the time integration
is analytically evaluated in closed-form and decoupled from
the space integration. The advantage is that any standard
spatial element may be used with no modification, provid-
ing an efficient yet robust adaptive methodology; special
4-dimensional space-time elements requiring complicated
formulations, mesh generation and visualization are not re-
quired.

• Recovery based error estimators such as the superconvergent
patch recovery methods (SPR) commonly used for spatial
meshes, may be used to compute effective temporal error
estimates for adaptive space-time meshes.

• An adaptive strategy combining local spatial meshes to-
gether with local time-steps within space-time slabs using
the TDG space-time finite element method provides an accu-
rate, reliable, and efficient solution procedure for modeling
localized wave problems over large distances and time.

These ideas were first presented in [22]. Further details and
extensive numerical studies are found in [23].
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