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Lonny L. Thompson Ł, Sri Ramkumar Thangavelu
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA

Abstract

Residual based finite element methods are developed for accurate time-harmonic wave response of the Reissner–Mindlin
plate model. The methods are obtained by appending a generalized least-squares term to the mixed variational form for
the finite element approximation. Through judicious selection of the design parameters inherent in the least-squares
modification, this formulation provides a consistent and general framework for enhancing the wave accuracy of mixed
plate elements. In this paper, the mixed interpolation technique of the well-established MITC4 element is used to develop a
new mixed least-squares (MLS4) 4-node quadrilateral plate element with improved wave accuracy. Complex wave number
dispersion analysis is used to design optimal mesh parameters, which for a given wave angle, match both propagating
and evanescent analytical wave numbers for Reissner–Mindlin plates. Numerical results demonstrates the significantly
improved accuracy of the new MLS4 plate element compared to the underlying MITC4 element.
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1. Introduction

When modeling the time-harmonic response of elastic
structures, accurate plate and shell elements are needed to
resolve both propagating and evanescent waves over a wide
range of frequencies and scales. The propagating waves are
characterized by sinusoidal components with phase speed
determined by the material properties and thickness of
the plate, while the evanescent waves are characterized by
exponential decay with effects localized near drivers and
discontinuities, e.g. near boundary layers. The accuracy
improvement for intermediate to high frequencies plays an
important role in modeling control–structure interactions,
dynamic localizations, acoustic fluid–structure interaction,
scattering from inhomogeneities, and other applications
requiring precise modeling of dynamic characteristics.

The numerical solution of the Reissner–Mindlin plate
model for static analysis has been discussed by many au-
thors. The primary focus has been various remedies to the
well-known shear locking problem for very thin plates. Of
the low order elements, the popular bilinear MITC4 ele-
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ment [1] based on mixed interpolation of shear strains is
one of the most attractive. The error analysis [2,3] per-
formed on this element showed that it is optimally conver-
gent for deflections and rotations on regular meshes. How-
ever, for the 4-node quadrilateral MITC4 element, it is not
clear what is the optimal definition of the loading and mass
which is consistent with the assumed strain field for dy-
namic analysis. While eliminating shear locking problems
for thin plates, what is often overlooked is the large disper-
sion error exhibited in these elements leading to inaccurate
resolution of propagating and evanescent wave behavior
in dynamic analysis at intermediate to high frequencies.
To address this problem, a residual-based modification of
assumed strain mixed methods for Reissner–Mindlin plates
is proposed. New plate elements are developed based on
a generalized least-squares modification to the total energy
for the time-harmonic Reissner–Mindlin plate model. Any
of several existing mixed finite element interpolation fields
which yield plate elements which are free from shear lock-
ing and pass the static patch test may be used. Here we
start from the firm mathematical foundation inherent in the
shear projection technique of the MITC4 element. A simi-
lar generalized least-squares approach was used in [4,5] to
improved the accuracy of quadrilateral plate elements based
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on assumed stress fields in a modified Hellinger–Reissner
variational principle.

2. Wavenumber-frequency dispersion relation for
Reissner–Mindlin plates

We consider the Reissner–Mindlin plate bending model
with thickness t . The deformation is defined by

u D �z θ.x; y/ C w.x; y/ez; (1)

where θ D [�x ; �y]T 2 [H 1
0 .A/]2 denotes the two-dimen-

sional vector of rotations, such that θ ? ez , and w 2 H 1
0 .A/

is the vertical deflection of the midsurface. The curvatures
κ , are defined through the symmetric part of the rotation
gradient, κ.θ/ :D rsθ . The transverse shear strains are
defined by the angle between the slope of the midsurface
after deformation and the section angle, γ D rw � θ . The
inclusion of nonzero shear deformation in the Reissner–
Mindlin model allows for a more accurate representation of
high-frequency behavior.

In the following, we assume time-harmonic motion with
assumed time-dependence e�i!t , where ! is the circular
frequency measured in rad=s. In the absence of an applied
load q, the plate equations of motion admit solutions of the
form

w D w0 e.ikνÐx/; θ D �0ν e.ikνÐx/; div θ D ik�0 e.ikνÐx/:

(2)

In the above, k is the wave number, ν D [cos '; sin ']
defines a unit vector in the direction of wave propagation,
with wave vector k D kν D k[cos '; sin ']. Conditions
for the allowed waves are obtained by substituting the
assumed exponentials (2) into the homogeneous equations
of motion. The result is the dispersion equation relating
frequency ! to wave number k,

D.k/ :D k4 � .k2
s C k2

p/k2 C .k2
pk2

s � k4
b/ D 0: (3)

Here, kp D !=cp , ks D !=cs , kb D .²t!2=Db/1=4, where
kb is the classical plate bending wave number for in vacuo
flexural waves in the Kirchoff theory, and

cp D
�

E

².1 � ¹2/

½1=2

; cs D
�

Gs

²

�1=2

: (4)

In the above, Db D E I=.1 � ¹2/, I D t3=12, with
Young’s modulus E , Poisson’s ratio ¹, shear modulus G,
and � is a shear correction factor, Gs D �G, and ²t is the
mass density per unit area. Wave number solutions to the
plate dispersion relation (3) occur in pairs: šk1 and šk2.
At frequencies below a cut-off frequency, the wave number
pair šk1 occurs as purely real, while the pair šk2 is
purely imaginary. The real wave number pair corresponds
to propagating waves while the imaginary pair corresponds
to evanescent waves characterized by exponential decay.

3. Mixed least squares finite element formulation

To develop a residual-based mixed formulation, we start
with the total energy functional for Reissner–Mindlin plates
and then add weighted differential operators acting on
the governing steady-state equations of motion written in
least-squares form. This approach may be considered an
extension of Galerkin Least Squares (GLS) methods to
mixed or assumed strain methods. Recall the discrete total
energy for the Mindlin plate model:

FM.θh; wh/ :D ŠM

C !2 1

2

Z
A

[²t .wh/2 C ² I .θ h/2] dA �
Z
A

whq dA; (5)

ŠM D 1

2
B.θh; θ h/ C Gst

2

Z
A

.γ h/2 dA (6)

B.θh; θ h/ :D E I

.1 C ¹/

ð
8<
:

Z
A

κ.θh/ : κ.θh/ C
�

¹

1 � ¹

�
.div θ h/2 dA

9=
; ; (7)

where γ h is the assumed strain. Our Mixed Least Squares
(MLS) method is then based on the functional:

FMLS.θh; wh/ D FM C FLS; (8)

where

FLS D
X

Ae2Mh

8<
:

1

2

Z
Ae

−1.r Rh
1 /2 dA C 1

2

Z
Ae

−2.Rh
2 /2 dA

9=
;

(9)

is the least-squares modification. In the above,

Rh
1 :D Ds div γ h C .²t!2/wh C q (10)

Rh
2 :D .Dbr2 C ² I!2/ div θh C Ds div γ h (11)

are residuals for the finite element approximation to the
governing equations for Mindlin plates. Here, Ds D Gst ,
r2 D div r, and −1.!/ and −2.!/ are frequency dependent
local mesh parameters determined from dispersion analysis
and designed to improve the accuracy of the finite element
solution. Any of several existing mixed finite element ap-
proximation fields which produce elements which are free
from shear locking and pass the static patch test may be
used. In this paper, we use the field- and edge-consistent in-
terpolations of the MITC4 plate bending element proposed
by Bathe and Dvorkin [1]. The finite element interpolation
of the element domain Ae, together with the displacement
field wh , and θh , follows the standard isoparametric pro-
cedure. The displacement and rotation interpolation are
constructed using the standard bilinear functions:

wh.¾; �/ D
4X

iD1

Ni .¾; �/wi ; θh.¾; �/ D
4X

iD1

Ni .¾; �/θ i :

(12)
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We let [ J ] be the Jacobian transformation matrix
of the mapping x : OA ! Ae, i.e. Or D [ J ]Tr, where
[ J] :D [x;ξ ], J D det[ J], and Or stands for the gradient
operator with respect to ¾ and �. For the MITC4 mixed
interpolation [2,3], the assumed strain is defined by a re-
duction operator Rh : [H 1.Ae/]2 ! Γ h.Ae/, which maps
the shear strain interpolants to an auxiliary space Γ h , γ h D
Rh.rwh �θh/ D .rwh � Rhθ

h/ D rwh �[ J]�T R OA[ J ]Tθh .
The reduction operator R OA : [H 1. OA/]2 ! Sh. OA/ D fε j
ž1 D a1 C b1�; ž2 D a2 C b2¾; a1; b1; a2; b2 2 Rg, is used to
simplify the residuals appearing in the MLS functional.

For square element geometries, the divergence of the
MITC4 interpolated shear strains vanishes within the ele-
ment

div γ h D 1

J
Or Ð Oγ h D 1

J
.�¾;¾ C ��;�/ D 0: (13)

Furthermore, since θh 2 Q1. OA/, then div θh 2 P1. OA/ D
f� j � D c1 C c2¾ C c3�; ci 2 Rg. With this result, it is clear
that the Laplacian operator acting on the divergence of the
rotations also vanishes for 4-node square elements, i.e.

r2.div θ h/ D 1

J
Or2

�
1p
J

Or Ð θh

�
D 0: (14)

Using (13) and (14) in (9), the generalized least-squares
functional FLS reduces to

FLS D
X

Ae 2Mh

1

2

Z
Ae

r1r.wh C f / Ð r.wh C f / dA

C 1

2

Z
Ae

r2.r Ð θ h/2 dA; (15)

where r1 D −1.²t!2/2, r2 D −2.² I!2/2, and f D q=.²t!2/.
Substituting the bilinear interpolations for wh and θh ,

together with the assumed strain γ h defined by the MITC4
interpolation, into Eq. (15) and imposing stationary condi-
tions with respect to wh and θ h , results in the following
system of linear algebraic equations for each element Ae,

[Se] de D f e; (16)

where de is the 12 ð 1 vector of element nodal displace-
ments f.wi ; θ i/; i D 1; : : : ; 4g, f e is the force vector re-
sulting from the transverse loading, and Se is the 12 ð 12
symmetric dynamic stiffness matrix for each element,

Se.!/ D Ze.!/ C K e
LS.!/; (17)

where

Ze.!/ D K e � !2 Me: (18)

Here, K e and Me are the stiffness and matrices for the
plate, and K e

LS.!/ is a stabilization matrix resulting from
FLS:

K e
LS.!/ D r1.!/K e

LS1 C r2.!/K e
LS2 (19)

with frequency independent matrices,

K e
LS1 D

Z
Ae

fNT
w;x Nw;x C NT

w;y Nw;yg dA (20)

K e
LS2 D

Z
Ae

.N�x ;x C N�y ;y/T.N�x ;x C N�y ;y/ dA; (21)

where Nw; N�x and N�y are row vectors of bilinear ba-
sis functions defined by the interpolations (12) written in
vector form.

4. Evaluating element mesh parameters

Finite element difference relations associated with a typ-
ical node location (xm; yn) in a uniform mesh are obtained
by assembling a patch of four elements. The result is a cou-
pled system of three, 27-term difference stencils associated
with the 3 nodal degrees-of-freedom at node .m; n/. The
effect of this stencil on the discrete solution dm;n is written
in matrix-vector form as

1X
pD�1

1X
qD�1

[Dpq ] E p
x E p

y fdgm;n D f0g; (22)

where E p
x and Eq

y are directional shift operators.
To obtain the finite element dispersion relation associ-

ated with this stencil, a plane wave solution is assumed for
the nodal displacements, similar in form to the analytical
solution:

dm;n D

8>>><
>>>:

w0

�0 cos '

�0 sin '

9>>>=
>>>;

e.ikh
x hm/ e.ikh

y hn/; (23)

where kh
x D kh cos ', kh

y D kh sin ' are components of
the wave vector kh D khν, and h is the element length.
Substitution of (23) into the stencil equations (22) results
in the conditions for allowed waves in the finite element
mesh: The resulting finite element dispersion relation for
the plate is,

D :D H11 H22 � H 2
12 D 0; (24)

where Hij are functions of matrix coefficients zi j of the
element dynamic stiffness matrix [Ze] defined in (18), wave
angle ', and r1; r2. The finite element dispersion equation
D D D.!; khh; '; ki j ; mij ; r1; r2/ defined in (24) relates
frequency !, to the numerical wave number khh and ', and
depends on the stiffness and mass coefficients ki j D [K e]i j ,
and mij D [Me]i j , and mesh parameters r1, r2. Similar
to the analytic dispersion relation, there are two pairs of
numeric wave numbers škh

1 and škh
2 that satisfy (24)

which correspond to propagating and evanescent waves,
respectively.
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Fig. 1. Relative error kh=k at angles ' D 0; 15; 30; 45 degrees. Top: MITC4. Bottom: MLS4 with ' D 30º in definition of mesh
parameters r1 and r2. Left: real propagating wave number k1. Right: imaginary evanescent wave number k2.

We determine design parameters r1 and r2 such that the
finite element wave number pairs match the analytical wave
number pairs šk1 and šk2 for a given orientation ' D '0.
Here, optimal values for r1 and r2 are computed by setting
kh D k1.!/ and kh D k2.!/ in the finite element dispersion
relation (24). The result is two equations which may be
solved for the mesh parameters r1.'; !; h/ and r2.'; !; h/:

c11 C c12r1 C c13r2 C c14r1r2 D 0 (25)

c21 C c22r1 C c23r2 C c24r1r2 D 0 (26)

with coefficients c1i D ci .k1; '/, and c2i D ci.k2; '/.
Eliminating r2 from (25) and (26), allows the design

parameter r1 to be obtained in closed-form by solving the
quadratic equation,

e1r 2
1 C e2r1 C e3 D 0; (27)

where el D el.ci j /. The solution of (27) results in two real
negative roots. We select the largest root to determine r1,

as this root matches the analytical dispersion relations. The
other design parameter can then be written in terms of the
first,

r2 D �c21r1 C c11

c31 C c41r1
: (28)

Hence, the design parameters rl D rl.ki j ; mij ; !; h; '/,
l D 1; 2 are obtained in terms of the stiffness and mass co-
efficients in the underlying MITC4 element, the frequency
dependent wave numbers satisfying the analytical disper-
sion relation, and '. Using our definitions for r1 and r2,
for a fixed angle ', the least-squares modification enables
the finite element wave numbers to exactly match the an-
alytical dispersion conditions, rendering a zero dispersion
error solution. In general, the direction of wave propagation
' is not known a priori. However, similar to [6], we can
select a ' in the definitions for r1 and r2 which minimizes
dispersion error over the entire range of possible angles
defined by the periodic interval 0 � ' � ³=4.
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In implementing our mixed least squares method on
nonuniform meshes, the element length h is defined by
either a local size determined by the square root of the ele-
ment area, he D p

Ae, or by an average element length have

computed over a local patch of similarly sized elements.
While the optimal definition for the mesh parameters r1

and r2 were derived from a dispersion relation on a uniform
mesh, with constant element length h, accurate solutions on
nonuniform meshes are shown to be relatively insensitive
to the precise definitions used for h.

5. Dispersion accuracy

For a range of frequencies !, and wave angles ',
relative to uniform mesh lines, the wave number accuracy
for our residual-based MLS method is compared with the
underlying MITC method [1]. Results are presented for
a steel plate with properties: E D 210 ð 1010 dynes/cm2,
¹ D 0:29, ² D 7:8 g/cm2, plate thickness t D 0:15 cm, and
shear correction factor � D 5=6.

The relative error of the numerical wave number divided
by the analytic wave number, kh=k is shown in Fig. 1.
The frequency range is plotted over the range up to !h D
5ð104 cm=s corresponding to approximately four elements
per wavelength. At low frequencies, the MITC4 element
replicates the character of the analytic dispersion curves
marginally well with error in the real propagating wave
number less than 3% for discretizations finer than 10
elements per wavelength, i.e. 10h D ½. However, above this
level, the error in both the real and imaginary wave number
increases rapidly. To achieve a 1.5% level of accuracy
would require more than 20 MITC4 plate elements per
wavelength.

The bottom two plots show the improved dispersion
accuracy achieved for both the real and imaginary wave
numbers by our residual-based MLS4 element. The MLS4
element replicates the character of the analytical dispersion
curves well with significant reduction in numerical wave
number error compared to the underlying MITC4 interpo-
lation. Results for the MLS4 method give a maximum error
in the real wave number less than 1% at a frequency of
!h D 1 ð 104 cm=s, corresponding to approximately 10 el-

Table 1
Discrete L2 error for square plate example with quasi-uniform meshes at f D 500 Hz

Mesh Element type

SRI4 MITC4 MLS4-ave MLS4-local

QMesh1 0.29952E 0 0.29952E 0 0.55688E�1 0.38146E�1
QMesh2 0.38511E 0 0.38514E 0 0.12876E 0 0.52325E�1
QMesh3 0.33728E 0 0.33731E 0 0.32663E�1 0.33728E�1
Uniform 0.18351E 0 0.18352E 0 0.22147E�1 0.22147E�1

Results for a uniform mesh with equally spaced nodes shown for reference.

ements per wavelength. This represents a nearly three-fold
reduction in phase accuracy compared to the base MITC4
element. At the level of 10 elements per wavelength, the
maximum error in the imaginary wave number is reduced
from 3% for MITC4 to less than 2% for MLS4.

6. Numerical example

Results are presented for forced vibration of a simply
supported steel plate with a uniform distributed time-har-
monic pressure loading q D 2 dynes=cm2. Fig. 2 shows
the L2 convergence rates for the vertical deflection with
uniform mesh refinement. Both MITC4 and MLS4 achieve
the same rate of convergence at approximately N D 100
elements. However, as a result of improved dispersion ac-
curacy, the MLS4 element decreases the L2 error for the
same number of elements.

We next study the performance of the MLS4 element
for quasi-uniform meshes (parametric mesh grading). Here,
the MLS4 element is computed with mesh parameters
r1 and r2 determined from an average element size have,

Fig. 2. Simply supported steel plate example. Frequency f D
500 Hz. Convergence with mesh refinement. Relative discrete
L2 error of vertical deflection versus N , for a uniform mesh of
N ð N elements over one-quarter of the plate.
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Fig. 3. Quasi-uniform meshes with N D 50 elements per edge and 5 : 1 bias. Average element size have D p
A=NT D 1:0. (Left)

QMesh1, (Right) QMesh2, (Bottom) QMesh3.

computed over the total mesh, denoted MLS4-ave, and
from a local element size he D p

Ae, denoted MLS4-local.
Table 1 shows results obtained using the three different
quasi-uniform meshes shown in Fig. 3. We observe that the
large improvement in accuracy using the MLS4 element
compared to the MITC4 element for uniform meshes is
not drastically affected by the element distortions or higher
aspect ratios. Showing the robustness of the MLS method,
the discrete L2 error for the MLS4-local solution remains
an order of magnitude lower than the underlying MITC4
element.

7. Conclusions

A residual-based method for improving the dispersion
accuracy of the 4-node MITC plate bending elements is
developed. The property of field consistency in the MITC
transverse shear strain interpolation is used to simplify the
residuals appearing in the generalized least-squares oper-
ators, and leads to a simple modification of the element
dynamic stiffness matrix with a frequency-dependent least-
squares matrix. Using complex wave number dispersion
analysis, optimal values for the mesh parameters appearing
in the least-squares matrix are determined such that finite
element propagating and evanescent wave number pairs

match the analytical wave number pairs for a given wave
orientation angle ' relative to a uniform mesh. Both dis-
persion analysis and numerical results show that the new
mixed least-squares (MLS4) plate element significantly im-
proves wave accuracy compared to the underlying MITC4
element.
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