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Abstract

Residual based finite element methods are developed for accurate time-harmonic wave response of the Reissner–

Mindlin plate model. The methods are obtained by appending a generalized least-squares term to the mixed variational

form for the finite element approximation. Through judicious selection of the design parameters inherent in the least-

squares modification, this formulation provides a consistent and general framework for enhancing the wave accuracy of

mixed plate elements. In this paper, the mixed interpolation technique of the well-established MITC4 element is used to

develop a new mixed least-squares (MLS4) four-node quadrilateral plate element with improved wave accuracy.

Complex wave number dispersion analysis is used to design optimal mesh parameters, which for a given wave angle,

match both propagating and evanescent analytical wave numbers for Reissner–Mindlin plates. Numerical results

demonstrates the significantly improved accuracy of the new MLS4 plate element compared to the underlying MITC4

element. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When modeling the time-harmonic response of elas-

tic structures, accurate plate and shell elements are

needed to resolve both propagating and evanescent

waves over a wide range of frequencies and scales. The

propagating waves are characterized by sinusoidal

components with phase speed determined by the mate-

rial properties and thickness of the plate, while the ev-

anescent waves are characterized by exponential decay

with effects localized near drivers and discontinuities,

e.g., near boundary layers. Models based on classical

Kirchhoff plate theory agree with the exact theory of

elasticity only in a very limited low range of frequencies;

the predicted phase speed at higher frequencies is infi-

nite, while the exact theory remains bounded [2]. The

inclusion of transverse shear deformation and rotary

inertia effects in the Reissner–Mindlin theory accuracy

predicts the bounded phase speed of the exact theory

over a large range of frequencies of typical interest [4–6].

The accuracy improvement for intermediate to high

frequencies plays an important role in modeling control–

structure interactions, dynamic localizations, acoustic

fluid–structure interaction, scattering from inhomoge-

neities, and other applications requiring precise model-

ing of dynamic characteristics.

The numerical solution of the Reissner–Mindlin plate

model for static analysis has been discussed by many

authors, e.g. [7–13]. The primary focus has been vari-

ous remedies to the well-known shear locking problem

for very thin plates, [14,15]. The locking is most clearly

seen in some low order approximations where an overly

stiff response to bending is exhibited in the solution.
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Mathematically, the locking is the result of the lack of

stability of the method. Over the last decade, significant

progress has been made on the mathematical stability

and error analysis for Reissner–Mindlin plate elements

for static analysis [16–28]. Of the low order elements, the

popular bilinear MITC4 element [9] based on mixed

interpolation of shear strains is one of the most attrac-

tive. Later, Prathap [10] rederived the same four-node

quadrilateral plate element using the concepts of field-

and edge-consistency. The error analysis [16,17] per-

formed on this element showed that it is optimally

convergent for deflections and rotations on regular me-

shes. However, for the four-node quadrilateral MITC4

element, it is not clear what is the optimal definition of

the loading and mass which is consistent with the as-

sumed strain field for dynamic analysis. While elimi-

nating shear locking problems for thin plates, what is

often overlooked is the large dispersion error exhibited

in these elements leading to inaccurate resolution of

propagating and evanescent wave behavior in dynamic

analysis at intermediate to high frequencies.

To address this problem, a residual-based modifica-

tion of assumed strain mixed methods for Reissner–

Mindlin plates is proposed. New plate elements are

developed based on a generalized least-squares modifi-

cation to the total energy for the time-harmonic Reiss-

ner–Mindlin plate model. The least-squares operators

are proportional to residuals of the governing equations

of motion, and provide a consistent framework for en-

hancing the wave accuracy of Reissner–Mindlin plate

elements for forced vibration and time-harmonic re-

sponse. Any of several existing mixed finite element in-

terpolation fields which yield plate elements which are

free from shear locking and pass the static patch test may

be used. Here we start from the firm mathematical

foundation inherent in the shear projection technique of

the MITC4 element. A similar generalized least-squares

approach was used in [29,30,32] to improved the accu-

racy of quadrilateral plate elements based on assumed

stress fields in a modified Hellinger–Reissner variational

principle.

Weighted residuals of the governing Euler–Lagrange

equations in least-squares form were first used to stabi-

lize the pathologies exhibited by the classical Galerkin

method for the numerical solution of advection–diffu-

sion problems [33]. These so-called stabilized methods

have been successfully employed in a wide variety of

applications where enhanced stability and accuracy

properties are needed, including problems governed by

Navier–Stokes and the compressible Euler equations of

fluid mechanics, [34]. Generalized methods based on the

gradient of the residuals in least-squares form were first

used by Franca and do Carmo [35] for the advection–

diffusion equation. In [36,37], Hughes et al. established a

relationship between various stabilized methods and

variational multiscale methods. Residual-based methods

have since been extended to the scalar Helmholtz

equation governing steady-state vibration and time-

harmonic wave propagation, (e.g. acoustics), by Harari

and Hughes, [38,39], and Thompson and Pinsky [40]. In

[40,41], finite element dispersion analysis was used to

select mesh parameters in the least-squares modification

to the Galerkin method, resulting in improved phase

accuracy for both two- and three-dimensional problems.

In Oberai and Pinsky [42], variable mesh parameters and

residuals on inter-element boundaries are included to

reduce the directional dependence of dispersion error.

Other numerical methods designed to improve the ac-

curacy of the scalar Helmholtz equation can be found in

e.g. [43,44].

The first use of residual based methods for static

analysis of plate structures was the stabilized mixed

formulations by Hughes and Franca [20] where sym-

metric forms of the equilibrium equations were appended

to the standard Galerkin equations to improve transverse

shear accuracy. In [27], the stabilized formulations of [20]

are combined with the shear interpolation of the MITC

plate bending element for static analysis. Grosh and

Pinsky applied a generalization of the Galerkin gradient

least squares (GGLS) method of Franca and do Carmo

[35] to improve the accuracy of displacement based

Timoshenko beam elements for steady-state vibration

[45]. An important feature of this GGLS element, is that

in the zero frequency limit, the mesh parameters modify

the shear strain approximation in the stiffness matrix,

reverting to selective-reduced-integration (SRI) in the

static case. As mentioned in [45], the extension of this

GGLS formulation for 1-D Timoshenko beams to 2-D

Reissner–Mindlin plate elements based on bilinear dis-

placement interpolation failed to produce a quadrilateral

element which is free from shear locking.

In this work, we combine the mixed interpolation of

the MITC4 plate element with residual-based methods

to develop a mixed least squares (MLS) quadrilateral

element for accurate time-harmonic wave response of

the Reissner–Mindlin plate model. A key feature of our

method is that we require the mesh parameters to vanish

in the static limit of zero frequency, thus retaining the

locking-free behavior of the underlying MITC quadri-

lateral element. Using complex wave number dispersion

analysis [46], we design optimal mesh parameters, which,

for a given wave angle relative to a uniform finite ele-

ment mesh, match both propagating and evanescent

analytic wave numbers for Reissner–Mindlin plates.

This strategy for designing mesh parameters is similar to

that used in the displacement based GGLS Timoshenko

beam element proposed in [45], here extended to arbi-

trary quadrilateral plates. In general, the direction of

wave propagation is not known a priori. However,

similar to [40], we can select a wave angle in the defini-

tions for the mesh parameters to minimize dispersion

error over the entire range of possible angles.
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2. Reissner–Mindlin plate equations

We consider the Reissner–Mindlin plate bending

model [4–6] with thickness t, two-dimensional midsur-

face A � R2, boundary oA, and transverse coordinate z.

The distributed load qðx; yÞ is restricted to the direction

normal to the midsurface defined by the unit vector ez.
Without loss of generality, we assume that the plate is

clamped along its boundary. The deformation at any

point is given by the three-dimensional displacement

vector defined by

u ¼ �zhðx; yÞ þ wðx; yÞez; ð1Þ

where h ¼ ½hx; hy �T 2 ½H 1
0 ðAÞ�

2
denotes the two-dimen-

sional vector of section rotations, such that h?ez, and

w 2 H 1
0 ðAÞ is the vertical deflection of the midsurface.

The components hx and hy are the section rotations

about the y and x axes respectively. As a consequence of

the kinematic assumptions, the in-plane bending strain

tensor e ¼ �zj, is linearly related to the tensor of cur-

vatures j, through the symmetric part of the rotation

gradient,

jðhÞ :¼ 1
2
ðrh þ ðrhÞTÞ: ð2Þ

Using first-order shear deformation theory, the trans-

verse shear strains are defined by the angle between the

slope of the midsurface after deformation and the sec-

tion angle, c ¼ rw� h.

For a homogeneous, isotropic plate with linear elastic

material properties, the constitutive relations for the

bending moment and shear resultants are

M ¼ EI
ð1 þ mÞ jðhÞ

n
þ m

1 � m

� �
ðdivhÞI

o
; ð3Þ

Q ¼ Gstðrw� hÞ: ð4Þ

Here, I ¼ t3=12, with Young’s modulus E, Poisson’s

ratio m, shear modulus G, and j is a shear correction

factor, Gs ¼ jG. In the above, ‘div’ stands for diver-

gence, i.e., divh ¼ hx;x þ hy;y , and I is the unit tensor.

We assume time-harmonic motion with time-depen-

dence e�ixt; x is the circular frequency measured in

rad/s. The variational problem is to minimize the total

energy functional with respect to the generalized dis-

placements v ¼ ðw; hÞ. For the Reissner–Mindlin model,

the total energy may be expressed as

FMðvÞ ¼ PMðvÞ � x2 1

2

Z
A
½qtðwÞ2 þ qIðhÞ2�dA�

Z
A
wqdA:

ð5Þ

In the above, qt is the mass density per unit area, qI is

the rotary inertia, PM is the internal strain energy split

into bending and shear parts

PMðvÞ ¼ 1

2
Bðh; hÞ þ Gst

2

Z
A
ðrw� hÞ2

dA; ð6Þ

Bðh; hÞ :¼ EI
ð1 þ mÞ

Z
A

jðhÞ : jðhÞ
h

þ m
1 � m

� �
ðdivhÞ2

i
dA:

ð7Þ

The symmetric tensor inner product is defined by, j:

j ¼ j2
x þ j2

y þ 2j2
xy .

The dynamic Euler–Lagrange equations corre-

sponding to this variational problem are:

R1 :¼ divQ þ ðqtx2Þwþ q ¼ 0; ð8Þ

R2 :¼ divM þQ þ ðqIx2Þh ¼ 0; ð9Þ

In the above, R1 is a scalar residual associated with shear

equilibrium, and R2 ¼ ½R2x;R2y �T is a vector residual as-

sociated with moment equilibrium. Applying the diver-

gence operator to the vector Eq. (9), i.e. divR2, and

writing the bending and shear resultants in terms of

displacements M ¼ MðhÞ and Q ¼ Qðw; hÞ, via (3) and

(4), the residuals can be restated in terms of the two

scalar equations,

R1ðvÞ :¼ Dsdivc þ ðqtx2Þwþ q ¼ 0 ð10Þ

R2ðvÞ :¼ divR2 ¼ Dbr2
�

þ qIx2
	
divh þ Dsdivc ¼ 0

ð11Þ

where Db ¼ EI=ð1 � m2Þ, Ds ¼ Gst, r2 ¼ divr, and

c ¼ rw� h.

2.1. Wave number–frequency dispersion relation

The homogeneous plate equations of motion admit

solutions of the form

w ¼ w0e
ðikmxÞ; h ¼ h0meðikmxÞ; divh ¼ ikh0eðikmxÞ ð12Þ

In the above, i ¼
ffiffiffiffiffiffiffi
�1

p
, k is the wave number, m ¼

½cos u; sin u� defines a unit vector in the direction of wave

propagation, with wave vector k ¼ km ¼ k½cos u; sin u�.
Conditions for the allowed waves are obtained by sub-

stituting the assumed exponentials (12) into the homo-

geneous equations of motion (10) and (11) with q ¼ 0.

The result is the dispersion equation relating frequency

x to wave number k:

Dðk;xÞ :¼ k4 � ðk2
s þ k2

pÞk2 þ ðk2
pk

2
s � k4

bÞ ¼ 0; ð13Þ

kp ¼ x=cp; ks ¼ x=cs; kb ¼ ðqtx2=DbÞ1=4;

cp ¼
E

qð1 � m2Þ

� �1=2

; cs ¼
Gs

q

 �1=2

:

Wave number solutions occur in pairs: k1 and k2.

The character of these solutions are well known [2,3]. At
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frequencies below a cut-off frequency, the wave number

pair k1 occurs as purely real, while the pair k2 is

purely imaginary. The real wave number pair corre-

sponds to propagating waves while the imaginary pair

corresponds to evanescent waves characterized by ex-

ponential decay.

3. Generalized finite element formulation

Consider a finite element mesh obtained by parti-

tioning A into convex quadrilateral elements. Let Ae

denote the area for a typical element number e. We then

define Mh ¼ [eAe as the union of element interiors. The

discrete total energy for the plate equations of motion

with assumed strain ch and trial displacements vh ¼
ðwh; hhÞ may be stated as

FMðvhÞ : ¼ PMðvhÞ � x2 1

2

Z
A

qtðwhÞ2
h

þ qIðhhÞ2
i

dA

�
Z
A
whqdA; ð14Þ

PMðvhÞ ¼ 1

2
Bðhh; hhÞ þ Gst

2

Z
A
ðchÞ2

dA: ð15Þ

Remark. The variational equations associated with the

above functional with the kind of interpolations de-

scribed in the following section, should also include the

shear force resultants Qh as additional dependent vari-

ables [19]. However, imposing an orthogonality condi-

tion [19], the shear force is eliminated from the final

form.

To develop a residual-based formulation with en-

hanced wave number accuracy, we start with the total

energy functional and then add weighted differential

least-squares operators proportional to the governing

dynamic equations of motion. Our modified functional

can be written as

FMLS vh
� 	

¼ FM vh
� 	

þ FLS vh
� 	

ð16Þ

with generalized least-squares term,

FLS vh
� 	

¼ 1

2

X
Ae2Mh

Z
Ae

s1 rRh
1

� 	2n
þ s2 Rh

2

� 	2o
dA: ð17Þ

In the above,

Rh
1 ¼ Dsdivch þ qtx2wh þ q; ð18Þ

Rh
2 ¼ divRh

2 ¼ Dbr2
�

þ qIx2
	
divhh þ Dsdivch ð19Þ

are discrete residual functions for the dynamic plate

equations. The functions s1ðxÞ and s2ðxÞ are frequency

dependent local mesh parameters determined from dis-

persion analysis and designed to match the analytical

wave number–frequency relation for Mindlin plates.

Setting s1 ¼ s2 ¼ 0, reverts to the underlying assumed

strain formulation. The residual-based least-squares

terms are constructed to maintain symmetry of the un-

derlying energy functional for isotropic materials. The

use of derivatives on the residuals is necessary to sim-

plify the formulation for elements with low-order ap-

proximations.

A slightly simplified form results if we neglect a cross-

coupling term ðR2x;xR2y;yÞ, resulting in the alternative

form,

FLS vh
� 	

¼ 1

2

X
Ae2Mh

Z
Ae

s1 rRh
1

� 	2�

þ s2 Rh
2x;x

� �2
�

þ Rh
2y;y

� �2
��

dA: ð20Þ

Both forms (17) and (20) may be recast in a more gen-

eral expression for the least-squares operator, see [31].

Any of several existing mixed finite element approxi-

mation fields which give rise to spaces which avoid shear

locking and pass the static patch test may be used with

either least-squares functional (17) or (20). In this paper,

we use the field- and edge-consistent interpolations of

the popular MITC4 plate bending element originally

proposed by Bathe and Dvorkin [9]. In [30], least-square

stabilizing operators similar to (20), but with residuals

defined by independent moment and shear resultants,

were used to modify the discrete Hellinger–Reissner

functional in an assumed stress hybrid element formu-

lation. The difference here is that the stress resultants are

written as dependent functions of generalized displace-

ments and assumed shear strains.

In the following, we denote four-node quadrilateral

elements based on the functional forms (17) and (20) as

MLS4-1 and MLS4-2, respectively.

3.1. Finite element interpolations

We define the finite element subspaces for the ap-

proximation of the deflection wh and rotation vector hh

as

Wh ¼ wh 2 H 1
0 ðAÞ;whjAe 2 Q1½Ae�; 8Ae 2 Mh

� �
; ð21Þ

Vh ¼ fhh 2 H 1
0 ðAÞ; h

hjAe 2 ½Q1ðAeÞ�2; 8Ae 2 Mhg; ð22Þ

where Q1ðAeÞ is the set of low-order polynomials of

degree 6 1 in each variable defined on Ae, and Ae is the

current element in the discretization. This space of

polynomials provides for equal order basis functions for

the deflection and both components of the rotation. The

finite element interpolation of the element domain Ae,

together with the displacement field wh, and hh, follows

the standard isoparametric procedure [14]. We define

n ¼ ðn; gÞ to be natural coordinates on the reference

biunit square ÂA defined by the interval ½�1; 1�2. The
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reference domain is then mapped onto the physical ele-

ment domain Ae with cartesian coordinates x ¼ ðx; yÞ
parameterized by,

xðn; gÞ ¼
X4

i¼1

Niðn; gÞxi; ð23Þ

where xi ¼ ðxi; yiÞ 2 R2 are nodal coordinates, and Ni are

bilinear shape functions,

Niðn; gÞ ¼ ð1 þ ninÞð1 þ gigÞ=4; i ¼ 1; . . . ; 4 ð24Þ

with nodal coordinates ðni; giÞ 2 fð�1;�1Þ; ð1;�1Þ;
ð1; 1Þ; �1; 1Þg. The displacements are constructed using

the same bilinear functions:

whðn; gÞ ¼
X4

i¼1

Niðn; gÞwi; hhðn; gÞ ¼
X4

i¼1

Niðn; gÞhi;

ð25Þ

where wi are nodal deflections and hi ¼ ½hi
x; h

i
y �, are nodal

rotations. We let [J] be the Jacobian transformation

matrix of the mapping x: ÂA ! Ae, i.e. r̂r ¼ ½J �Tr, where

½J � :¼ ½x;n� ¼
x;n x;g
y;n y;g

� �
: ð26Þ

Here r̂r stands for the gradient operator with respect to

the n and g variables.

3.2. Assumed shear strain field

To eliminate locking, the shear energy is defined

in terms of the assumed covariant transverse shear

strain field of the MITC4 mixed interpolation [9]. The

assumed strain ch is defined by a reduction operator

Rh : ½H 1ðAeÞ�2 ! ChðAeÞ, which maps the shear strain

interpolants evaluated from the spaces W h and Vh to the

assumed strain space Ch, [16–18], i.e.,

ch ¼ Rhðrwh � hhÞ ¼ ðrwh � Rhh
hÞ

¼ rwh � ½J ��T
R ÂA½J �

T
hh:

The assumed strain space may be defined as [18]:

ChðAeÞ ¼ cjAe 2 ShðAeÞ; sc � sit
�

¼ 0;

on Ei; i ¼ 1; 2; 3; 4
�

ð27Þ

with continuous tangential shear strains across element

edges. Here Ei are the edges of the quadrilateral element

Ae, si are tangent vectors to the edge Ei, and s � t denotes

the jump in a quantity across an element interface. Sh is

the rectangular rotated Raviart–Thomas space [48],

ShðAeÞ ¼ fc ¼ ½J ��Tĉc; ĉc 2 Shð ÂAÞg;

Shð ÂAÞ ¼ fĉc ¼ ðcn; cgÞ; jcn ¼ a1 þ a2g; cg ¼ b1 þ b2ng:

For completeness, we review the MITC4 strain inter-

polation.

For the two-dimensional plate element with bilinear

mapping (23), covariant basis vectors are defined in

terms of the in-plane tangent vectors:

tn :¼ x;n ¼ ½x;n; y;n�T; tg :¼ x;g ¼ ½x;g; y;g�T: ð28Þ

The complimentary contravariant basis vectors,

gn ¼ 1

J
½y;g;�x;g�T; gg ¼ 1

J
½�y;n; x;n�T ð29Þ

satisfy the orthogonality conditions, tn � gn ¼ 1, tg � gn ¼
0, and tg � gg ¼ 1, tn � gg ¼ 0, (see [15]). In the above,

J ¼ det ½J � ¼ x;ny;g � x;gy;n, is the element Jacobian.

Using this basis, the covariant shear strain tensor com-

ponents may be written in vector form as [47]:

ĉc ¼ r̂rw� ½J �Th ¼ ½J �Tðrw� hÞ; ð30Þ

where

ĉc ¼ ½cn; cg�
T
; r̂rw ¼ ½w;n;w;g�T; h ¼ ½hx; hy �T: ð31Þ

The covariant strains are transformed to cartesian co-

ordinates, using the rotation matrix, c ¼ ½J ��Tĉc, i.e.,

cxz
cyz

� �
¼ ½J ��T cn

cg

� �
; ð32Þ

where J�T is the inverse of JT:

½J ��T ¼ ðgn � exÞ ðgg � exÞ
ðgn � eyÞ ðgg � eyÞ

� �
¼ 1

J
y;g �y;n
�x;g x;n

� �
: ð33Þ

Following Bathe and Dvorkin [9], the assumed covari-

ant transverse shear strain field is defined by the linear

interpolation between mid-points of the element edges.

The essential assumption is to assume the transversal

shear interpolation in local convective co-ordinates to be

linear in g direction for cn, and linear in n direction for

cg,

chnðgÞ ¼
1

2
ð1 � gÞcBn þ

1

2
ð1 þ gÞcDn ; ð34Þ

chgðnÞ ¼
1

2
ð1 � nÞcAg þ

1

2
ð1 þ nÞcCg : ð35Þ

Evaluating the covariant transverse shear strains collo-

cated at the midpoints of the element boundaries, results

in the assumed strain field, ĉch 2 Shð ÂAÞ,

chnðgÞ ¼
1

4
ð1 � gÞ½ðw2 � w1Þ � xB

;n � ðh2 þ h1Þ�

þ 1

4
ð1 þ gÞ½ðw3 � w4Þ � xD

;n � ðh3 þ h4Þ�; ð36Þ

chgðnÞ ¼
1

4
ð1 � nÞ½ðw4 � w1Þ � xA

;g � ðh4 þ h1Þ�

þ 1

4
ð1 þ nÞ½ðw3 � w2Þ � xC

;g � ðh3 þ h2Þ�; ð37Þ
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where

xA
;g ¼ x1

;g ¼ x4
;g ¼ ðx4 � x1Þ=2;

xC
;g ¼ x2

;g ¼ x3
;g ¼ ðx3 � x2Þ=2;

xB
;n ¼ x1

;n ¼ x2
;n ¼ ðx2 � x1Þ=2;

xD
;n ¼ x3

;n ¼ x4
;n ¼ ðx3 � x4Þ=2:

Making use of Ni;n ¼ nið1 þ gigÞ=4, Ni;g ¼ gið1þ
ninÞ=4, it follows that the assumed covariant strain

components may also be expressed as

chnðgÞ ¼
X4

i¼1

Ni;nwi �
X4

i¼1

N
i
nðxi

;n � hiÞ; ð38Þ

chgðnÞ ¼
X4

i¼1

Ni;gwi �
X4

i¼1

N
i
gðxi

;g � hiÞ; ð39Þ

where ðtnÞi ¼ xi
;n and ðtgÞi ¼ xi

;g are the covariant basis

evaluated at the node points, and

N
1

g ¼ N
4

g ¼ ð1 � nÞ=4; N
2

g ¼ N
3

g ¼ ð1 þ nÞ=4; ð40Þ

N
1

n ¼ N
2

n ¼ ð1 � gÞ=4; N
3

n ¼ N
4

n ¼ ð1 þ gÞ=4: ð41Þ

In this form, it is clear that the the assumed covariant

strain in natural coordinates may be interpreted as a

reduction operation R ÂA: ½H 1ð ÂAÞ�2 ! Shð ÂAÞ, ĉch ¼ r̂rwh �
R ÂA½J �

T
hh, which interpolates piecewise smooth functions

into the space of linear functions, ĉch 2 Shð ÂAÞ.
It is this linear strain property that will be used to

simplify the residuals Rh
1 and Rh

2 appearing in the FLS

functionals given in (17) and (20). In particular, the

following important properties of the rotated Raviart–

Thomas space for the assumed shear strain interpolation

fields are used,

d

dn
chnðgÞ
� �

¼ 0;
d

dg
chgðnÞ
h i

¼ 0: ð42Þ

Remarks

(i) The form of the MITC4 interpolation for shear

strains given here avoids computation of the square-

roots appearing in kx;nk ¼ ðx2
;n þ y2

;nÞ
1=2

, kx;gk ¼ ðx2
;g þ

y2
;gÞ

1=2
, and used in the original implementation given in

[9].

(ii) Following the approach given in Prathap [10],

the construction of the finite element space Sh for the

assumed strains expressed in (38) and (39), can also be

interpreted as a field consistent interpolation between

r̂rwh and assumed covariant section rotations hh
n, hh

g,

interpolated with the smoothing functions given in (40)

and (41), i.e.,

hh
n ¼
X4

i¼1

N
i
nðhnÞi; hh

g ¼
X4

i¼1

N
i
gðhgÞi: ð43Þ

To maintain edge consistency (continuous tangential

shear strains), the nodal values ðhnÞi and ðhgÞi are

transformed to Cartesian coordinate definitions of the

rotations ðhxÞi and ðhyÞi using the Jacobian transforma-

tion given in (26) evaluated at the nodes,

ðhnÞi
ðhgÞi

� �
¼ ½J �i

ðhxÞi
ðhyÞi

� �
: ð44Þ

Defining the assumed covariant strains by

chnðgÞ ¼ wh
;n � hh

n; chgðnÞ ¼ wh
;g � hh

g ð45Þ

and using (43) and (44), leads to the expressions given in

(38) and (39), or equivalently (36) and (38). In [10], the

smoothing functions N
i
are derived using a least-squares

fit of the covariant transverse shear strains within an

element. The equivalence between the field and edge

consistent development of [10] and the original MITC

development of [9] does not seem to be recognized in the

open literature, see e.g. [49,50]. The equivalence between

different cures for shear locking phenomena is discussed

in [25].

4. Evaluating element parameters

In this section, we determine optimal parameters

s1 and s2 appearing in the MLS terms (17) and (20),

for the four-node quadrilateral element with assumed

transverse shear strain given by the MITC4 mixed in-

terpolation. The dispersion analysis follows the same

procedures used in [30] to determine optimal mesh pa-

rameters for an assumed stress hybrid least-squares plate

element. We begin by simplifying the residuals appear-

ing in the generalized least-squares functionals FMLS and

evaluate the repetitive difference stencil associated with a

uniform finite element mesh. Using this stencil we obtain

the numerical dispersion equation relating wave num-

bers to real frequency input. Solving this equation gives

two root pairs similar to that found for the analytical

dispersion relation––one real propagating wave number

k1, and one purely imaginary wave number k2. We

evaluate the parameters s1 and s2 by matching the finite

element wave number pairs to the analytical wave

number pairs for a given free wave angle u. A similar

design criterion for matching the single real valued wave

number for the scalar Helmholtz equation in two di-

mensions was used in [40].

To determine the stencil, we consider a uniform mesh

Mh, of four-node quadrilateral elements with element

side lengths h ¼ jDxj ¼ jDyj. In this mesh we label each

node ðm; nÞ, where m and n are integers. Thus the co-

ordinates of each node ðm; nÞ are given by ðxm; ynÞ ¼
ðmh; nhÞ. The nodal degrees-of-freedom at these nodes

are denoted wh
m;n ¼ whðxm; ynÞ, and hh

m;n ¼ hhðxm; ynÞ.
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For a general four-node quadrilateral element char-

acterized by the parametric mapping, r ¼ ½J ��Tr̂r, the

Laplacian and divergence operators in natural coordi-

nates may be expressed as

r2 ¼ 1

J 2
a2 o2

on2


þ b2 o2

og2

�

� 2
c2

J 2

o2

onog


� x;ng � ½J ��Tr̂r

�
; ð46Þ

divc ¼ 1

J 2
a2cn;n

�
þ b2cg;g

	
� c2

J 2
cn;g

�
þ cg;n � 2x;ng � ½J ��Tĉc

�
; ð47Þ

divh ¼ 1

J
a � h;n

�
þ b � h;g

	
; ð48Þ

where x;ng ¼ constant,

a ¼ dcurlcurl y ¼ ½y;g;�y;n�T; b ¼ �dcurlcurl x ¼ �½x;g;�x;n�T

ð49Þ

and a ¼ ak k, b ¼ bk k, c2 ¼ x;ny;n þ x;gy;g.
For square element geometries, x;n ¼ y;g ¼ h=2, and

x;g ¼ y;n ¼ 0, so that a2 ¼ b2 ¼ h=2, c2 ¼ 0, and J ¼
h2=4, simplifying the above expressions. The Laplacian

reduces to

r2 ¼ 1

J
r̂r2 ¼ 1

J
o2

on2


þ o2

og2

�
: ð50Þ

From the field-consistent property given in (42) for the

rotated Raviart–Thomas space ĉch 2 Shð ÂAÞ, the diver-

gence of the MITC4 interpolated shear strains vanishes

within the element,

divch ¼ 1

J
r̂r � ĉch ¼ 1

J
cn;n

�
þ cg;g

	
¼ 0; 8 ch 2 Ch: ð51Þ

Furthermore, the divergence of the section rotations

simplifies to

divhh ¼ 1ffiffiffi
J

p r̂r � hh ¼ 1ffiffiffi
J

p hh
x;n

�
þ hh

y;g

�
: ð52Þ

Since hh 2 Q1ð ÂAÞ, then divhh 2 P 1ð ÂAÞ ¼ /j/ ¼ c1 þf
c2n þ c3gg, and therefore,

r2ðdivhhÞ ¼ 1

J
r̂r2 1ffiffiffi

J
p r̂r � hh

 �
¼ 0; 8hh 2 Vh ð53Þ

Using (51) and (53), the residuals in the generalized

least-squares functional reduce to,

rRh
1 ¼ qtx2rðwh þ f Þ; Rh

2 ¼ qIx2r � hh ð54Þ

and (17) becomes,

FLS ¼ 1

2

X
Ae2Mh

Z
Ae

fr1rðwh þ f Þ � rðwh þ f Þ

þ r2ðr � hhÞ2gdA; ð55Þ

where

r1 ¼ s1 qtx2
� 	2

; r2 ¼ s2 qIx2
� 	2

; f ¼ q= qtx2
� 	

:

Similarly, the simplified form (20) reduces for square

elements with MITC4 interpolation to,

FLS ¼ 1

2

X
Ae2Mh

Z
Ae

r1rðwh
n

þ f Þ � rðwh þ f Þ

þ r2 ðhh
x;xÞ

2
h

þ ðhh
y;yÞ

2
io

dA: ð56Þ

A similar least-squares stabilizing operator was obtained

by the assumed stress hybrid formulation given in [30].

In that case, the simplification arises from the require-

ment that the assumed stress-field satisfies static equi-

librium within Ae.

Substituting the bilinear interpolations for wh and

hh, together with the assumed strain ch defined by the

MITC4 interpolation, into the reduced MLS functionals

and imposing stationary conditions with respect to wh

and hh, results in the following system of linear algebraic

equations for each element,

½K e � x2Me þ r1ðxÞM̂Me
1 þ r2ðxÞM̂Me

2 �d
e ¼ f e ð57Þ

Here, de is the 12 � 1 vector of element nodal displace-

ments derived from vhðxiÞ ¼ ðwi; hiÞ; i ¼ 1; . . . ; 4f g, and

K e and Me are the element stiffness and mass matrices,

respectively. The frequency independent stabilization

matrices resulting from (55) are defined by

M̂Me
1 ¼
Z
Ae

NT
w;xNw;x

n
þNT

w;yNw;y

o
dA; ð58Þ

M̂Me
2 ¼
Z
Ae

Nhx ;x

�
þNhy ;y

	T
Nhx ;x

�
þNhy ;y

	
dA; ð59Þ

where Nw, Nhx and Nhy are row vectors of bilinear basis

functions defined by the interpolations (25) written in

vector form,

wh ¼ Nwd
e; hh

x ¼ Nhxd
e; hh

y ¼ Nhyd
e: ð60Þ

Here, we have assumed ri, i ¼ 1; 2 are constant within

Ae, although variable ri are possible. Alternatively, the

simplified form resulting from (56) may be used, with the

modified matrix,

fMM e
2 ¼
Z
Ae

NT
hx ;x

Nhx ;x

n
þNT

hy ;y
Nhy ;y

o
dA: ð61Þ

For square elements, the stabilization matrix for the

simplified form,
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fMM eðxÞ ¼ r1ðxÞM̂Me
1 þ r2ðxÞfMM e

2 ð62Þ

can be written in nodal block form as

fMM e ¼ 1

6

A B C D

B A D C

C D A B

D C B A

2
6664

3
7775 ð63Þ

with diagonal nodal blocks,

A ¼ diag 4r1; 2r2; 2r2ð Þ; C ¼ diagð�2r1;�r2;�r2Þ;
B ¼ diagð�r1;�2r2; r2Þ; D ¼ diagð�r1; r2;�2r2Þ:

A similar closed form expression can be obtained

using (59).

Finite element difference relations associated with a

typical node location (xm; yn) are obtained by assembling

a patch of four elements. The result is a coupled system

of three, 27-term difference stencils associated with the

three nodal degrees-of-freedom and nine connected

nodes centered at node ðm; nÞ. Let Ep
x and Eq

y be defined

by the directional shift operations:

Ep
xd ðm;nÞ :¼ d ðmþp;nÞ; Eq

yd ðm;nÞ :¼ d ðm;nþqÞ: ð64Þ

Then the stencil associated with the solution d ðm;nÞ ¼
vhðxm; ynÞ, may be expressed in the form,

X1

p¼�1

X1

q¼�1

½Dpq�Ep
xE

q
ydðm;nÞ ¼ 0f g; ð65Þ

where ½Dpq� are 3 � 3 nodal partitions defined by the

nine-point block difference star associated with the nine

connected nodes.

4.1. Finite element dispersion relation

To obtain the finite element dispersion relation as-

sociated with this stencil, a plane wave solution is as-

sumed for the nodal displacements, similar in form to

the analytical solution to the homogeneous problem:

dðm;nÞ ¼
w0

h0m

� �
eðik

h
x hmÞeðik

h
y hnÞ; ð66Þ

where khx ¼ kh cos u, khy ¼ kh sin u are components of the

wave vector kh ¼ khm ¼ khðcos u; sin uÞ. Substitution of

(66) into the stencil equations (65), leads to the finite

element dispersion relation for the plate expressed as

Dðkh;xÞ :¼ ĜG11ĜG22 � ĜG2
12 ¼ 0: ð67Þ

For the MLS4 element, the frequency dependent coef-

ficients take the form,

ĜG11 ¼ G11 þ r1H11; ĜG22 ¼ G22 þ r2ĤH22; ĜG12 ¼ G12:

ð68Þ

The functions G11, G22 and G12 depend on the stiffness

and mass matrix coefficients Ke
ij and Me

ij, the frequency

x, wave number kh, and wave angle u. The form of these

functions are defined in [30], with the stiffness and mass

matrices replaced with those arising from the MITC4

interpolation.The functions resulting from the least-

squares stabilization matrices (58) and (59) are defined

by,

H11 ¼ ð4 � cx � cy � 2cxcyÞ=2;

ĤH22 ¼ a1 þ a2=2 þ 3a3=4:

a1 ¼ 1 � cx cos2 u � cy sin2 u;

a2 ¼ cy cos2 u þ cx sin2 u � cxcy ;

a3 ¼ sxsy sin 2u:

cx ¼ cos khh cos u
� 	

; cy ¼ cos khh sin u
� 	

;

sx ¼ sin khh cos u
� 	

; sy ¼ sin khh sin u
� 	

:
ð69Þ

For the simplified least-squares stabilization matrix de-

fined in (62), ĤH22, reduces to ĤH22 ¼ a1 þ a2=2. This sim-

plified coefficient is identical to that found in the hybrid

least-squares (HLS4) element in [30]. This result follows

from the fact that both MLS4 and HLS4 use bilinear

interpolation of section rotations hh with simplified

matrix in the form (62). Additional functions related to

the mesh parameter r1 are present in the HLS4 element

due to the cross-coupling of the nodal deflections and

section rotations in the vertical displacement approxi-

mation.

The finite element dispersion equation Dðx; khh;
u;Kij;Mij; r1; r2Þ defined in (67) relates frequency x, to

the numerical wave number khh and u, and depends

on the stiffness and mass coefficients Kij ¼ ½K e�ij, and

Mij ¼ ½Me�ij, and mesh parameters r1, r2. Similar to the

analytic dispersion relation, there are two pairs of nu-

meric wave numbers kh1 and kh2 that satisfy (67) which

correspond to propagating and evanescent waves, re-

spectively. For waves directed along mesh lines corre-

sponding to u ¼ 0, then, a3 ¼ 0, so that ĤH22 ¼ 1 � cx þ
ðcy � cxcyÞ=2, and as expected the dispersion relation for

both MLS4-1 and MLS4-2 are the same.

4.2. Selection of optimal design parameters

Following the procedures employed in [30], mesh

parameters r1 and r2 are determined such that the finite

element wave number pairs match the analytical wave

number pairs k1 and k2 for a given orientation

u ¼ u0. In particular, we set kh ¼ k1ðxÞ and kh ¼ k2ðxÞ
in the finite element dispersion relation (67). In partic-

ular, we replace ðkhh cos u; khh sin uÞ, in (69) with

ðk1h cos u; k1h sin uÞ, and ðk2h cos u; k2h sin uÞ, respec-

tively. This results in two equations for r1 and r2:
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c11 þ c12r1 þ c13r2 þ c14r1r2 ¼ 0; ð70Þ

c21 þ c22r1 þ c23r2 þ c24r1r2 ¼ 0; ð71Þ

with coefficients c1i ¼ ciðk1;uÞ, and c2i ¼ ciðk2;uÞ, i ¼ 1,

2, 3, 4, defined by substituting k1 and k2 into the func-

tions,

c1 ¼ G11G22 � G12G12;

c2 ¼ G22H11;

c3 ¼ G11ĤH22;

c4 ¼ H11ĤH22:

Eliminating r2 from (70) and (71), allows the design

parameter r1 to be obtained in closed-form by solving

the quadratic equation

e2r2
1 þ e1r1 þ e0 ¼ 0; ð72Þ

where el ¼ elðcijÞ, l ¼ 0, 1, 2, are defined by,

e2 ¼ c24c12 � c14c22;

e1 ¼ c23c12 � c13c22 þ c11c24 � c21c14;

e0 ¼ c11c23 � c21c13:

For the MLS4 element, solution of the quadratic equa-

tion (72) results in two real negative roots. We select the

largest root to determine r1, as this root matches the

analytical dispersion relations. The other design pa-

rameter can then be written in terms of the first,

r2 ¼ � c21r1 þ c11

c31 þ c41r1

: ð73Þ

Remark. For the HLS4 element derived in [30], a cubic

equation in r1 results from cross-coupling of section

rotations in the deflection approximation, thus requiring

more work to compute roots.

The design parameters rl ¼ rlðKij;Mij;x; h;uÞ,
l ¼ 1; 2 are obtained in terms of the stiffness and mass

coefficients in the underlying MITC4 element, the fre-

quency dependent wave numbers satisfying the analyti-

cal dispersion relation, and u. In general, the direction

of wave propagation u is not known a priori. However,

similar to [40,30], we can select an angle in the defini-

tions for r1 and r2 which minimizes dispersion error over

the periodic interval 06u6 p=4. With the choice u ¼ 0�
in the definitions for r1 and r2, then, as expected, the

dispersion relations for our MLS4 plate element spe-

cialize to the relations for the GGLS 1-D Timo-

shenko beam element described in [45], with EI ¼ Et3=
12ð1 � m2Þ.

4.3. Distorted elements

For distorted quadrilateral finite element geometries,

the simplifications indicated in (54) are no longer strictly

valid. For the MITC4 interpolations on distorted bilin-

ear quadrilateral elements, the divergence of the as-

sumed strain ch 2 ChðAeÞ and Laplacian operator acting

on the divergence of the section rotations hh, are not

necessarily zero. In this case, and with the MITC4 in-

terpolation ĉch 2 Shð ÂAÞ, the gradient of the shear residual

within an element takes the form,

rRh
1 ¼ ½J ��Tr̂r qtx2 wh

��
þ f
	
� c2

J 2
chn;g
�

þ chg;n

� 2x;ng � ½J ��Tĉch
��

; ð74Þ

where chn;g ¼ constant, chg;n ¼ constant. However, in im-

plementing our MLS method on nonuniform meshes, we

neglect the effect of the relatively small mixed derivatives

and Laplacian on the residuals, and revert to (54). Thus

for distorted elements, we retain the form of the stabi-

lization matrices (58) and (59), with constant element

jacobian ½J � ¼ ðh2
eÞI , consistent with the mesh parameter

definitions for r1 and r2. We define the element length he
by either a local size determined by the square root of

the element area, he ¼
ffiffiffiffiffi
Ae

p
, or by an average element

length have computed over a patch of similarly sized el-

ements. While our definition for the mesh parameters r1

and r2 were derived from a dispersion relation on a

uniform mesh, with constant element length he, accurate

solutions on nonuniform meshes are shown to be rela-

tively insensitive to the precise definitions used.

5. Dispersion accuracy

For a range of frequencies x, and wave angles u,

relative to uniform mesh lines, the wave number accu-

racy for our residual-based MLS4 four-node element is

compared with the underlying MITC4 element [9], and

the SRI4 element [7]. Results are presented for a steel

plate with properties: E ¼ 210 � 1010 dynes/cm2, m ¼
0:29, q ¼ 7:8 g/cm2, plate thickness t ¼ 0:15 cm, and

shear correction factor j ¼ 5=6. The node spacing is h ¼
Dx ¼ Dy ¼ 1:0 cm, resulting in a ratio of plate thickness

to element length of t=h ¼ 3=20. Both dispersion anal-

ysis and numerical examples show similar solutions

using the original divergence form FLS defined in (55)

and the simplified form defined in (56). For this reason,

results for our four-node quadrilateral element MLS4

are reported for the simplified residual-based form (56).

We begin with a dispersion analysis of the underlying

MITC4 element. The resulting numerical wave numbers

kh1 and kh2 for the MITC4 element are compared to the

analytical wave number–frequency relation in Fig. 1. We

note that the dispersion curves for the MITC4 element

for uniform meshes are nearly identical to the results for

the SRI4 element, see [29,30]. In the frequency range

plotted, both the analytical and numerical wave number

exhibit one real wave number k1, corresponding to a
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propagating wave, and one purely imaginary wave

number k2, corresponding to an evanescent decaying

wave. Results are plotted for equally spaced angles u ¼
0�, 15�, 30�, 45�. Due to symmetry, results are bounded

by the extreme angles of 0� and 45�, corresponding to

waves directed along mesh lines and mesh diagonals,

respectively. The values are plotted over the range 0 <
kh < p. The upper limit with real numerical wave num-

ber kh1h ¼ p corresponds to two elements per wave-

length. Beyond this value, the real numerical wave

numbers become complex, resulting in the spurious be-

havior of rapid amplitude decay. The frequency associ-

ated with this limiting wave number is called the ‘cut-off’

frequency associated with the discrete mesh.

To quantify the dispersion error, the relative error of

the numerical wave number divided by the analytic

wave number, kh=k is shown in Fig. 2. The frequency is

plotted over the range up to xh ¼ 5 � 104 cm/s corre-

sponding to the more practical limit of approximately four

elements per wavelength. At low frequencies, the

MITC4 element replicates the character of the analytic

dispersion curves marginally well with error in the real

propagating wave number <3% for discretizations finer

than 10 elements per wavelength, i.e., 10h ¼ k. Recall

wavelength is defined as k ¼ 2p=k, so that 10 elements/

wavelength corresponds to kh ¼ p=5 � 0:63, and xh �
1 � 104 cm/s. Above this level, the error in both the real

and imaginary wave number increases rapidly. We note

that at 10 elements per wavelength, the error in the

propagating plate wave number is nearly double the

1.6% dispersion error exhibited by the Galerkin finite

element discretization for the scalar Helmholtz equation

[52,40]. To achieve the same 1.6% level of accuracy

would require more than 20 MITC4 plate elements per

wavelength. This observation shows the relatively poor

accuracy of the MITC4 plate elements and provides

strong motivation for designing modified Mindlin plate

elements with improved phase accuracy. Starting from

waves directed along mesh lines at u ¼ 0�, the dispersion

error for the MITC4 element increases slightly for waves

approaching an angle of u ¼ 15�, and then decreases

after that. The error is smallest for waves directed at

u ¼ 45� along mesh diagonals. A minimum phase error

at u ¼ 45� is also observed in the behavior of the

Galerkin finite element discretization of the scalar

Helmholtz equation [40].

The bottom two plots in Fig. 2 show the improved

dispersion accuracy achieved for both the real and

imaginary wave numbers by the residual-based MLS4

element with r1 and r2 defined with u ¼ 30�. The MLS4

method exactly matches the analytic wave numbers at

u ¼ 30�, over all frequencies, as required by our defini-

tion of the mesh parameters. For other wave angles, the

MLS4 element replicates the character of the analytical

dispersion curves well with significant reduction in nu-

merical wave number error compared to the underlying

MITC4 interpolation. For the MLS4 modification, the

error is bounded above and below the exact value at

u ¼ 30�. Results for the MLS4 method give a maximum

error in the real wave number <1% at a frequency of

xh ¼ 1 � 104 cm/s, corresponding to approximately 10

elements per wavelength. This represents a nearly three-

fold reduction in phase error compared to the base

MITC4 element. At the level of 10 elements per wave-

length, the maximum error in the imaginary wave

number is reduced from 3% for MITC4 to <2% for

MLS4. Above this level, the MLS4 shows significant

reduction in the imaginary wave number error, indicat-

Fig. 1. Dispersion curves relating wave number to frequency x, at wave angles u ¼ 0�, 15�, 30�, 45�. Comparison with MITC4 (u) and

exact. Left: real propagating wave number k1, Right: imaginary evanescent wave number k2.
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ing improved accuracy for decaying waves near point

drivers and discontinuities. As shown in the numerical

examples to follow, the real wave number component

corresponding to propagating waves, often plays a key

role in time-harmonic forced vibration, e.g. for common

plate structures with relatively wide spacing between

discontinuities. Thus by reducing the percent error in the

real wave number, even if by only a small amount, the

overall accuracy of the numerical solution can increase

significantly. Reduced real wave number (phase) error

also minimizes pollution effects exhibited at high fre-

quencies and near eigenfrequencies [43]. Pollution errors

are associated with finite element approximations of

distributed loads and force resultant (natural) boundary

conditions which are not accounted for in the dispersion

analysis of an infinite uniform mesh.

For comparison, Fig. 3 shows the relative error kh=k
for the MLS4 element designed to match the analytical

wave numbers at the extreme angles of u ¼ 0� and u ¼
45�, i.e., with u ¼ 0� and u ¼ 45� in the definition of r1

and r2. With these mesh parameters the wave number

accuracy is also improved over all angles compared to

the underlying MITC4 element. However, the choice

u ¼ 30� in the definitions for r1 and r2 gives the best

overall dispersion accuracy over the entire range of

possible angles defined by the periodic interval 06u6

p=4.

Fig. 4 shows a comparison of the two alternative

MLS4-1 and MLS4-2 elements, defined by the stabili-

zation matrices (58), combined with (59) or (61); both

with mesh parameters r1 and r2 designed to match the

analytic wave numbers at u ¼ 30�. Error results are

shown at the extreme angles u ¼ 0� and u ¼ 45�. Due to

the small influence of the mixed derivatives in (59), the

accuracy is shown to be nearly identical for the alter-

native MLS4-1 and MLS4-2 formulations.

Fig. 2. Relative error kh=k at angles u ¼ 0�, 15�, 30�, 45�. Top: MITC4, Bottom: MLS4 with u ¼ 30� in definition of mesh parameters

r1 and r2. Left: real wave number k1, Right: imaginary wave number k2.
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The frequency and wave angle dependence of the pa-

rameters r1 and r2 is shown in Fig. 5. In the static limit

x ! 0, r1 ! 0, and r2 ! 0; as a result, the dynamic co-

efficient matrix tends to the frequency independent stiff-

ness matrix, i.e., the MLS4 element inherits the static

behavior of the underlying MITC4 element. This result is

the key feature in successfully designing improved resid-

ual based methods for time-harmonic response of mixed

Mindlin plate elements with arbitrary quadrilateral shape

which are free-from shear locking and spurious modes.

6. Numerical examples

6.1. Simply supported plate with uniform loading

Results are presented for forced vibration of a simply

supported steel plate with a uniformly distributed time-

harmonic pressure loading q ¼ 2 dynes/cm2. We use the

same material properties used in the dispersion analysis

discussed in the proceeding section. The plate is square

with side length L ¼ 100 cm. The origin of a Cartesian

coordinate system is positioned at the lower left corner

of the plate. Using symmetry, only the upper-right 1=4

of the square is modeled. The finite element solution for

the total plate is obtained from a reflection about the

lines of symmetry. Results are compared for the different

quadrilateral plate elements and the analytical series

solution based on the superposition of mode shapes for

the Reissner–Mindlin plate model given in [3,30]. For

reference, contours of the analytical solution in the

upper-right quadrant are shown in Fig. 6 for frequen-

cies f ¼ 500 and 1671 Hz.

6.1.1. Uniform meshes

We begin with a numerical study of solutions on a

uniform mesh of N � N elements. In Fig. 7, the vertical

Fig. 3. Relative error kh=k at angles u ¼ 0�, 15�, 30�, 45�. Top: MLS4 with u ¼ 0� in definition of mesh parameters r1 and r2. Bottom:

MLS4 with u ¼ 45� in definition of mesh parameters r1 and r2. Left: real wave number k1, Right: imaginary wave number k2.
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deflection whðx; yÞ is plotted along a horizontal mesh line

at a representative cut at y ¼ 72 cm. The driving fre-

quency of f ¼ 500 Hz, (x ¼ 0:314 � 104 rad/s) falls be-

tween the resonance eigenfrequencies of 450 and 625

Hz. The top figure shows the solution profile using a

uniform 50 � 50 element mesh over 1=4 of the plate,

resulting in an element size h ¼ 1:0. At this frequency

and mesh size the plate is modeled with approximately

18 elements per wavelength. At this level of discretiza-

tion, the MITC4 element solution shows large errors

while the MLS4 element solution shows good agreement

with the analytical solution. As the number of elements

is increased to a uniform 100 � 100 mesh over a quad-

rant, corresponding to an element size h ¼ 0:5 cm, and a

discretization of approximately 35 elements per wave-

length, both elements match the analytical solution

well, although there is still some error shown in the

MITC4 solution. These results primarily demonstrate

the impact of the phase error in the real wave number as

seen in the finite element dispersion relations.

The accuracy is quantified further by computing the

relative discrete L2 error in the vertical deflection mea-

sured over the entire plate:

kekL2

kwkL2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n whðxn; ynÞ � wðxn; ynÞ½ �2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n wðxn; ynÞ½ �2
q : ð75Þ

Fig. 4. Relative error kh=k for the MLS4 element with u ¼ 30� in the definition of mesh parameters r1, r2, at bounding angles

u ¼ 0�; 45�. Comparison between use of stabilization matrix (58) combined with (59), denoted MLS4-1, and simpified form (61),

denoted MLS4-2. Left: real wave number k1, Right: imaginary wave number k2.

Fig. 5. Frequency dependence on mesh parameters r1ðx;uÞ and r2ðx;uÞ defined by different angles u. Left: r1, Right: r2.
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In the above, whðxn; ynÞ is the finite element solution at a

node point with coordinates xn, yn, and wðxn; ynÞ is the

analytical solution evaluated at the same node point.

Fig. 8 shows the L2 convergence rates with uniform mesh

refinement. Both MITC4 and MLS4 achieve the same

rate of convergence at approximately N ¼ 100 elements.

However, as a result of improved dispersion accuracy,

the MLS4 element decreases the L2 error for the same

number of elements.

Fig. 9 shows the solution profile when the frequency

is increased to f ¼ 1750 Hz. This frequency falls be-

tween eigenfrequencies at 1627 and 1950 Hz. With a

relatively course mesh (h ¼ 0:5 cm), the MLS4 solution

captures the behavior of the analytical solution well,

while the MITC4 solution shows large errors. Using a

finer mesh of h ¼ 0:25, the MLS4 solution matches the

analytical solution, while the MITC4 solution still has

not fully converged. Fig. 10 shows the solution profile

when the frequency is decreased to f ¼ 1671 Hz,

(x ¼ 1:05 � 104 rad/s). This frequency falls relatively

close to an eigenfrequency at fi ¼ 1627 Hz, representing

a more difficult problem near an ill-conditioned solution

(resonance). With element element size h ¼ 0:5, the error

in the MITC4 element solution is severe, resulting in a

complete misrepresentation of the analytical solution. In

contrast, the solution for MLS4 follows closely the be-

havior of the analytical solution. As the mesh is de-

creased to h ¼ 0:25, the MLS4 matches the analytical

solution well, while the MITC4 element still shows rel-

atively large errors. The difficulty in resolving the solu-

tion near eigenfrequencies can be explained by the

pollution effect for the indefinite system under consid-

eration; see [43] for a discussion of this effect for the

wave response of the related scalar Helmholtz equation.

We see significant increase of the pollution effect when

the frequency is moved towards an eigenfrequency. The

mesh must be relatively fine in order to achieve a reliable

resolution of the resonance behavior (dynamic instabil-

ity). However, the MLS4 element reduces the pollution

effect significantly compared to the underlying MITC4

element.

6.1.2. Quasi-uniform meshes

We next study the performance of the MLS4 element

for quasi-uniform meshes (parametric mesh grading).

Here, the MLS4 element is computed with mesh pa-

rameters r1 and r2 determined from an average element

size have, computed over the total mesh, denoted MLS4-

ave, and from a local element size he ¼
ffiffiffiffiffi
Ae

p
, denoted

MLS4-local. Table 1 shows results obtained using the

three different quasi-uniform meshes shown in Fig. 11.

We observe that the large improvement in accuracy us-

ing the MLS4 element compared to the MITC4 element

for uniform meshes is not drastically affected by the el-

ement distortions or higher aspect ratios. Showing the

robustness of the MLS method, the discrete L2 error for

the MLS4-local solution remains an order of magnitude

lower than the underlying MITC4 element for all three

quasi-uniform meshes. The MLS4-ave solution, with an

average element size over the entire mesh, defined by

have ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=NT

p
, where A is the area and NT ¼ 50 � 50 is

the total number of elements, also reduces the error

significantly compared to the MITC4 element. For the

quasi-uniform meshes studied, the local mesh size pa-

rameter gives better accuracy than the global average.

Fig. 6. Contour plot of analytical series solution for vertical deflection in the upper-right quadrant of a simply supported Reissner–

Mindlin plate with uniform pressure load, at frequency. Left: f ¼ 500 Hz, Right: f ¼ 1671 Hz.
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We next study the effect of random mesh distortion

on the accuracy of the MLS4 plate element. The dis-

torted mesh is based on the uniform N � N mesh of

equal squares, where each node is allowed to move

randomly within a fixed range defined by a ‘blur’ func-

tion D, defined as a fraction of the baseline square mesh

length h. The nodal coordinates are allowed to vary

within the range defined by ðx; yÞ ¼ ðxm; ynÞ þ ð�1; �2ÞD,

where the parameters �1, and �2 are random numbers

defined in the range �16 �6 1. A value of D ¼ 0 cor-

responds to a uniform mesh. As D increases, the ele-

ments are further distorted. Tables 2 and 3 show

comparisons of relative discrete L2 error with the blur

function ranging from 06D6 0:4h. Results are com-

pared at a frequency f ¼ 500 Hz, and mesh sizes h ¼ 1:0
and 0.5 cm, respectively. For the uniform mesh (D ¼ 0)

results for SRI4 and MITC4 are nearly identical. The

error is reduced significantly for the MLS4 element. For

Fig. 8. Simply supported steel plate example. Frequency

f ¼ 500 Hz. Convergence with mesh refinement. Relative dis-

crete L2 error for a uniform mesh of N � N elements over one-

quarter of the plate.

Fig. 9. Simply supported steel plate example. Vertical deflection

at y ¼ 72 cm, 506 x6 100 cm, frequency f ¼ 1750 Hz. Uniform

mesh with element length, Top: h ¼ 0:5 cm, Bottom: h ¼ 0:25 cm.

Fig. 7. Simply supported steel plate with uniform distributed

time-harmonic loading. Vertical deflection at y ¼ 72 cm,

506 x6 100 cm, frequency f ¼ 500 Hz. Uniform mesh with

element length, Top: h ¼ 1:0 cm, Bottom: h ¼ 0:5 cm.
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the MITC4 and MLS4 solutions the error increases

somewhat with the first level of distortion D ¼ 0:1h, but

then is relatively insensitive to further element distor-

tion. For the SRI4 solution, however, the accuracy is

decreased significantly with mesh distortion. The dis-

tortion seriously affects the accuracy of the SRI element,

yet has little significant influence on the error for the

MITC4 and MLS4 elements. The results clearly show

Table 1

Discrete L2 error for square plate example with quasi-uniform meshes at f ¼ 500 Hz

Mesh Element type

SRI4 MITC4 MLS4-ave MLS4-local

QMesh1 0.29952E0 0.29952E0 0.55688E�1 0.38146E�1

QMesh2 0.38511E0 0.38514E0 0.12876E0 0.52325E�1

QMesh3 0.33728E0 0.33731E0 0.32663E�1 0.33728E�1

Uniform 0.18351E0 0.18352E0 0.22147E�1 0.22147E�1

Results for a uniform mesh with equally spaced nodes shown for reference.

Fig. 10. Simply supported steel plate example. Vertical deflec-

tion at y ¼ 72 cm, 506 x6 100 cm, frequency f ¼ 1671 Hz.

Uniform mesh with element length; Top: h ¼ 0:5 cm, Bottom:

h ¼ 0:25 cm.

Fig. 11. Quasi-uniform meshes with N ¼ 50 elements per edge

and 5:1 bias. Average element size have ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=NT

p
¼ 1:0. Top:

QMesh1, Middle: QMesh2, Bottom: QMesh3.
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that MLS4 is superior to both the underlying MITC4

element and the SRI4 element Fig. 12.

We next study the solution on a quasi-uniform mesh

of distorted elements generated with the ‘free-mesh’

quadrilateral element algorithm used in the commercial

CAE software package I-DEAS from Structural Dy-

namics Research Corporation (SDRC). Fig. 13 shows a

typical mesh of regular quadrilateral elements generated

with the automatic mesh algorithm with average element

length have ¼ ðA=NTÞ1=2 ¼ 0:936. Fig. 13 shows the ver-

tical deflection along the diagonal line of symmetry pa-

rameterized by coordinate s ¼ ððx� 50Þ2 þ ðy � 50Þ2Þ1=2
.

Results for SRI4 and MITC4 show large errors in the

solution. In contrast, the MLS4 element solution closely

matches the analytical solution. Table 4 shows results

for ‘free-meshes’ with average element size ranging from

1.257 to 0.741. Again we observe large improvement in

accuracy using the MLS4 element compared to the

MITC4 element for quasi-uniform meshes with distorted

elements. The discrete L2 error for the MLS4-local so-

lution, with mesh size h ¼
ffiffiffiffiffi
Ae

p
used in the definition

for mesh parameters r1, r2, is reduced significantly over

the underlying MITC4 element. Interestingly, for the

‘free-meshes’ studied here, the MLS4-ave solution, with

an average element size have ¼
ffiffiffiffiffiffiffiffiffiffiffi
A=NT

p
defined over the

total mesh, further reduces the error compared to

MLS4-local.

6.1.3. Nonuniform meshes

Finally, we study the performance of our MLS4 el-

ement for nonuniform meshes composed of fine and

course mesh regions with transition. For nonuniform

meshes, the finite element approximation will exhibit

errors from both numerical dispersion and reflection

Table 2

Discrete L2 error as a function of element distortion for square

plate example at f ¼ 500 Hz, and h ¼ 1:0 cm

D (h) Element type

SRI4 MITC4 MLS4-ave MLS4-local

0 0.183E0 0.183E0 0.2215E�1 0.2215E�1

0.05 0.273E0 0.185E0 0.2218E�1 0.2220E�1

0.10 0.800E0 0.190E0 0.2223E�1 0.2229E�1

0.15 0.826Eþ1 0.198E0 0.2255E�1 0.2246E�1

0.20 0.150Eþ1 0.210E0 0.2352E�1 0.2278E�1

Fig. 12. Typical distorted mesh with average element size

have ¼ 0:936, generated with SDRC I-DEAS ‘free-mesh’ quad

element algorithm.

Fig. 13. Vertical deflection along the diagonal line of symmetry

using the ‘free-mesh’ shown in Fig. 12. Frequency f ¼ 500 Hz.

Table 3

Discrete L2 error as a function of element distortion for square

plate example at f ¼ 500 Hz, and h ¼ 0:5 cm

D (h) Element type

SRI4 MITC4 MLS4-ave MLS4-local

0 0.348E�1 0.348E�1 0.7892E�2 0.7892E�2

0.05 0.492E�1 0.350E�1 0.7986E�2 0.7948E�2

0.10 0.976E�1 0.356E�1 0.8277E�2 0.8127E�2

0.15 0.201E0 0.367E�1 0.8789E�2 0.8436E�2

0.20 0.433E0 0.383E�1 0.9551E�2 0.8890E�2
Table 4

Discrete L2 error for square plate example at f ¼ 500 Hz. ‘Free-

meshes’ generated with I-DEAS quad element generator

have Element type

SRI4 MITC4 MLS4-ave MLS4-local

1.257 0.61037E0 0.37244E0 0.43420E�1 0.72982E�1

1.115 0.29672E0 0.22830E0 0.32593E�1 0.42995E�1

0.936 0.18847E0 0.14724E0 0.92567E�2 0.12893E�1

0.741 0.95188E�1 0.74687E�1 0.37013E�2 0.43777E�2
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errors resulting from transitions in mesh size [53]. We

construct the meshes from a surface bisecting the plate

along the diagonal line of symmetry. We then define a

‘free-mesh’ of similarly sized regular elements within this

region, and then transition to a course mesh in the

surrounding off-diagonal surfaces. Fig. 14 shows a typ-

ical mesh composed of the two resulting patches with

transition––Patch 1 with a relatively course mesh, and

Patch 2 with a fine mesh. Fig. 15 shows a sequence of

nonuniform meshes with course to fine mesh transition.

Fig. 14. Mesh 3 composed of two patches of similarly sized elements. Left: Patch 1, hð1Þave ¼ 0:895. Center: Patch 2, hð2Þave ¼ 0:506, Right:

Total, have ¼ 0:673.

Fig. 15. Nonuniform meshes denoted Mesh 1 thru Mesh 4 for simply supported Mindlin plate model. Average element sizes are given

in Table 5.
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The first mesh (Mesh 1) has a small change in mesh size,

whereas the last mesh (Mesh 4) has a very large mesh

transition. The average element sizes for these nonuni-

form meshes are given in Table 5. We consider three

alternative methods for computing the element size h

used in the mesh parameters r1 and r2 for our MLS4

element. The first two definitions are the same as used

earlier; average element size have, computed over the

total mesh, and local element size he ¼
ffiffiffiffiffi
Ae

p
computed

from the square root of the element area. In addition, we

consider the element size h to be an average over the two

different patches of similarly sized elements. With this

definition, elements in Patch 1 are assigned a value hð1Þave,

and elements in Patch 2 are assigned a different value

hð2Þave. Table 6 compares the relative discrete L2 error for

the competing plate elements using the different non-

uniform meshes shown in Fig. 15. The results from this

study and other nonuniform mesh gradings (not shown)

exhibit no significant deterioration in performance due

to mesh transitions for our MLS4 plate element. Inter-

estingly, an average size over a patch of similarly sized

elements gave better results compared to the local ele-

ment based definition. This result suggests that im-

proved performance may be obtained using an average

element size for h in the mesh parameter definitions,

when meshes are constructed from ‘free-mesh’ distribu-

tions of regular elements over patches of similarly sized

elements, as typically generated with commercial mesh

algorithms such as those available in I-DEAS. However,

when distinct patches of elements are not present in the

mesh, the local element size definition remains the most

robust, leading to a predictable and significant reduction

in error compared to the underlying MITC4 element.

7. Conclusions

Low-order quadrilateral plate elements such as the

MITC4 mixed interpolation element [9], while elimi-

nating shear locking problems for thin plates, exhibit

poor accuracy for both real propagating and imagi-

nary decaying wave number components at intermediate

to high frequencies. By selecting mesh parameters in a

generalized least-squares operator to match (for a given

wave angle) exact wave number–frequency relations for

Mindlin plates, dispersion accuracy is increased by a

factor of three over the underlying MITC4 element, with

trivial extra cost. The extra cost is proportional to

solving a quadratic equation for the mesh parameters in

closed form for each element. This is a reduction in cost

compared to a similar least-squares stabilization opera-

tor applied to the Hellinger–Reissner functional for as-

sumed stress plate elements––in that context, solution of

a cubic equation was required [30]. As a general rule of

thumb, the mesh resolution requirements to obtain a

1.5% dispersion error are reduced from 20 to 10 ele-

ments/wavelength. An important property of our MLS4

four-node quadrilateral plate element is that in the zero

frequency limit, the mesh parameters vanish, thus re-

covering the shear-locking behavior of the underlying

MITC4 element. The property of field consistency in the

MITC transverse shear strain interpolation simplifies the

residuals appearing in the generalized least-squares op-

erators, and leads to a simple modification of the ele-

ment dynamic stiffness matrix. From numerical studies

of wave number accuracy, the choice of u ¼ 30� in the

definition for the mesh parameters maximizes the dis-

persion accuracy over all possible wave angle directions.

While optimally designed for uniform meshes, results

from both dispersion analysis and numerical examples

show that our MLS4 element improves the accuracy of

the underlying MITC4 element for quasi-uniform

parametric meshes and distorted meshes generated with

automatic ‘free-mesh’ generators. When meshes are

constructed from ‘free-mesh’ distributions of regular

elements over patches of similarly sized elements, the

numerical results showed increased performance using

an average element size for each element patch in the

definitions for the mesh parameters. However, when

distinct patches of similarly sized elements cannot be

Table 5

Nonuniform meshes for square plate example showing average

element size over Patches 1 and 2, denoted hð1Þave and hð2Þave, and

average size over the total mesh, denoted have

Mesh Average element size

hð1Þave hð2Þave have

1 0.895 0.825 0.867

2 0.895 0.682 0.797

3 0.895 0.506 0.673

4 0.895 0.319 0.480

Table 6

Discrete L2 error for nonuniform meshes for square plate example at f ¼ 500 Hz

Mesh Element type

SRI4 MITC4 MLS4-ave MLS4-patch MLS4-local

1 0.15964E0 0.11716E0 0.10531E�1 0.10037E�1 0.17081E�1

2 0.15683E0 0.10885E0 0.13062E�1 0.09246E�1 0.17959E�1

3 0.15197E0 0.10197E0 0.31230E�1 0.10069E�1 0.15652E�1

4 0.16184E0 0.10269E0 0.37237E�1 0.13544E�1 0.15969E�1
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identified in the nonuniform mesh, a local element size

definition gives the most robust solution, leading to a

predictable and significant reduction in error compared

to the underlying MITC4 element.

Further improvements we are investigating include

the combination of shear stabilization methods with the

mixed interpolation technique of the original MITC el-

ements given in [27], as a basis for developing general-

ized least-squares operators for improved dynamic wave

response. Further extensions of the generalized least-

squares methods developed here for plate elements in-

clude generalizations to curved shell elements with

bending-membrane coupling.
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