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Abstract

The mixed interpolation technique of the well-established MITC4 quadrilateral plate finite element is combined with

shear and generalized least-squares stabilization methods for accurate frequency response analysis. Dispersion analysis

is used to determine optimal combinations of stabilization parameters, which, for a given mesh, provide for a three-fold

increase in the frequency range over which accurate solutions are obtained, thus allowing for accurate solutions at

significantly lower cost. Numerical results for the forced vibration of Reissner–Mindlin plates validate the observations

made from the dispersion analysis.
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1. Introduction

Accurate modeling of high-frequency response is

important in many applications of structural dynamics,

including modeling control–structure interactions, dy-

namic localizations, acoustic fluid–structure interaction,

scattering from inhomogeneities, and other applications

requiring precise modeling of dynamic characteristics.

When modeling plate and shell structures, the inclusion

of transverse shear deformation and rotary inertia effects

such as that found in the well-known Reissner–Mindlin

theory [1], is crucial for accurate response over a large

frequency window.

Significant progress has been made on the mathe-

matical stability and error analysis for Reissner–Mindlin

plate finite elements for static analysis (see e.g. [2–7]).

The simplist four-node quadrilateral elements use equal

bilinear interpolation for both deflection and section

rotations. Of these low order elements, the popular bi-

linear MITC4 element [8] based on mixed interpolation

of shear strains has been established as a reliable and

accurate element for static analysis. The error analysis

[2,3] performed on this element showed that the MITC4

element is optimally convergent for deflections and ro-

tations on regular meshes. However, as shown in [9], the

MITC4 element may lose shear force accuracy for highly

irregular meshes. Furthermore, for dynamic analysis,

the MITC4 element exhibits significant wave number/

frequency dispersion error. As a result, forced vibration

response at intermediate to high frequencies will be

misrepresented if a large number of elements are not

used in the analysis; see [10]. From complex wave

number dispersion analysis of the MITC4 element, it is

found that over 20 elements per wavelength are required

to obtain accurate solutions; a relatively high number

compared to the rule-of-thumb of 10 elements per

wavelength for bilinear quadrilateral elements for the

scalar wave equation [12].

To address the shear force inaccuracy problem for

static analysis, Lyly et al. [9], proposed a shear stabili-

zation modification to the MITC4 element. This idea

was introduced in early plate elements as a �residual

bending flexibility�, designed to reduce shear stiffness,

[13]. Later Stenberg and Lyly [14,15] showed that this
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�trick� fits into a consistent variational method. The

modification is simple to implement, in that it appears

only as a redefinition of the shear modulus material

parameter. Numerical studies performed in [9] showed

that accuracy is improved with proper selection of the

shear stabilization parameter. However, if the incorrect

stabilization parameter is used, the deflection accuracy

may decrease. To date, no criteria has been offered to

select an optimal shear stabilization parameter, other

than numerical experiment.

In this work, we combine the shear interpolation of

the MITC4 plate element [8] with shear stabilization [9],

with the residual-based, generalized least-squares meth-

ods developed in [10]. Using complex wave number

dispersion analysis [16], optimal combinations of shear

stabilization and generalized least squares stabilization

parameters are determined which minimize wave num-

ber/frequency dispersion error. The reduction of dis-

persion error has a direct impact on the accuracy of

frequency response for forced vibration problems. In

particular, using dispersion accuracy as the design cri-

teria, we define optimal combinations of stabilization

parameters which, for a given mesh, provide for a three-

fold increase in the frequency range over which accurate

solutions are obtained.

The paper is organized as follows: In Section 2 the

Reissner–Mindlin plate bending problem for frequency

response analysis is summarized. In Section 3 the new

stabilized finite element method based on the MITC

reduction technique combined with shear and general-

ized least-squares stabilization is presented. Section 4

gives the analytical wave number/frequency dispersion

relation which is used to help design the optimal gen-

eralized least-squares stabilization parameters presented

in Section 5. In Section 6 a complex wave number dis-

persion analysis is used to quantify the accuracy of

different stabilization parameter combinations. In Sec-

tion 7, a numerical example of forced vibration of a

simply-supported plate is studied to verify the observa-

tions made from our dispersion analysis. Section 8 gives

final conclusions.

2. Time-harmonic Reissner–Mindlin plate bending prob-

lem

We consider the Reissner–Mindlin plate bending

model [1] with thickness t, two-dimensional midsurface

A � R2, boundary oA, and transverse coordinate z. We

consider a distributed load f ðx; yÞ and without loss of

generality, assume a clamped plate. The plate displace-

ment components, ð�zbx;�zby ;wÞ, are parameterized

by the vertical deflection of the midsurface wðx; yÞ, and

independent angles b ¼ ðbx; byÞ, where bxðx; yÞ, and

byðx; yÞ are defined by section rotations about the y and x
axes, respectively. The material is assumed to be linear

elastic, and isotropic. The motion is assumed time-har-

monic and driven with circular frequency, x.

The problem may be stated as: Given f ðx; yÞ, E, m, q,

t, find u ¼ ðb;xÞ, over a given frequency band x 2
ðx1;x2Þ, such that,

R1ðu;xÞ :¼ divQðuÞ þ ðqtx2Þwþ f ¼ 0; ðx; yÞ 2 A
ð1Þ

R2ðu;xÞ :¼ divMðbÞ þQðuÞ þ ðqIx2Þb ¼ 0; ðx; yÞ 2 A
ð2Þ

u ¼ 0; ðx; yÞ 2 oA ð3Þ

where the moment tensor and shear vector are defined

by,

MðbÞ :¼ 2GI �ðbÞ
n

þ m
1 � m

ðdivbÞI
o

ð4Þ

QðuÞ :¼ GjtcðuÞ ¼ Gjtðrw� bÞ ð5Þ

with small curvature tensor,

�ðbÞ :¼ 1
2
ðrb þ ðrbÞTÞ ð6Þ

Here, I ¼ t3=12, with Young�s modulus E, Poisson�s
ratio m, shear modulus G ¼ E=ð2ð1 þ mÞÞ, and j is a

shear correction factor. In the above, r ¼ ðox; oyÞ is the

gradient vector, and �div� stands for divergence, i.e.,

divb ¼ oxbx þ oyby , and I is the unit tensor.

In the above, R1 is a scalar residual associated with

shear equilibrium, and R2 ¼ ½R2x;R2y 
T is a vector re-

sidual associated with moment equilibrium. Applying

the divergence operator to the vector equation (2), and

writing the bending and shear resultants in terms of

u ¼ ðb;wÞ, the residuals can be restated in terms of the

two scalar equations,

R1ðu;xÞ :¼ ðGjtÞdivc þ ðqtx2Þwþ f ¼ 0 ð7Þ

R2ðu;xÞ :¼ divR2

¼ ðDbr2 þ qIx2Þdivb þ ðGjtÞdivc ¼ 0 ð8Þ

where Db ¼ EI=ð1 � m2Þ, r2 ¼ divr, and c ¼ rw� b.

The variational problem (weak form) may be stated

as: Find the deflection and the rotation vector, u ¼
ðb;wÞ 2 ½H 1

0 ðAÞ

3
, such that,

Bðu; v;xÞ ¼ ðv; f Þ; 8v ¼ ða; vÞ 2 ½H 1
0 ðAÞ


3 ð9Þ

The symmetric, bilinear form is defined as,

Bðu; vÞ : ¼ GIaða; bÞ þ Gjtðrv� a;rw� bÞ
� x2 qtðv;wÞf þ qIða; bÞg ð10Þ

aða; bÞ :¼ 2 ðeðaÞ; eðbÞÞ
n

þ m
1 � m

ðdiva; divbÞ
o

ð11Þ
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The L2-inner products are denoted by,

ðv;wÞX ¼
Z

X
vwdxdy

ða; bÞX ¼
Z

X
a � bdxdy

ðeðaÞ; eðbÞÞX ¼
Z

X
eðaÞ : eðbÞdxdy

The subscript X is dropped when X ¼ A.

3. The stabilized MITC finite element methods

Consider a finite element mesh obtained by parti-

tioning A into convex quadrilateral elements. Let Ae
denote the area for a typical element number e. We then

define Mh ¼ [eAe as the union of element interiors. We

consider equal order linear basis functions for the de-

flection and both components of the rotation. The finite

element subspaces for the approximation of the deflec-

tion wh and rotation vector bh are,

Wh ¼ wh 2 H 1
0 ðAÞ;whjAe 2 Q1½Ae
; 8Ae 2 Mh

� �
ð12Þ

Vh ¼ bh 2 H 1
0 ðAÞ; bhjAe 2 ½Q1ðAeÞ
2; 8Ae 2 Mh

n o
ð13Þ

where Q1ðAeÞ is the set of low-order polynomials of

degree 6 1 in each variable defined on the element area

Ae.
The finite element interpolation of the element do-

main Ae, together with the displacement field wh, and bh,

follows the standard isoparametric procedure [18]. De-

fine n ¼ ðn; gÞ to be natural coordinates on the reference

bi-unit square ÂA defined by the interval ½�1; 1
2. The

reference domain is then mapped onto the physical ele-

ment domain Ae with cartesian coordinates x ¼ ðx; yÞ
parameterized by,

xðn; gÞ ¼
X4

i¼1

Niðn; gÞxi ð14Þ

where xi ¼ ðxi; yiÞ 2 R2 are nodal coordinates, and Ni are

bilinear shape functions,

Niðn; gÞ ¼ ð1 þ ninÞð1 þ gigÞ=4; i ¼ 1; . . . ; 4 ð15Þ

Ni;n ¼ nið1 þ gigÞ=4; Ni;g ¼ gið1 þ ninÞ=4

with nodal coordinates ðni; giÞ 2 fð�1;�1Þ; ð1;�1Þ;
ð1; 1Þ; ð�1; 1Þg. The displacements are constructed using

the same bilinear functions:

whðn; gÞ ¼
X4

i¼1

Niðn; gÞwi; bhðn; gÞ ¼
X4

i¼1

Niðn; gÞbi

ð16Þ

where wi are nodal deflections and bi ¼ ½bix; b
i
y 
, are no-

dal rotations. Let ½J 
 be the Jacobian transformation

matrix of the mapping x : ÂA! Ae, i.e. brr ¼ ½J 
Tr, and

r ¼ ½J 
�T brr, where brr ¼ ðon; ogÞ, and

½J 
 :¼ ½x;n
 ¼
x;n x;g
y;n y;g

� 	
ð17Þ

3.1. MITC reduction technique

The assumed shear strain ch within an element, is

interpolated with the MITC technique, [8], using a re-

duction operator Rh : ½H 1ðAeÞ
2 ! ChðAeÞ, which maps

the shear strain interpolants evaluated from the spaces

W h and Vh to the assumed strain space ChðAeÞ, [2–4]:

ChðAeÞ ¼ cjAe
n

¼ ½J 
�T
ĉc; ĉc 2 Shð ÂAÞ

o
ð18Þ

Here, Sh is the rectangular rotated Raviart–Thomas

space,

Shð ÂAÞ ¼ fĉc ¼ ðcn; cgÞ; jcn ¼ a1 þ a2g; cg ¼ b1 þ b2ng

The essential assumption is that the shear interpolation

for cn is linear in g, and for cg, linear in n. In terms of the

reduction operation, the assumed strain may be ex-

pressed as,

ch ¼ ðrwh � Rhb
hÞ ¼ ½J 
�Tð brrwh � R ÂA½J 


T
bhÞ;

ðx; yÞ 2 Ae

where,

brrwh ¼ X4

i¼1

brrNiwi; brrNi ¼ ðNi;n;Ni;gÞ

RÂA½J 

T
bh ¼

X4

i¼1

½RiÂA
½J i

T
bi

In the above, ½J i
 is the Jacobian evaluated at node i,
and,

½RiÂA
 ¼
jNi;nj 0

0 jNi;gj

� 	

where jNi;nj, and jNi;gj, are the absolute values of the

shape function derivatives.

3.2. Variational equation

A stabilized finite element formulation may then be

stated as: Find uh ¼ ðbh;whÞ 2 Vh � Wh such that,
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Bhðuh; vh;xÞ ¼ FhðvhÞ; 8vh ¼ ðah; vhÞ 2 Vh � Wh
ð19Þ

The symmetric, bilinear form is defined as,

Bhðuh; vh;xÞ
¼ GIaðah; bhÞ � x2fqtðvh;whÞ þ qIðah;bhÞg

þ
X
Ae2Mh

Gjt3

t2 þ jah2
e


 �
ðrvh

�
� Rha

h;rwh � Rhb
hÞAe

þ se1ðrL1ðvhÞ þ qtx2rvh;rL1ðuhÞ þ qtx2rwhÞAe

þ se2ðL2ðvhÞ þ qIx2 divah;L2ðuhÞ þ qIx2 divbhÞAe


ð20Þ

The linear form is defined as,

Fhðvh;xÞ ¼ ðvh; f Þ �
X
Ae2Mh

se1ðrL1ðvhÞ þ qtx2rvh;rf ÞAe

ð21Þ

Rh1ðuh;xÞ ¼ L1ðuhÞ þ ðqtx2Þwh þ f ð22Þ

Rh2ðuh;xÞ ¼ L2ðuhÞ þ ðqIx2Þdivbh ð23Þ

L1ðuhÞ ¼ ðGjtÞdiv ðrwh � Rhb
hÞ

L2ðuhÞ ¼ Dbr2 divbh þ ðGjtÞdiv ðrwh � Rhb
hÞ

Here, he is a measure of the element size and aP 0 is a

positive constant. The functions se1ðxÞ6 0 and se2ðxÞ6 0

multiplying the generalized least-squares terms, are fre-

quency dependent local element stabilization parameters

determined from dispersion analysis and designed to ex-

plicitly match, on a uniform mesh of square elements, the

analytical wave number–frequency relation (both real and

imaginary wave numbers) for Mindlin plates. A similar

generalized least-squares technique was used in [19,20] to

improved the frequency response accuracy of quadrilat-

eral plate elements based on assumed stress fields in a

modified Hellinger–Reissner variational principle.

Special cases:

(1) Setting s1 ¼ s2 ¼ 0, a 6¼ 0, reverts to the stabilized

form of the MITC element given in Lyly et al.

[9,14,15], here extended to frequency response anal-

ysis.

(2) Setting a ¼ 0, s1 6¼ 0, s2 6¼ 0 reverts to the general-

ized least-squares, stabilized MITC element given

in Thompson and Thangavelu [10,11].

(3) Setting both s1 ¼ s2 ¼ 0, and a ¼ 0, reverts to the

underlying MITC4 element of Bathe and Dvorkin

[8].

For square elements with the MITC strain interpo-

lation operating on the bilinear approximations Wh and

Vh defined in (12) and (13), the residuals simplify,

L1ðuhÞ ¼ 0, L2ðuhÞ ¼ 0, and the variational problem

reduces to,

Bhðuh; vh;xÞ
¼ GIaðah; bhÞ � x2fqtðvh;whÞ þ qIðah; bhÞg

þ
X
Ae2Mh

Gjt3

t2 þ jah2
e


 �
ðrvh

�
� Rha

h;rwh � Rhb
hÞAe

þ re1ðrvh;rwhÞAe þ r
e
2ðdivah; divbhÞAe


ð24Þ

Fhðvh;xÞ ¼ ðvh; f Þ �
X
Ae2Mh

ðs1qtx2Þðrvh;rf ÞAe ð25Þ

where

re1 ¼ ðqtx2Þ2se1; re2 ¼ ðqIx2Þ2se2

For the MITC4 interpolations on distorted quadrilateral

element geometries, the differential operators L1ðuhÞ,
L2ðuhÞ, are not precisely zero, and the simplifications

given in (24) are not strictly valid. However, in imple-

menting the least-squares terms on nonuniform meshes,

the effect of the relatively small mixed derivatives and

nonzero Laplacian on the residuals is neglected and we

revert to (24). Extensive numerical studies conducted in

[10] verify that this assumption on distorted element

meshes does not alter the enhanced accuracy achieved

with proper selection of the stabilization parameters re1
and re2.

3.3. Element stabilization matrices

Substituting the bilinear interpolations for wh and

bh, together with the assumed strain ch defined by the

MITC4 interpolation, into the variational equation (24),

leads to the following element matrices,

½K e � x2Me þ re1ðxÞM̂Me
1 þ re2ðxÞM̂Me

2 
d
e ¼ f e ð26Þ

Here, de is the 12 � 1 vector of element nodal dof de-

rived from

de ¼ fvhðxiÞg ¼ fðwi; biÞg; i ¼ 1; . . . ; 4

and K e and Me are the element stiffness and mass ma-

trices, respectively. For isotropic materials, the stiffness

may be split in terms of a bending and transverse shear

part,

K eðaÞ ¼ DbK e
b þ DesðaÞK e

s

Db ¼
Et3

12ð1 � m2Þ ; Des ¼
Gjt3

t2 þ jah2
e

In the above, a is the shear stabilization number.
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The frequency independent matrices multiplied by

the least-squares stabilization parameters ðr1; r2Þ may be

expressed as,

M̂Me
1 ¼

Z
Ae

fNT
1;xN1;x þNT

1;yN1;ygdA ð27Þ

M̂Me
2 ¼

Z
Ae

ðN21;x þN22;yÞTðN21;x þN22;yÞdA ð28Þ

where N1, N21 and N22 are row vectors of bilinear basis

functions defined by the interpolations (16) written in

vector form,

wh ¼ N1d
e; bhx ¼ N21d

e; bhy ¼ N22d
e ð29Þ

Optimal stabilization parameters r1ðxÞ, and r2ðxÞ are

determined by matching the finite element wave num-

ber–frequency relation to the exact wave number–

frequency relation, for a given wave angle relative to a

uniform mesh of square plate elements.

4. Wave number–frequency dispersion relation

The homogeneous plate equations of motion admit

solutions of the form,

w ¼ w0 eðik�xÞ; b ¼ h0m eðik�xÞ ð30Þ

In the above, i ¼
ffiffiffiffiffiffiffi
�1

p
, k is the wave number,

k ¼ k½cos h; sin h
 defines a wave vector in the direction

of wave propagation, m ¼ ½cos h; sin h
. Conditions for

the allowed waves are obtained by substituting the as-

sumed exponentials (30) into the homogeneous equa-

tions of motion (7) and (8) with f ¼ 0. The result is the

dispersion equation relating frequency x to wave num-

ber k. Rooting this expression results in wave number

solutions which occur in pairs: �k1ðxÞ and �k2ðxÞ, see

[19] for further details:

k1;2ðxÞ ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
s þ k2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
s � k2

pÞ
2 þ 4k4

b

qr
ð31Þ

In the above,

kpðxÞ ¼ x=cp; ksðxÞ ¼ x=cs; kbðxÞ ¼ ðqtx2=DbÞ1=4

cp ¼
E

qð1 � m2Þ

� 	1=2

; cs ¼
Gj
q


 �1=2

At frequencies below a cutoff frequency, the wave

number pair �k1ðxÞ occurs as purely real, while the pair

�k2ðxÞ ¼ �ijk2ðxÞj is purely imaginary. The real wave

number pair corresponds to propagating waves while

the imaginary pair corresponds to evanescent waves

characterized by exponential decay.

5. Optimal least-squares stabilization parameters

The least-squares stabilization parameters r1 and r2
are determined such that the finite element wave number

pairs match the analytical wave number pairs �k1 and

�k2 for a given orientation h ¼ u. This strategy for de-

signing mesh parameters to match real propagating, and

imaginary wave numbers, is similar to that used in the

displacement based GGLS Timoshenko beam element

proposed given in [21], here extended to quadrilateral

plates. The mesh parameters rel ¼ rlðx;u; heÞ, l ¼ 1; 2
are obtained in terms of the stiffness and mass coeffi-

cients of the underlying plate element, the analytical

wave numbers k1ðxÞ, and k2 ¼ ijk2ðxÞj, selected wave

angle u, and element size he. With the optimal selection

of wave angle u, dispersion error is minimized over the

periodic interval h 2 ð0; 45Þ. This periodic interval de-

fines the wave number accuracy of all possible wave

angles. A similar technique was used in [12,17], to select

optimal GLS parameters for the multi-dimensional

scalar Helmholtz equation.

General expressions for the stabilization parameters

for the MITC4 plate element are given below, see [10]

for further details.

re1 ¼


� e2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e22 � 4e1e3

q ��
ð2e1Þ; re2 ¼ � c21re1 þ c11

c31 þ c41re1
ð32Þ

where el ¼ elðcijÞ, l ¼ 1, 2, 3, are defined by,

e1 ¼ c24c12 � c14c22

e2 ¼ c23c12 � c13c22 þ c11c24 � c21c14

e3 ¼ c11c23 � c21c13

with coefficients c1i ¼ ciðk1;uÞ, and c2i ¼ ciðk2;uÞ, i ¼
1; 2; 3; 4, defined by substituting the analytic wave

numbers k ¼ k1ðxÞ and k ¼ ijk2ðxÞj into the functions,

c1 ¼ G11G22 � G12G12

c2 ¼ G22H11

c3 ¼ G11ĤH22

c4 ¼ H11ĤH22

G11 ¼ z11 þ z14ðcx þ cyÞ þ z17cxcy

G12 ¼ sxðcyz18 þ z15Þ cos u þ syðcxz18 þ z15Þ sin u

G22 ¼ z22 þ ðcxz25 þ cyz36Þ cos2 u

þ ðcyz25 þ cxz36Þ sin2 u

þ z28cxcy � z38sxsy sin 2u

H11 ¼ ð4 � cx � cy � 2cxcyÞ=2

ĤH22 ¼ a1 þ a2=2 þ 3a3=4

ð33Þ
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a1 ¼ 1 � cx cos2 u � cy sin2 u

a2 ¼ cy cos2 u þ cx sin2 u � cxcy
a3 ¼ sxsy sin 2u

cx ¼ cosðkxheÞ; cy ¼ cosðkyheÞ
sx ¼ sinðkxheÞ; sy ¼ sinðkhheÞ

ð34Þ

kx ¼ k cos u; ky ¼ k sin u

For both real k ¼ k1ðxÞ, and imaginary wave numbers

k ¼ ijk2ðxÞj, the parameters r1 and r2 are real-valued.

For the imaginary wave number we use the relations,

cosðijk2jyÞ ¼ coshðjk2jyÞ, and sinðijk2jyÞ ¼ isinhðjk2jyÞ. In

this case, G12 is imaginary, yet c1 is real-valued. The

local element size in (34) is taken as he ¼
ffiffiffiffiffi
Ae

p
, where Ae

is the area of a general shaped four-node quad element,

or an average element size computed from a patch of

similarly sized elements. While the definition for the

mesh parameters r1 and r2 are derived from a dispersion

relation on a uniform mesh, accurate solutions on

nonuniform meshes are shown to be relatively insensi-

tive to the precise definitions used (see [10]).

The coefficients zijðxÞ ¼ Kij � x2Mij, in (33), are de-

termined in closed-form, from the underlying plate

stiffness and mass matrices Kij ¼ ½K e
ij, and Mij ¼ ½Me
ij,
for a reference square element with side length he, see

Appendix A. Note that for nonzero shear stability pa-

rameter a > 0, then Kij ¼ KijðaÞ, and zij ¼ zijðx; aÞ. In

this case, the least-squares stabilization parameters

rel ¼ rlðx; a;u; heÞ, adjust accordingly to match the an-

alytical wave numbers at a given angle u. The optimal

angle u, used in the definition of r1, r2, is determined

from selecting the value which minimizes dispersion

error over the determining periodic interval h 2 ð0; 45Þ.
We show in the next section, that for a positive shear

stabilization parameter a > 0, then u ¼ 45=2 ¼ 22:5� is

optimal. Interestingly, this same value was determined

to be the optimal angle for the two-dimensional scalar

Helmholtz equation [12].

Consistent with the optimal mesh parameter defini-

tions r1 and r2, derived from a dispersion relation on a

uniform mesh, the stabilization matrices (27) and (28),

may be computed in closed form, based on a square

element side length he, i.e.,

M̂MeðxÞ ¼ re1ðxÞM̂Me
1 þ re2ðxÞM̂Me

2 ð35Þ

can be written in nodal block form as,

M̂Me ¼ 1

12

A B

B A

� 	
; A ¼

a11 a12

aT
12 a11

� 	
;

B ¼
b11 b12

bT
12 b22

� 	
ð36Þ

with diagonal nodal blocks,

a11 ¼
8r1 0 0

0 4r2 3r2
0 3r2 4r2

2
64

3
75; a12 ¼

�2r1 0 0

0 �4r2 �3r2
0 3r2 2r2

2
64

3
75

b11 ¼
�4r1 0 0

0 �2r2 �3r2
0 �3r2 �2r2

2
64

3
75;

b12 ¼
�2r1 0 0

0 2r2 3r2
0 �3r2 �4r2

2
64

3
75;

b22 ¼
�4r1 0 0

0 2r2 3r2
0 3r2 �2r2

2
64

3
75

In [10], a slightly simplified stabilization matrix M̂Me
2

obtained by neglecting cross-coupling terms in (28) was

considered. Both dispersion analysis and numerical re-

sults showed that the simplified matrix maintains wave

number accuracy. However, for consistency with the

divergence of the bending residuals in the least squares

operator, we now prefer to use the consistent matrix

defined in (28), and computed in closed-form from (36).

6. Wave number accuracy

To quantify wave number accuracy, we perform a

complex valued dispersion analysis [16] of the stabilized

MITC4 plate element with different combinations of

stabilization parameters a and r1, r2. Assuming wave

solutions similar to (30) for a uniform mesh of quad

elements, a characteristic equation relating frequency x,

and an approximate numeric wave number kh, is deter-

mined. The dispersion relation for the stabilized plate

elements considered here, may be expressed as [10]:

Dðk;xÞ :¼ ðG11 þ r1H11ÞðG22 þ r2ĤH22Þ � G2
12 ¼ 0 ð37Þ

Given a frequency x prior to cutoff, and rooting the

dispersion relation (37), we find two pairs of numeric

wave numbers, one real pair �kh1ðxÞ, and one imaginary

pair, �kh2ðxÞ ¼ �ijkh2ðxÞj, similar to the analytic wave

number–frequency relation (31). The numerical wave

numbers kh1;2 display anisotropic behavior in that they

depend on the wave angle direction relative to the finite

element mesh, i.e., kh ¼ khðx; hÞ. In contrast, the ana-

lytical wave numbers k1;2, are isotropic, independent of

wave angle. The stabilization parameters r1;2ðx; a;u; heÞ
are designed to match the analytical wave number at a

chosen angle h ¼ u. By precise selection of this angle,

the stabilization provides improved wave number accu-

racy over other angles. The following results show that

for a > 0, then u ¼ 22:5, provides the best accuracy. In

contrast, for a ¼ 0, it was shown in [10], that u ¼ 30, is

the best choice. In the following we denote the various
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stabilization methods with a > 0 and r1;2ðu > 0Þ, by the

notation, STAB(a;u). The underlying MITC4 element is

denoted as STABð0; 0Þ, where a ¼ 0, and the 0 in the

second slot indicates zero values for r1 ¼ r2 ¼ 0.

The relative error of the numerical wave number di-

vided by the analytic wave number, kh=k is shown in

Figs. 1 and 2 for a frequency range up to f ¼ 2px ¼
8000 Hz. This upper limit corresponds to roughly four

Fig. 1. Relative wave number error kh=k at wave propagation angles h ¼ f0�; 15�; 30�; 45�g. STAB(a; 0), a ¼ f0; 0:4; 0:77g, and r1;2 ¼ 0.

Left: real wave number k1, right: imaginary wave number k2.

L.L. Thompson / Computers and Structures 81 (2003) 995–1008 1001



elements per wavelength. Results correspond to a steel

plate with properties: E ¼ 210 � 1010 dynes/cm2, m ¼
0:29, q ¼ 7:8 g/cm2, plate thickness t ¼ 0:15 cm, and

shear correction factor j ¼ 5=6. The square element side

length is h ¼ 1:0 cm. Results are plotted for equally

spaced wave angles h ¼ 0�, 15�, 30� and 45�. Due to

symmetry, results are bounded by the extreme angles of

0� and 45�, corresponding to waves directed along mesh

Fig. 2. Relative wave number error kh=k at wave propagation angles h ¼ f0�; 15�; 30�; 45�g. STAB(a;u), a ¼ f0; 0:4; 0:77g,
r1;2ðu ¼ f30; 22:5gÞ. Left: real wave number k1, right: imaginary wave number k2.
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lines and mesh diagonals, respectively. A ratio of

kh=h ¼ 1, indicates exact wave number accuracy. Given

the fixed mesh size, h ¼ 1, as the frequency approaches

the static case, x ! 0, wavelengths are increasing, rel-

ative to element size. In this region, the finite element

solutions show improved wave number accuracy ap-

proaching kh=h ! 1, resulting from the relative increase

in the number of elements per wavelength.

For the MITC4 element, denoted STABð0; 0Þ in the

top of Fig. 1, the dispersion error is highest for waves

approaching an angle of h ¼ 15�, and then decreases

after that, to a minimum error at h ¼ 45�. At 1990 Hz,

k1 ¼ 0:73, k ¼ 2p=k1 ¼ 8:6, which corresponds to 8.6

elements per wavelength, the maximum error is over 3%,

both in the real propagating wave number k1, and

imaginary wave number k2. At this level of mesh re-

finement relative to wavelength, the error in the propa-

gating plate wave number k1 is roughly double the

dispersion error exhibited by the Galerkin finite element

discretization for the scalar Helmholtz equation [12]. To

achieve the accuracy level of the Helmholtz equation

would require nearly twenty MITC4 plate elements per

wavelength––a relatively high number. This observation

illustrates the relatively poor accuracy of the MITC4

plate elements, motivating stabilized elements with im-

proved wave number accuracy. As shown in the next

section, reducing the percent error in the numerical wave

numbers, even if by only a small amount, provides a

significant overall increase in frequency response accu-

racy for forced vibration of plates.

The bottom two plots in Fig. 1 show the improved

dispersion accuracy achieved for both the real and

imaginary wave numbers by increasing only the shear

stabilization parameter a, while keeping the generalized

least-squares stabilization parameters r1;2 ¼ 0. Starting

with a � 0 > 0, the maximum error decreases up to a

value of a � 0:77, but then increases for a > 0:77. At the

optimal value of a ¼ 0:77, the maximum error at 1990

Hz, is reduced to approximately 1%, a three-fold re-

duction in error compared to the underlying MITC4

element.

Further improvement is found by considering non-

zero stabilization parameters r1;2. Fig. 2 shows results

for nonzero a, together with r1;2 defined such that the

numerical wave number matches the analytical wave

number at the angle h ¼ u ¼ 45=2 ¼ 22:5�. With this

selection, wave number error at the 0� and 45� angles is

bisected, giving the best overall accuracy at all angles.

Improved results occur over a wide range of a values

with r1;2 defined with u ¼ 22:5. At 1990 Hz, the maxi-

mum wave number error is approximately 1% over the

wide range a 2 ð0:2; 0:77Þ, in combination with nonzero

r1;2 defined with u ¼ 22:5. For the special case a ¼ 0,

then r1;2 defined with u ¼ 30, i.e., STABð0; 30Þ ¼ MLS4,

gives best results, as reported as the mixed least squares

(MLS4) element in [10]. We find that including shear

stabilization a 2 ð0:2; 0:77Þ, with r1;2 defined with u ¼
22:5, gives better results than the MLS4 element with

a ¼ 0.

These observations are summarized in Fig. 3, which

shows the maximum error defined over all wave angles

given by,

max error ¼ max
h2ð0�;45�Þ

kh

k

����



� 1

����� 100%

�

Results are plotted as a function of a, with and without,

r1;2 stabilization, at 1990 Hz. At this discretization level

relative to frequency (8.6 elements per wavelength),

the least-squares stabilization defined by nonzero r1;2
maintains an approximately 1% error over the entire

range a 2 ð0; 0:77Þ; beyond a > 0:77, the error increases.

Without r1;2 stabilization, 1% error is only achieved at

the select value a ¼ 0:77, and values just to the left or

right show rapid increase in error.

7. Forced vibration example

To demonstrate the improved accuracy of the stabi-

lized methods for frequency response analysis due to

reduced wave number error, the problem of forced vi-

bration of a simply supported steel plate with uniformly

distributed time-harmonic pressure loading f ¼ 2 dynes/

cm2, is examined. The plate is square with side length

L ¼ 100 cm. Material properties are the same as used for

the dispersion analysis.

Using symmetry, only the upper-right 1/4 of the

square is modeled with the unstructured mesh shown in

Fig. 4 with an average element size of have ¼ 1:115. The

local element size he, used to define the shear stabilization

Fig. 3. Max error, maxh2ð0�;45�Þðjkh=k � 1j � 100%Þ, as a func-

tion of shear stabilization number a, at 1990 Hz, corresponding

to 8.6 elements per wavelength. Results shown, with r1;2 stabi-

lization defined with u ¼ 22:5, denoted STAB(a; 22:5), and

without, denoted STAB(a; 0).
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parameter Desða; heÞ, and least-squares stabilization pa-

rameters re1;2ðx; a;u; heÞ, is computed for each element

from the formula he ¼
ffiffiffiffiffi
Ae

p
, where Ae is the quad element

area.

To quantify error, we compute the discrete L2 error

measured over the entire plate, given by,

EhðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½whðxi; yiÞ � wðxi; yiÞ


2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½wðxi; yiÞ


2
q ð38Þ

In the above, whðxi; yiÞ is the finite element solution at a

node point with coordinates ðxi; yiÞ, and wðxi; yiÞ is the

analytical series solution evaluated at the same point.

Fig. 5 shows the frequency response from 0 to 500

Hz, of the vertical deflection at the center of the plate,

together with the global L2 error. The results show that

the underlying MITC4 element, denoted STABð0; 0Þ
begins to show significant error beyond a driving

frequency of 300 Hz. In contrast, the stabilized ele-

ments with combinations (a ¼ 0:77, r1;2 ¼ 0), denoted

STABð0:77; 0Þ and (a ¼ 0:4, r1;2ðu ¼ 22:5Þ), denoted

STABð0:4; 22:5Þ, show excellent accuracy over the entire

frequency band. Results over the range 0:2 < a < 0:77,

and least-squares stabilization r1;2ðu ¼ 22:5Þ, give simi-

Fig. 4. Mesh generated with SDRC I-DEAS �free-mesh� quad

element algorithm: n ¼ 2095 nodes, N ¼ 2010 elements, A ¼
ð50Þ2; average element size have ¼

ffiffiffiffiffiffiffiffiffiffi
A=N

p
¼ 1:115.

Fig. 5. Frequency window f ¼ 2px 2 ð0; 500Þ Hz. Top: frequency response of vertical deflection at center of plate, jRðxÞj ¼
jwcenterðxÞj, bottom: relative L2 error jEhðxÞj over entire plate.
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lar results to least-square stabilization case shown, de-

fined with a ¼ 0:4. Solutions with a ¼ 0; r1;2ðu ¼ 30Þ,
also give excellent accuracy; not shown.

Fig. 6 shows results over the higher frequency win-

dow, from 500 to 1000 Hz. Due to loss of wave number

accuracy at these frequency levels, the MITC4 element

shows significant error, completely misrepresenting res-

onance frequency locations. Results with stabilization,

STABð0:77; 0Þ, or STAB(a, 22.5), a 2 ð0:2; 0:77Þ, show

good accuracy. Fig. 7 shows that when optimal stabili-

zation is used, accurate solutions are maintained all the

way up to 2000 Hz. Fig. 8 shows the vertical deflection

log10ðjwðs;xÞj, along the diagonal line of symmetry pa-

rameterized by coordinate s ¼ ððx� 50Þ2 þ ðy � 50Þ2Þ1=2,
for the frequency range f ¼ 2px 2 ð1000; 2000Þ Hz.

Results for MITC4 show large errors in the frequency

response solution. In contrast, the stabilized plate ele-

ment solution closely matches the analytical series so-

lution, over the entire frequency window. These results

show the direct impact of improved wave number ac-

curacy. A three-fold reduction in wave number error,
translates to a three-fold increase in the frequency range

over which accurate solutions are obtained.

Fig. 6. Frequency window f ¼ 2px 2 ð500; 1000Þ Hz. Top: frequency response of vertical deflection at center of plate, jRðxÞj ¼
jwcenterðxÞj, bottom: relative L2 error jEhðxÞj over entire plate.

Fig. 7. Frequency window f ¼ 2px 2 ð1000; 2000Þ Hz. Rela-

tive L2 error jEhðxÞj over entire plate.
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8. Conclusions

Similar to the analytic dispersion relation for Mindlin

plates, there are two pairs of numeric wave numbers

�kh1 , and �ijkh2 j, corresponding to propagating waves

and exponential decay near drivers and discontinuities.

MITC4 elements display relatively large errors in the

wave number/frequency dispersion relation. For exam-

ple, at frequencies corresponding to 8.6 elements per

wavelength, the dispersion error in both the real prop-

agating wave number, k1, and imaginary wave num-

ber k2, is greater than 3%. To achieve a 1.5% error

would require over 20 elements/wavelength. Reducing

the percent error in the numerical wave numbers, even if

by only a small amount, provides a significant overall

increase in frequency response accuracy.

By selecting the optimal number a ¼ 0:77, and ele-

ment size defined as he ¼
ffiffiffiffiffi
Ae

p
, where Ae is the element

area, in the definition of the shear stabilization para-

meter Gesða; heÞ, wave number/frequency dispersion error

is reduced by a factor of three. For example, at 8.6 ele-

ments per wavelength, the dispersion error in both k1
and k2 is only 1%. A more robust method is obtained by

combining shear stabilization with the generalized least-

squares stabilization defined by the local mesh parame-

ters re1;2ðx; a;u; heÞ. Optimal stabilization parameters re1;2
are determined such that the finite element wave number

pairs kh1;2, match the analytical wave number pairs k1;2
for a given wave orientation angle h ¼ u. For a > 0, the

optimal angle u ¼ 22:5� is found to minimize dispersion

error over all other angles. For example, with this value,

at 8.6 elements/wavelength, the maximum wave number

error over all wave angles and a wide range of shear

parameter values a 2 ð0:2; 0:77Þ, is maintained at ap-

proximately 1%. The significance of the least-squares

stabilization, as defined by the optimal parameters

rh1;2ðx; a; 22:5; heÞ, is that high accuracy is maintained

and relatively insensitive to the precise definition of a
and local element size he.

Numerical results for forced vibration frequency

response, show that for a given mesh, the three-fold

reduction in wave number error achieved by the stabi-

lization methods directly translates to a three-fold in-

crease in the frequency range over which accurate

solutions are obtained, thus allowing for accurate solu-

tions at significantly lower cost.

Future work includes extending the generalized least-

squares methods developed here to shell elements with

bending-membrane coupling.
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Appendix A

Closed form dynamic stiffness matrix expressions,

zij ¼ Kij � x2Mij, for square MITC4 element used in

definitions of stabilization parameters ðr1; r2Þ in (33).

z ¼ DbK e
b þ DesK e

s � x2Me

K e
b ¼

A B
B A

� 	
;

t2 ¼ ð3 � mÞ=6
t3 ¼ ð1 þ mÞ=8
t4 ¼ �ð3 þ mÞ=12
t5 ¼ ð3m � 1Þ=8
t6 ¼ �t2=2
t7 ¼ m=6

AT ¼

0 0 0 0 0 0

0 t2 t3 0 t4 t5
0 t3 t2 0 �t5 t7
0 0 0 0 0 0

0 t4 �t5 0 t2 �t3
0 t5 t7 0 �t3 t2

2
6666664

3
7777775;

BT ¼

0 0 0 0 0 0

0 t6 �t3 0 t7 �t5
0 �t3 t6 0 t5 t4
0 0 0 0 0 0

0 t7 t5 0 t6 t3
0 �t5 t4 0 t3 t6

2
6666664

3
7777775

K e
s ¼

1

24

A B
B C

� 	

AT ¼

16 4h 4h �4 4h 2h

4h 2h2 0 �4h 2h2 0

4h 0 2h2 2h 0 h2

�4 �4h 2h 16 �4h 4h

4h 2h2 0 �4h 2h2 0

2h 0 h2 4h 0 2h2

2
666666664

3
777777775
;

BT ¼

�8 �2h �2h �4 �2h �4h
2h h2 0 �2h h2 0

2h 0 h2 4h 0 2h2

�4 2h �4h �8 2h �2h
2h h2 0 �2h h2 0

4h 0 2h2 2h 0 h2

2
6666664

3
7777775

CT ¼

16 �4h �4h �4 �4h �2h
�4h 2h2 0 4h 2h2 0

�4h 0 2h2 �2h 0 h2

�4 4h �2h 16 4h �4h
�4h 2h2 0 4h 2h2 0

�2h 0 h2 �4h 0 2h2

2
6666664

3
7777775

Me ¼ qh2 1

36

A B
B A

� 	
; A ¼ a b

b a

� 	
; B ¼ c b

b c

� 	

c ¼ diagðt; t3=12; t3=12Þ; a ¼ 4c; b ¼ 2c
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