
Complex Wavenumber Fourier Analysis of
the P–Version Finite Element Method

Lonny L. Thompson and Peter M. Pinsky

Department of Civil Engineering, Stanford University
Stanford, California 94305-4020

Abstract

High-order finite element discretizations of the reduced wave equation have
frequency bands where the solutions are harmonic decaying waves. In these so
called ‘stopping’ bands, the solutions are not purely propagating (real wavenum-
bers) but are attenuated (complex wavenumbers). In this paper we extend the
standard dispersion analysis technique to include complex wavenumbers. We
then use this complex Fourier analysis technique to examine the dispersion
and attenuation characteristics of the p–version finite element method. Prac-
tical guidelines are reported for phase and amplitude accuracy in terms of the
spectral order and the number of elements per wavelength.
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1 Introduction

Computational methods for solving vibration and wave propagation problems intro-
duce errors which distort the physical nature of the computed wave motion. Describ-
ing those errors by invoking concepts which originated in mathematical physics, such
as dispersion and amplitude attenuation has provided a greater understanding of the
numerical methods. In this respect, Fourier analysis has provided an indispensible
tool for measuring the accuracy of wave propagation traveling through a finite el-
ement spatial discretization of a continuum. Previous researchers in this area have
generally restricted themselves to studying the ability of the finite element spatial dis-
cretization to admit purely propagating wave solutions. This type of analysis amounts
to a discrete Fourier synthesis of the finite element method with pure real wavenum-
bers. The information obtained from real wavenumber Fourier analysis has been used
by Belytschko and Mindle (1980) to study the effect of various mass approximation
techniques on the accuracy of Bernoulli-Euler beam elements and by Mindle and Be-
lytschko (1983) to study Timoshenko beam elements. Underwood (1974) used real
wavenumber analysis to study axisymmetric shells and rings, while Park and Flaggs
(1984,1985) applied this technique to study shear locking and spurious modes found
in Reissner/Mindlin plate elements.
To date, most of the effort in the study of the dispersive characteristics of finite

element discretization has been limited to low-order elements. The most notable
exception is the real wavenumber dispersion analysis of a quadratic bar element by
Belytschko and Mullen (1978). In this study, the dispersion analysis revealed the
existence of a ‘stopping’ band in the frequency spectrum of quadratic elements, where
solutions in this frequency range decay exponentially. The ramifications of these
stopping bands in the context of finite element analysis were not fully understood,
although there is some discussion in Belytschko and Mullen (1978) and Abboud and
Pinsky (1992).
In this paper, the technique of complex wavenumber Fourier analysis is used

to examine the accuracy of higher order finite element discretizations. This com-
plex wavenumber dispersion analysis allows for all wavenumber solutions satisfying
the finite element dispersion relation, either real, imaginary or complex. The com-
plex wavenumber may correspond to either a propagating wave (real wavenumber),
evanescent wave (imaginary wavenumber), or a harmonic decaying wave (complex
wavenumber). This extension of the usual procedure involves only a slight modifi-
cation to the standard Fourier analysis yet allows for a complete characterization of
the ‘stopping’ bands found in higher order finite element discretizations. Complex
wavenumber Fourier analysis can also be used to investigate other systems where
complex wavenumbers are present, such as the subsonic, leaky and evanesent waves
present in the finite element dispersion analysis of fluid-loaded plates; see Jasti (1992)
and Grosh and Pinsky (1996).
We apply this technique to study the dispersion and attenuation characteristics of
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p–version finite element methods up to order p=5. In recent years, there has been a
resurgence of interest in elements of high degree, for example Babuska and Suri (1990)
and Maday and Patera (1989). In p–refinement the effects of numerical dispersion
can be minimized by increasing the spectral order p of the finite element interpolation
functions, while holding the number of elements constant. In contrast, standard h-
refinement is achieved by holding the spectral order fixed while increasing the number
of elements. The h- and p-versions are just special applications of the finite element
method, which allows changing the mesh concurrently with increasing the spectral
order p; this general approach is called the hp-version. The complex Fourier analysis
will characterize the accuracy in terms of both h and p refinements over the entire
range of complex wavenumbers. Three different p–extensions are considered: (a)
Hierarchic Legendre basis functions, (b) Hierarchic Fourier basis functions, and (c)
Lagrange interpolations in conjunction with Lobatto quadrature.
Results from the dispersion analysis provides a guide for adaptive solution schemes

in the form of an a priori error estimate. For example, the dispersion error determined
from the analysis of high-order p–version methods could be used as a measure for se-
lecting the required spectral order and mesh size at a given frequency in an adaptive
solution. The work of Friberg and Moller (1987) is an example of an adaptive pro-
cedure for vibration problems using hierarchic elements. Results from the analysis
can also be used to design efficient high order preconditioners for iterative solution
techniques as in Babuska, Craig, Mandel, and Pitkaranta (1991) and Barragy and
Carey (1991). Deville and Mund (1992) used the concept of complex wavenumbers
to determine the spectral radi of various discretizations in studying finite element
preconditioned collocation schemes.
In addition, Fourier analysis can be used as a tool to design modifications to the

standard finite element method that minimize or eliminate numerical dispersion over
a wide range of frequencies. Alvin and Park (1991) used discrete Fourier analysis
to assist in the design of tailored mass and stiffness matrices such that the discrete
characteristic dispersion curves approximate, for a specified range of frequencies, the
continuum case.
The Galerkin/least squares methodology (GLS) is another technique used to im-

prove the dispersion errors found in finite element discretizations. The GLS method-
ology was originally developed by Hughes, Franca, and Hulbert (1989) to correct
the stability problems found in the numerical computation of the advection-diffusion
equation. The GLS technique has since been applied by Shakib and Hughes (1991)
to the Navier-Stokes and other fluid mechanics problems. Recently, the method has
been extended to the reduced wave equation by Harari and Hughes (1991a,1991b).
For a Fourier analysis of the GLS method in multi-dimensions see Thompson and
Pinsky (1995).
In Section 2 we review the analytic Fourier analysis of a continuous bar. The

resulting dispersion curves will serve as a basis for comparison to the discrete dis-
persion curves obtained from a complex wavenumber Fourier synthesis of p–version
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finite element discretizations. In Section 3 we extend standard finite element disper-
sion analysis to include complex wavenumbers and apply this technique to the discrete
complex Fourier analysis of p–type discretizations. Of particular interest from this
analysis is the presence of complex wavenumber bands (stopping bands) that occur
in these high-order elements and their practical significance. The results of the anal-
ysis show that increased phase accuracy is obtained with increasing spectral orders p.
In Section 4 a direct connection is established between the results from our Fourier
analysis and the dispersion and eigenvalue results obtained from the p–version finite
element solution of an example boundary value problem. Finally we show how infor-
mation obtained from the Fourier analysis can be used to post-process p–type finite
element solutions in order to isolate component waves. By superposition of these
wave components, global sinusoidal interpolation can be constructed which better
represents the eigenmodes present in the solution.

2 Fourier analysis of the continuous problem

The governing differential equation for the steady-state displacement response, φ for
a uniform elastic bar is the reduced wave equation or so-called Helmholtz equation,

d2φ(x)

dx2
+
ω2

c2
φ(x) = f (1)

where c =
√
E/ρ is the phase velocity, E is the Young’s modulus, ρ is the mass

density and f is the forcing function. The assumed time dependence is e−iωt and
ω is the circular frequency. This equation serves as a model for many other physi-
cal phenomena including structural acoustics and electromagnetic wave propagation.
The Fourier analysis of the reduced wave equation is accomplished by transforming
the problem from the spatial (x) domain to the wavenumber domain (k) by seeking
complex exponential solutions for the displacement of the form,

φ(x) = Aeikx (2)

with constant amplitude |φ| = A. We interpret the spatial contribution to the wave
solution as the integrand of the Fourier transformation in which the wavenumber
k represents the continuous spatial frequency with wavelength 2π/k. The complex
Fourier transform is defined as,

F̃ (k) :=
1
√
2π

∫ ∞
−∞

F (x)eikx dx (3)

Substituting the complex exponential solution (2) into the homogeneous form of (1),
or equivalently applying the complex Fourier transform (3), we obtain its character-
istic equation in the nondimensional form,

(kh)2 = (ωh/c)2 (4)
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where h is a problem dependent characteristic length. The properties of the solutions
to (4) are: (a) The nondimensional wavenumber (kh) is linearly proportional to the
nondimensional frequency (ωh/c) over all frequencies, and (b) The wavenumbers oc-
cur in pairs ±kh of purely real numbers corresponding to propagating free waves in
both ±x directions. With c constant, the phase velocity is independent of frequency
and the medium is nondispersive.
In contrast to the continuum bar, it is found that finite element solutions have a

dispersive character. Many naturally occuring discrete systems exhibit similar disper-
sive properties. Examples include periodic lattices of polyatomic molecules studied
by Brillouin (1953), and periodic composite structures studied by Silva (1991) and
others.

3 Complex Fourier analysis of p–type elements

In this section we describe a discrete Fourier transform counterpart to the analytical
Fourier transform (3). It will be applied to the p–type discretization of the continuous
bar, in order to obtain the characteristic equation relating frequency and wavenum-
ber. Since the wavenumbers obtained through the discrete Fourier transform are in
general complex, we are able to obtain real, imaginary or complex wavenumber solu-
tions. The analysis is demonstrated for the one-dimensional reduced wave equation,
however results obtained from studying this equation are useful for multi-dimensional
discretizations where spatial variations and wave propagation is restricted to one di-
mension.
The Galerkin method seeks the approximate solution φh in the complex Hilbert

space H1(Ω) such that for all weighting functions wh ∈ H1(Ω),

A(wh, φh) = L(wh) (5)

The dynamic stiffness operator is,

A(wh, φh) =

∫
Ω

(
dw̄h

dx

dφh

dx
−
ω2

c2
w̄h φh) dΩ (6)

with the forcing operator,

L(wh) =

∫
Ω

w̄h f dΩ (7)

and the overbar indicates the complex conjugate. For Fourier analysis, Ω = (−∞,∞),
so that no end-point boundary conditions are considered.
Consider the finite element approximation of the solution,

φh(ξ) =

p+1∑
a=1

Na(ξ)φa ξ ∈ [−1, 1] (8)
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where Na(ξ) are shape functions with compact support defined in the local element
coordinate ξ, and p is the spectral order. Three different finite element approximations
to the solution space φh ∈ H1 are considered : (1) Hierarchic Legendre shape functions
, (2) Hierarchic Fourier shape functions , and (3) Lagrange shape functions with
Lobatto quadrature.
For all three interpolations, the frequency dependent dynamic stiffness matrix is

defined as the linear combination of stiffness and mass matrices,

se = [seab] ∈ R
(p+1)×(p+1) (9)

seab = k
e
ab − ω

2meab a, b = 1 : p+ 1 (10)

The stiffness and mass matrices are respectively,

keab =
2

h

∫ 1
−1

dNa

dξ

dNb

dξ
dξ and meab =

h

2c2

∫ 1
−1

NaNbdξ (11)

where h is the element length.

Hierarchic Legendre Basis

Let Sp ⊂ H1 be the finite element subspace of continuous piecewise polynomials of
degree p denoted by Pp.

Sp = {φ|φ ∈ Co(Ω), φ ∈ Pp(Ωe)}

We start with the standard linear nodal shape functions,

Na(ξ) =
1

2
(1 + ξaξ) a = 1, 2 (12)

and then add to these in a hierarchical fashion internal shape functions defined in
terms of integrals of Legendre polynomials.

Na(ξ) :=
1

||Pa−2||

∫ ξ
−1

Pa−2(ξ
′)dξ′, a = 3, 4, · · · , p+ 1 (13)

with the norm of the Legendre polynomial,

||Pa−2||
2 =

2

2a− 3
(14)

These functions are constructed such that Na(±1) = 0. As a result of this property
the variables φ1 = φh(−1) and φ2 = φh(1) define discrete nodal variables, while
the values φa, a ≥ 3 compose a set of internal variables. The derivatives of these
hierarchical functions form an orthonormal basis with the property,∫ 1

−1

dNa

dξ

dNb

dξ
dξ = δab a, b = 3 : p+ 1 (15)
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As a result of this orthogonality property, the local element stiffness matrix is diagonal
beyond a > 2. Stiffness and mass matrices for this element are given in Szabo and
Babuska (1991). The element matrices are hierarchic in the sense that the matrix
corresponding to Sp is embedded in the matrix corresponding to Sp+1.

Hierarchic Fourier Basis

Examining the solution to the Helmholtz problem (2), we hypothesize that the in-
troduction of trigonometric basis functions should be a better approximation to the
complex exponential solution, compared to the polynomial interpolation used in the
Legendre based elements. In this case we investigate hierarchic elements that start
with the standard linear nodal shape functions defined in (12) and then add to these in
a hierarchical manner internal shape functions defined in terms of the Fourier modes,

Na(ξ) =
2

(a− 2)π
sin((a− 2)(1 + ξ)π/2) a = 3, 4, · · · , p+ 1 (16)

These functions satisfy Na(±1) = 0 and the orthogonality properties,∫ 1
−1

NaNbdξ =
2

(a− 2)π
δab;

∫ 1
−1

dNa

dξ

dNb

dξ
dξ = δab (17)

As a result of this normalization, the local element stiffness matrix is identical to
the stiffness matrix obtained with the Legendre polynomial based elements. However,
the use of Fourier modes diagonalizes the mass matrix.

Lagrange basis with Lobotto quadrature

P–type elements based on Lagrange interpolation polynomials in conjunction with
Gauss-Lobotto quadrature lead to the so-called ‘spectral elements’ when used with
a high spectral order p, see Patera (1984), Maday and Patera (1989), and Fischer
and Patera (1991). These spectral elements are designed to combine the geometric
flexibility of the standard finite element techniques with the rapid convergence rate
of global spectral schemes, for example Voight, Gottlieb and Hussaini (1984), and
Canuto, Hussaini, Quarteroni, and Zang (1988).
In the spectral element method, the solution variable φh is expanded within each

element in terms of high-order Lagrangian interpolants, Na(ξ) ∈ Pp:{
Na(ξ) ∈ P

p, Na(ξb) = δab ∀a, b ∈ {1, · · · , p+ 1}
}

(18)

evaluated at p + 1 Gauss-Lobatto points. such that ξ1 = −1 and ξp+1 = 1, with the
other points being obtained as the roots of the derivative of the Legendre polynomials.
Gauss-Lobatto points ξa, and their corresponding weight factors Wa can be found in
tables; see Szabo and Babuska (1991), or computed directly from subroutine libraries;
see Canuto, Hussaini, Quarteroni, and Zang (1988). In this case, the solution variables
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are all nodal values, φa = φh(ξa), and the basis is not hierarchical. The element
stiffness and mass matrices for these elements are,

keab =
2

h

p+1∑
q=1

N ′a(ξq)N
′
b(ξq)Wq (19)

meab =
h

2c2

p+1∑
q=1

Na(ξq)Nb(ξq)Wq =
h

2c2
δabWa (20)

By choice of Gauss-Lobatto quadrature, the elemental mass matrix is underintegrated
and diagonal. For one-dimensional elements, the stiffness matrix is exactly integrated
by Gauss-Lobatto quadrature. However, for two and three dimensional elements, the
stiffness matrix will be underintegated. Convergence and stability results for these
elements can be found in Maday and Patera (1989).

3.1 Discrete Fourier decomposition

The complex wavenumber Fourier analysis technique used to investigate the dispersive
and attenuation properties of p–type finite elements employs only a minor modifica-
tion to the technique of real wavenumber analysis but is completely general, and can
accomodate any uniform finite element discretization and spectral order.
The frequency dependent dynamic stiffness matrix se is partitioned into the fol-

lowing matrix block form,

se =

[
s11 s12
sT12 s22

]
∈ R(p+1)×(p+1) (21)

The matrix partition s22 ∈ R(p−1)×(p−1) corresponds to interactions among internal
shape functions, s12 ∈ R2×(p+1) is the coupling matrix partition due to interactions
between internal shape functions and nodal shape functions, and finally, s11 ∈ R2×2

corresponds to interactions amoung the nodal shape functions N1 and N2. Using the
Schur complement,

ge = s11 − s12s
−1
22 s

T
12, ge ∈ R2×2 (22)

we obtain the condensed element dynamic stiffness ge that couples only the two
element nodal (i.e. physical) degrees of freedom. For p ≥ 2 we obtain ge symbolically
using Mathematica, see Wolfram (1991). Consider an infinite uniform mesh with equal
element lengths h. Assembly of the condensed element dynamic stiffness matrices
results in a tridiagonal system of linear equations of the form:

Gφ = 0, G =
nel

A
e=1
ge (23)
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where φ is the displacement solution vector, and
nel

A
e=1
is the assembly operator. For

present purposes, no source terms are included. The nth equation of this tridiagonal
system is a stencil of the form:

G1(α)φn−1 − 2G2(α)φn +G1(α)φn+1 = 0 (24)

All other equations are a repetition of this stencil. In this difference stencil, the
coefficients G1(α) and G2(α) are polynomials of degree 2p in the nondimensional
frequency:

α = ωh/c (25)

For linear elements (p = 1), we recover the difference coefficients of standard consis-
tent and diagonal mass finite element approximations,

G1(α) = 1 + εα
2/6, G2(α) = 1− (3− ε)α

2/6 (26)

The constant ε is a mass approximation parameter equal to 1 for exactly integrated
(consistent) mass, and 0 for Lobatto integrated (diagonal) mass.
The structure of the stencil is seen by writing (24) in the difference operator form,

F (α)φn = 0 (27)

where,

F (α) =
1∑

j=−1

Fj(α)Ej (28)

is a second order linear difference operator and Ej is a shift operator with the property
Ejφn = φn+j. The symmetric frequency dependent coefficients are,

F1(α) = G1(α) = F−1(α)

F0(α) = −2G2(α)

In analogy with (2), an exponential solution to (27) is assumed having the form:

φn = Ae
ikhxn , xn = nh (29)

where kh ∈ C is the numerical wavenumber. Substitution of (29) into (27) results in
the characteristic function,

F̃ (α, β) =
1∑

j=−1

Fj(α)e
ijβ = 0 (30)

where F̃ (α, β) may be identified as the discrete Fourier transform of the linear differ-
ence operator F , α is the normalized frequency, and β is the normalized wavenumber:

β = khh (31)
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Due to the symmetric discretization (F1 = F−1), we find that F̃ is an even function
resulting in the wavenumber-frequency relation,

cos(β) = λ(α) (32)

λ(α) :=
G2(α)

G1(α)
(33)

where the real spectrum of β is periodic in 2π with aliasing, β = β + 2πm; m is a
positive or negative integer.
At this point, we depart from the standard finite element dispersion technique in

which real frequency roots of (32) are sought for a given real wavenumber. Instead, we
seek all the wavenumber roots of (32) for a given real frequency. The complex roots
of (32) are found using the complex arc cosine, see Churchill, Brown, and Verhey
(1976),

Re(β) + iIm(β) = −i ln(λ(α) + i
√
1− (λ(α))2) (34)

It is noted that the amplitude of the discrete nodal solution is,

|φn| = |A|e
−iIm(β) (35)

where the imaginary part Im(β) is seen to be an attenuation parameter.

3.2 Dispersion and attenuation analysis

In this section we discuss the complex wavenumbers that arise from the Fourier anal-
ysis of p–version finite elements up to order p = 5. It will be shown that the finite
element characteristic equation (32) admits pure real wavenumbers, (propagating so-
lutions) only when the frequency falls within a finite number of bands called passing
bands. The number of passing bands is equal to the spectral order p of the elements
in the mesh. In addition it will be shown that there are p stopping bands where the
wavenumbers are complex.

3.2.1 Low-order elements

For p = 1 there is only one passing band where the wavenumber is purely real. For
frequencies lower than a limiting frequency called the cut-off frequency we obtain real
solutions for β. The cut-off frequency for consistent mass is αmax =

√
12 and for

diagonal mass αmax = 2. In the complex wavenumber plane, for frequencies below
the cut-off, then |λ| < 1, and the characteristic equation is satisfied by,

Re(β) = cos−1(λ), and Im(β) = 0 (36)

For higher frequencies β is complex, since above the cut-off frequency, |λ| > 1, and
the characteristic equation is satisfied by,

Re(β) = π, and Im(β) = cosh−1(λ) (37)

Computational Mechanics, Vol.13, pp. 255-275 (1994)
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Figure 1 plots the frequency dependence of the real (propagating) and imaginary
(decaying) components of the complex numerical wavenumber kh ∈ C. In this Fig-
ure, the normalized frequency (ωh/c) is the independent variable and the normalized
wavenumber (khh) is the dependent variable.
The real wavenumber corresponding to the cut-off frequency is called the spa-

tial resolution limit. For p = 1, the limit of spatial resolution is two elements per
wavelength or Re(β) = π. For frequencies between 0 and αmax, β is real, and for
frequencies above the cut-off, the real part of the discrete wavenumber stays constant
at Re(β) = π, while the imaginary part of the discrete wavenumber increases rapidly.
As a result, the amplitude from node to node along the mesh stays constant until

the frequency reaches the cut-off. Above the cut-off the amplitude decays exponen-
tially along the mesh, ∣∣∣∣φn+1φn

∣∣∣∣ = { 1 α < αmax
e−Im(β) α > αmax

Figure 2 plots this amplitude spectrum. This illustrates how the finite element mesh
acts as a low-pass filter analogous to discrete signal processing of data – allowing
propagation of all frequencies up to the cut-off frequency, while strongly attenuating
frequencies above the cut-off frequency.

3.2.2 Higher-order elements

For a uniform mesh of p–version finite elements with spectral order (p = 2), the
frequency dependence of the real and imaginary parts of kh ∈ C are plotted in Figure
3. In this case, there are two passing bands: one for frequencies between 0 < α < α1
and one for frequencies between α2 < α < αmax. Within these bands, there is a
purely propagating solution with |λ| < 1 and the characteristic equation is satisfied
by,

Re(β) = cos−1(λ), and Im(β) = 0 (38)

The dispersion curve in the lower passing band is called the acoustical branch and the
upper passing band is referred to as the optical branch. These designations arise from
the analogous branches found in a diatomic crystal lattice where the frequencies in
the lower branch are of the same order of magnitude as acoustical or subsonic vibra-
tions, and frequencies in the upper branch are of the order of magnitude of infrared
frequencies, see Brillouin (1953). For our discussions, we use these designations for
the different branches, but attach no physical significance to their names.
In the frequency range between these two passing passing bands, α1 ≤ α ≤ α2,

there is one frequency band where the numerical wavenumbers are complex. In this
band, |λ| > 1 and the characteristic equation is satisfied by,

Re(β) = π, and Im(β) = cosh−1(−λ) (39)
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(a) Real wavenumbers
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(b) Imaginary wavenumbers
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Fig. 1: Frequency spectrum comparing linear finite element approximations: (a) Real
wavenumbers, (b) Imaginary wavenumbers
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Normalized Frequency (!h=c)2=6
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Fig. 2: Amplitude spectrum for linear finite elements

This complex wavenumber band is called a stopping band because in this frequency
range, the real part of the wavenumber is constant and the imaginary component
results in an attenuated wave solution with an amplitude decay proportional to the
exponential of the imaginary wavenumber.
Above the cut-off frequency, α > αmax, λ > 1 and the characteristic equation is

satisfied by,
Re(β) = 2π, and Im(β) = cosh−1(λ) (40)

In this case, the solution propagates with a fixed wavelength equal to the limit of reso-
lution – one quadratic element per wavelength or Re(β) = 2π with strong exponential
amplitude decay from node to node along the mesh.
The amplitude spectrum for p = 2 is plotted in Figure 4. The amplitude ratio is

constant in the first passing band (acoustical branch) up to the complex wavenumber
band where the imaginary wavenumber components produce an amplitude decay.
In the stopping band, the amplitude is attenuated until a minimum is reached and
then increases back up to the exact ratio of one. The amplitude ratio continues to
be exact throughout the second passing band (optical branch) until it reaches the
cut-off where it is strongly attenuated. The maximum error for Spectral elements is
25 percent while that of the Legendre and Fourier elements is only 10 percent. In
addition, the cutoff frequency for the Spectral element falls well below that of the
Legendre and Fourier elements.
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(a) Real wavenumbers
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(b) Imaginary wavenumbers
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Fig. 3: Frequency spectrum comparing quadratic finite element approximations: (a) Real
wavenumbers, (b) Imaginary wavenumbers
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Fig. 4: Amplitude spectrum for quadratic elements

Again invoking the signal processing analogy, the character of this amplitude
spectrum illustrates how the p–version finite element mesh acts as a band-pass filter –
allowing propagation of all frequencies in the passing bands, while weakly attenuating
frequencies in the complex wavenumber band, and strongly attenuating frequencies
above the cut-off frequency.
As the spectral order is increased to p = 3, the spatial resolution limit extends to

Re(β) = 3π. Figure 5 shows that there are 3 passing and 3 stopping bands present in
the frequency spectrum. The first complex wavenumber band occurs when Re(β) = π.
The frequency range for the first stopping band is very small and appears as a small
perturbation in the frequency curve for the imaginary wavenumber component at
approximately α = π , see Figure 5. The second stopping band occurs when the
real wavenumber component reaches 2π and is much larger, with large imaginary
wavenumber components present.
As a result of these complex wavenumber bands, we observe the amplitude atten-

uation characteristics shown in Figure 6. The amplitude ratio is again constant in
the passing bands up to the first complex wavenumber band, where there is a very
small attenuation loss. Isolating this frequency region in Figure 7, we observe that
the maximum amplitude error is only 2.5 percent for the Spectral elements and only
1 percent for Legendre and Fourier elements. Thus in this first complex wavenum-
ber region waves propagate with constant wavenumber Re(β) and only a very small
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(a) Real wavenumbers
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(b) Imaginary wavenumbers
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Fig. 5: Frequency spectrum comparing cubic finite element approximations: (a) Real
wavenumbers, (b) Imaginary wavenumbers
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Fig. 6: Amplitude spectrum for cubic elements

amplitude decay. The amplitude attenuation in the second complex frequency band
is very large and in practice the element size h should be chosen to avoid this nondi-
mensional frequency range. These observations are extended to higher spectral
orders as well. Results for spectral orders p = 4 and p = 5 are shown in Figure 8
and Figure 9 respectively. For nondimensional frequencies up to α = (p − 2)π, the
dispersion curves approximate the exact line with slope one. As the nondimensional
frequency increases, the Legendre and Spectral elements exhibit loss of accuracy in
the upper two optical branches. In contrast, the Fourier element maintains accuracy
up to α = (p− 1)π.
In conclusion, the following dispersive properties are observed: (1) There are p

passing bands and p stopping bands, (2) the limit of resolution occurs at Re(β) =
πp. In addition, the amplitude attenuation in the first few complex wavenumber
(stopping) bands is very small and converges in the limit of large spectral orders
to the exact amplitude ratio of one. Thus for large spectral orders the first few
stopping bands are not of practical significance. As a general trend we observe that
the amplitude error is greater for the Spectral elements than the Legendre and Fourier
elements and the cutoff for Spectral elements always occurs before that of Legendre
elements.
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Fig. 7: Isolation of amplitude spectrum near first complex wavenumber band
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Fig. 8: Frequency spectrum for (p=4) finite elements: Real wavenumbers
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Fig. 9: Frequency spectrum for (p=5) finite elements: Real wavenumbers

3.2.3 Analysis of phase error

A comparison of the characteristic equation for the continuum case with that of the
discrete case enables us to assess the phase accuracy of p–type finite elements.
Figures 10 through 12 show the phase accuracy of the finite element approximation
versus a nondimensional real wavenumber (β/πp). By dividing the wavenumber by
the spectral order p we are able to get an equitable comparison between the methods
with the same number of degrees of freedom per wavelength. Throughout the acous-
tic branch, the phase error converges to the exact solution as the spectral order is
increased. Clearly, in the practical range 0 ≤ khh/πp ≤ .5 the higher-order p–type
elements exhibit increased accuracy compared to low-order finite elements, for the
same number of degrees of freedom.
In the optical branches, the dispersive errors increase. For hierarchical Legendre

and Fourier elements we observe that ch/c = k/kh > 1 which implies a phase lead
over the entire wavenumber spectrum. In contrast, as we increase the normalized
wavenumber for spectral elements the phase changes from a phase lag up to the first
stopping band where its jumps to a phase lead and then gradually reverts back to
a phase lag. We also observe that the use of trigonometric shape functions in the
Fourier elements decreases the phase error found in the optical branch as compared
to the Legendre case.
The spectral convergence rate of the phase error is observed by fixing the nondi-
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Fig. 10: Phase velocity error for Legendre elements with polynomial orders p=1,2,3
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Fig. 11: Phase velocity error for Fourier elements with trigonometric orders p=1,2,3
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Fig. 12: Phase velocity error for Spectral elements with polynomial orders p=1,2,3

mensional wavenumber at kh/p = π/5. This wavenumber corresponds to ten elements
per wavelength divided by the spectral order. The results are given in Table 1 for
Legendre and Spectral elements up to order p = 5. Results for Fourier elements are
similar to Legendre elements.

Table 1: Phase error (percent) for fixed kh/p = π/5

p Legendre Spectral
1 1.60e-00 -1.69e-00
2 1.59e-01 -9.17e-02
3 1.96e-02 -7.50e-03
4 2.63e-03 -9.60e-04
5 3.69e-04 6.58e-03

The convergence rate of p–type elements is investigated further by examining the
phase as the number of solution variables per wavelength is increased. For example
for p = 1 a Taylor series expansion of the dispersion relation (32) gives,

khh = α±
(α)3

24
+
3(α)5

640
±O(α)7 (41)
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Fig. 13: Convergence of phase error with polynomial orders p=1,2,3

where the plus sign is for diagonal mass and the minus sign for consistent mass. Thus
for diagonal mass the discrete solution has a phase lag kh ≥ k, while for consistent
mass the discrete solution has a phase lead kh ≤ k. From this expansion we find that
the finite element nodal solution is locally second order accurate. In general, in the
range of resolution, the phase error for spectral order p is of the order,

kh

k
− 1 = O(kh)2p (42)

with the nodal solution for the displacement,

φn = Ae
ikxn[1±O(kh)2p] (43)

This result is verified for spectral orders of p = 1, 2, 3 in Figure 13, where the slope
of the lines show the rate of convergence of the phase error to be 2p. For reference,
we note that 10 elements per wavelength corresponds to -1.0 on the abcisissa of this
plot.
For p = 1, if k3h2 is assumed small in a fixed region in x, then Bayliss and

Goldstein and Turkel (1985) have shown that the error measured in the L2 norm is,

‖en‖L2 = O(k
3h2)‖φ‖L2 (44)

with an error bound O(k2h) in the H1 norm. Thus, discretization errors when mea-
sured in the norms L2 and H

1 grow as k increases even though the number of elements
per wavelength remains fixed (kh = constant).
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3.2.4 Analysis of attenuation

Although the amplitude from node to node is exact for frequencies within the passing
bands, it is possible for the p-type finite element solution to exhibit amplitude at-
tenuation at points internal to physical nodes. Analysis of amplitude attenuation at
points internal to the physical nodes is investigated by examining quadratic elements
of order p = 2. In this case, the dynamic stiffness matrix (10) is assembled without
condensation and the internal variable is written in terms of the center point. The
resulting stencils related to equations n and n± 1/2 are of the form,

S = (K − α2M)φ = 0 (45)

where K and M are (2× 5) stiffness and mass difference equations and

φT =
(
φn−1 φn−1/2 φn φn+1/2 φn+1

)
(46)

Allowing for different amplitudes at the exterior nodes n, and element center nodes
n± 1/2 we assume the complex exponential solutions,

φn = A1e
iβ(n) (47)

φn+1/2 = A2e
iβ(n+1/2) (48)

Substitution of the above two solutions into (45) results in the symmetric character-
istic matrix,

S̃(α, β) =

[
S̃11 S̃12
S̃12 S̃22

]{
A1
A2

}
= 0 (49)

Solving this system, the amplitude ratio r = A2/A1 is,

r(α, β) = −
S̃12(α, β)

S̃22(α, β)
= −

S̃11(α, β)

S̃12(α, β)
(50)

Note that the dispersion relation found earlier in (32) is obtained by setting the

characteristic matrix to zero, detS̃ = F̃ (α, β) = 0.
Figure 14 shows the amplitude ratio r = A2/A1 plotted as a function of wavenum-

ber. The curves lying above the ratio of one are acoustical branches, while those below
are optical branches. In the range 0 ≤ β ≤ 2π/3, the amplitudes are nearly equal to
the exact value of one. Near the stopping band, β = π, r increases rapidly. At β = π,
the amplitude ratio skips to the optical branch where it assumes the value zero. In
the optical branch the ratio tends to the limit r = 0.5. The physical interpretation
of this result is discussed at length in Brillouin (1953): Here we emphasis that two
alternative interpretations are possible. Referring to (48) , the solution for the finite
element mesh can be represented as two waves, one propagating along the exterior
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Fig. 14: Amplitude spectrum for quadratic elements at interior nodes

nodes n, and the other propagating along the interior points n± 1/2. An alternative
representation is a single wave propagating through both interior and exterior points,

φm = C+e
i(β̄)m + C−e

i(β̄−π)m (51)

where β = 2β̄ and C+ = (A1+A2)/2 and C− = (A1−A2)/2. This solution describes
the superposition of two waves propagating in opposite directions with wavenumbers
β̄ to the right and β̄ − π to the left. The wave propagating to the right is partially
reflected as it traverses each node, thus giving rise to a solution that consists of both a
transmitted and a reflected wave component. The physical significance of this result
is that while the amplitude is exact from node to node for frequencies within passing
bands, the reflected wave component causes amplitude attenuation at internal points.
For quadratic Legendre elements, amplitude attenuation is insignificant for khh <

2π/3 ( three elements per wavelength), while for quadratic Spectral elements am-
plitude attenuation is insignificant for khh < π/2 ( four elements per wavelength).
Results for Fourier elements are similar to the Legendre elements.

4 Example Problem: Dirichlet–Fixed Bar

By allowing for complex wavenumbers, a more complete characterization of the stop-
ping bands in the frequency spectrum of finite element discretizations has been pre-
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sented. By studying the closed form p-type finite element solution of a canonical
steady-state vibration problem, the role that complex wavenumbers play in the prac-
tical solution of physical boundary value problems is revealed.
Consider the steady-state vibration problem of a bar of length L,

d2φ

dx2
+ k2φ = 0, φ(0) = φ̄, φ(L) = 0 (52)

Assuming a complex wave solution,

φ(x) = A+e
ikx + A−e

−ikx (53)

the wave representation of the solution to (52) may be obtained as,

φ(x, ω) = φ̄
sin(k(L− x))

sin(kL)
(54)

This response becomes unbounded at the eigenvalues sin kL = 0, i.e.

kj = jπ/L j = 1, 2, · · ·∞ (55)

Now consider the bar discretized with N uniformly spaced elements of length h.

0 = x0 < x1 < · · · < xN−1 < xN = L = Nh

After condensation of internal variables, the finite element equations are in symmetric
tridiagonal form of order (N − 1) with band,

G1φn−1 − 2G2φn +G1φn+1 = 0 n = 1 : N − 1 (56)

It may be shown that the solution of (56), subject to the boundary conditions φ0 = φ̄
and φN = 0 is given by,

φh(xn, ω) = φ̄
sin(kh(L− xn))

sin(khL)
n = 0 : N (57)

where kh is the numerical wavenumber defined in (32) and L = Nh and xn = nh. This
closed form nodal solution is valid for any of the p–type elements discussed previously
and for any spectral order p. Comparing the closed form finite element solution with
the analytical solution (54), it is clear that the wave representations of the response
are identical except that k has been replaced by kh. The important point here is that
this wave solution consists of the same numerical wavenumbers present for the infinite
rod found by our Fourier analysis except that both outgoing and incoming waves are
present. The following analysis establishes the role of complex wavenumbers in the
finite element solution of practical boundary value problems.
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Fig. 15: Frequency response spectrum for Dirichlet-Fixed rod using consistent mass linear
element

4.1 Frequency response spectrum

The existence of the cut-off frequency and stopping bands for the example problem
is exposed from the frequency response spectrum. The dispersive and attenuation
characteristics are investigated using the frequency response function obtained from
the wave solution (57) and a uniform mesh of ten (N = 10) p–type elements.

4.1.1 Low-order elements

Figures 15 and 16 show the frequency response spectrum at the midnode using linear
elements (p = 1) with consistent and diagonal mass approximations respectively.

R(ω) = φh(x5, ω)/φ̄ (58)

The sharp peaks indicate the position of the resonant frequencies of the vibration
problem. Excellent agreement with the exact response is obtained for both mass
discretizations up to the practical limit of resolution of approximately ten elements
per wavelength (ωh/c) ≈ π/5. These figures also display the considerable errors that
are present in the higher modes. The phase lead present using consistent mass and
the phase lag present using diagonal mass is also exposed in these results. Existence
of the cutoff frequency is evident by the sharp drop in the response at (ωh/c) =

√
12

for consistent mass and at (ωh/c) = 2 for diagonal mass.

Computational Mechanics, Vol.13, pp. 255-275 (1994)



L.L.Thompson, P.M.Pinsky: Complex wavenumber Fourier analysis 27

Frequency !h=c

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

0 0.5 1.0 1.5 2.0 2.5

exact continuum

di agonal mass

lo
g
jR
(!
)j

Fig. 16: Frequency response spectrum for Dirichlet-Fixed rod using diagonal mass linear
element

4.1.2 Higher-order elements

Figures 17 and 18 show the frequency response at the midnode for a uniform mesh
of ten quadratic (p = 2) elements. In this case the number of odd modes (resonant
peaks) has doubled and the cut-off frequency has been extended. Accurate results are
obtained throughout the acoustic branch while considerable errors are present in the
optical branch. Up to the stopping band, the solution is more accurate compared to
the linear element discretization for the same number of degrees of freedom. For linear
elements, the practical limit of accurate solutions is ten elements per wavelength,
while for quadratic elements, as few as three elements per wavelength are needed to
obtain accurate results. The existence of the stopping band (complex wavenumber
band) is evident by the decrease in amplitude response at (ωh/c) ≈ π. The important
observation is the direct connection between the frequency response and the complex
wavenumber Fourier analysis — the results obtained here are precisely those predicted
by the Fourier analysis.
In Figure 19, we observe the character of the response in the stopping band by

plotting the solution (57) with normalized frequency corresponding to the maximum
imaginary wavenumber component in the complex band. The amplitude decay as the
waves pass through the finite element mesh is displayed. It is clear that the response
has a propagating component fixed at Re(khh) = π corresponding to two elements per
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Fig. 17: Frequency response spectrum for Dirichlet-Fixed rod using quadratic Legendre
elements

wavelength, while the imaginary component manifests itself in the amplitude decay.

4.2 Discrete eigenvalues

A deeper understanding of the connection between the complex Fourier analysis and
dispersion results obtained from the finite element solution of boundary value prob-
lems is obtained by investigating the eigenfrequencies (resonant peaks) present in the
example problem. In this case, real frequency roots (eigenvalues) are sought corre-
sponding to real wavenumbers (eigenmodes). Since the eigenmodes are all real for
this problem, the eigenvalues fall below the cut-off frequency and outside the complex
wavenumber stopping bands.
For the continuous bar, the eigenmodes kj = jπ/L are linearly proportional to

the eigenvalues through the dispersion relation (4):

ωjh/c = kjh (59)

The real eigenmodes for a uniform mesh of p–version finite elements of any spectral
order are,

khj = jπ/L j = 1 : pN − 1 (60)

Comparing this result to (55) we find that the eigenmodes for the finite element mesh
are exact, i.e. khj = kj, up to the number of free variables (pN − 1) present in the
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Fig. 18: Frequency response spectrum for Dirichlet-Fixed rod using quadratic Spectral
elements
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Fig. 19: Attenuated wave solution in the stopping band
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mesh. Discrete eigenvalues ωjh/c are calculated from the dispersion relation (32) in
which real frequency roots are sought for the given real eigenmodes kjh. The result
is a characteristic polynomial in αj = ωjh/c of order 2p.

p∑
l=0

clα
2l
j = 0 (61)

4.2.1 Low-order elements

For linear elements with consistent mass the characteristic equation and its roots are,

co + c1α
2
j = 0 (62)

where

c0(kjh) = 6(cos kjh− 1)

c1(kjh) = (2 + cos kjh)

For example, consider a mesh of two linear elements (p = 1, L = 2h) with consistent
mass and restrained ends, the number of free variables is one and the only real eigen-
mode for the mesh is k1h = π/2. The corresponding eigenvalue is w1h/c =

√
3. The

exact value is w1h/c = π/2.
For a mesh of N = 10 linear elements, the nine eigenvalues calculated from (62)

are plotted as tick marks on the dispersion curves of Figure 1a and fall below the
cut-off frequency.

4.2.2 Higher-order elements

For quadratic Legendre elements, the characteristic equation and its roots are,

co + c1α
2
j + c2α

4
j = 0 (63)

where

c0(kjh) = 20(1− cos kjh)

c1(kjh) = −2(13 + 2 cos kjh)/3

c2(kjh) = (3− cos kjh)/12

(
ωjh

c

)2
1

=
−c1 −

√
c21 − 4c0c2
2c2

(64)

(
ωjh

c

)2
2

=
−c1 +

√
c21 − 4c0c2
2c2

(65)

Computational Mechanics, Vol.13, pp. 255-275 (1994)



L.L.Thompson, P.M.Pinsky: Complex wavenumber Fourier analysis 32

For a uniform mesh with N = 10 quadratic elements, the nineteen discrete frequen-
cies calculated from (63) are plotted as tick marks on the dispersion curves in Figure
3a. The second root corresponds to the upper branch (optical branch) and is plotted
with alias kjh = 2π − kjh . At the stopping band kjh = π, there is a disconti-
nuity in the frequency/wavenumber relation, where there are two possible choices
for the roots. Eigenfrequencies in the range between these roots are skipped over.
From numerical results, we find that the eigenfrequency occupies the lowest energy
mode at this wavenumber and falls on the smaller of the two roots. The discrete
eigenfrequencies fall exactly on these dispersion curves; below the cut-off frequency
and outside the stopping band. These results demonstrate that the real part of the
complex wavenumber Fourier analysis accurately predicts the discrete eigenfrequency
spectrum for the example boundary value problem. The results of the Fourier analy-
sis can also be used to obtain the maximum eigenfrequency (spectral radi) for p–type
element discretizations, see Deville and Mund (1992).

4.3 Eigenmodes

It can be shown that the eigenvectors for a uniform mesh of p–version finite elements
are,

ψj(xn) = sin(kjxn) = sin(jπxn/L) j = 1 : pN − 1 (66)

Comparing this result to the analytical eigenfunctions, the eigenvectors are nodally
exact for all spectral orders. Figure 20 shows an example of mode j = 8 for a
uniform mesh of ten linear elements, while Figure 21 shows an example of mode j=18
representing a wavenumber in the upper optical branch of a uniform mesh of ten
quadratic elements. At the nodal points n, the amplitude A1 is exact, whereas at
the intermediate points n ± 1/2 the amplitude A2 is given by the ratio r = A2/A1
defined earlier in Figure 14. For mode j = 18, there are two aliased wave solutions,
one passing through each set of points n and n± 1/2,

φn = A1 sin(β2n) n = 0 : N (67)

φn+1/2 = A2 sin(β2(n+ 1/2)) n = 0 : N − 1 (68)

where β2 = (2π − β18) = π/5, see Figure 22.
Using information obtained from the complex Fourier analysis, mode shapes for

higher-order elements can be processed in order to isolate individual wave compo-
nents. By superposition of these wave components, a single wave solution can be
constructed with a global sinusoidal interpolation. The global sinusoidal interpola-
tion of nodal data improves the representation of the eigenmode at inter-nodal points.
For example, for mode j = 18 for the quadratic finite element mesh, by applying a
discrete sine transformation, see Bellanger (1989) with sample points φm, i.e.

wj =
1

N

2N−1∑
m=1

φm sin(
jmπ

2N
), j = 1 : 2N − 1 (69)
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Fig. 20: Mode shape j = 8 for linear finite element discretization

Eigenmode 18
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Fig. 21: Mode shape j = 18 for quadratic Legendre element discretization

Wave components A1 and A2
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Fig. 22: Two aliased wave solutions for mode j = 18; one passing through each set of
points n and n± 1/2.
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Wave components w2 and w18
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Fig. 23: Two wave components obtained from discrete sine transform of mode j = 18.

Single wave representati on
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Fig. 24: Single wave sinusoidal interpolation for mode j = 18.
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we find that the only nonzero wave amplitudes are w2 and w18 illustrated in Figure
23. Using the inverse sine transform,

φm =
2N−1∑
j=1

wj sin(
jmπ

2N
) = w2 sin(

mπ

10
) + w18 sin(

9mπ

10
) (70)

we then superimpose these two wave components to form the single wave constructed
from the sinusoidal interpolation,

φ(x) =
2N−1∑
j=1

wj sin(
jx

L
) (71)

see Figure 24. Comparing this interpolated solution to the imaginary part of (51)
we recognize the two wave amplitudes as w2 = C+ and w18 = C−. Although the
amplitude of the sinusoidal interpolation of the eigenmode is attenuated, the post-
processed eigenmode better represents the exact sinusoidal mode shape – compare
Figure 21 and 24. This result demonstrates how Fourier analysis can be used as a
tool to improve p-version finite element solutions to vibration problems.

5 Conclusions

High-order finite element discretizations have frequency bands where the solutions are
harmonic decaying waves. In these so called ‘stopping’ bands, the solutions are not
purely propagating (real wavenumbers) but are attenuated (complex wavenumbers).
In this paper we have extended the standard dispersion analysis technique to include
complex wavenumbers in order to study the dispersion and attenuation characteristics
of p–type elements up to spectral order p = 5. By allowing for complex wavenumbers,
a more complete characterization of the stopping bands in the frequency spectrum of
finite element discretizations has been presented.
Important results of this study are that there are p stopping bands present in the

dispersion curves of p–type elements; however for large spectral orders p, the first few
stopping bands are very small with minimal attenuation present and are thus not of
practical significance. We have also found that high-order p–type elements display
increased phase accuracy compared to low-order elements, for the same number of de-
grees of freedom. For example, for linear elements (p = 1), a practical limit on phase
accuracy is to require at least ten elements per wavelength. For quadratic elements
(p = 2), as few as three quadratic elements per wavelength are required to obtain
accurate phase. For a spectral order of (p = 3), only two elements per wavelength are
needed to maintain phase accuracy. To resolve waves with increased accuracy while
maintaining only two elements per wavelength, spectral orders of (p ≥ 4) are recom-
mended. For well resolved waves, Spectral elements using Lagrange interpolation in
conjunction with Lobatto quadrature give improved convergence rates for phase error
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when compared to hierarchic elements with either Legendre or Fourier basis func-
tions. However for nondimensional frequencies extending beyond the recommended
practical limits, both dispersion and amplitude attenuation errors increase the most
for Spectral elements. For nondimensional frequencies in the upper branches of the
frequency spectrum, Hierarchic Legendre elements exhibit improved amplitude accu-
racy, while Hierarchic Fourier elements exhibit both improved amplitude and phase
accuracy.
A study of the closed form p–type element solution for a canonical steady-state

vibration problem demonstrated the role complex wavenumbers play in the practical
solution of physical boundary value problems. The existence of the cut-off frequency
and stopping bands as a result of complex wavenumbers present in the finite element
solution of the example problem is clearly exposed from the frequency response spec-
trum. The important point here is that finite element wave solutions consist of the
same numerical wavenumbers found in the complex Fourier analysis except that both
outgoing and incoming waves are present. In addition, we have established the direct
connection between the dispersion curves (real part of the complex wavenumber char-
acteristic relation) and the discrete eigenvalue spectrum for the example problem. In
this case, all eigenmodes (wavenumbers) are real, and thus the real eigenvalues (eigen-
frequencies) all fall below the cut-off frequency and outside the complex wavenumber
stopping bands.
Finally, we have shown how p–type finite element solutions can be post-processed

using information obtained from a complex wavenumber Fourier analysis in order
to isolate component waves. By superposition of these wave components, a single
wave sinusoidal interpolation can be constructed. The global sinusoidal interpolation
of nodal data improves the representation of the eigenmode at inter-nodal points.
This process demonstrates how results from a complex wavenumber Fourier analysis
can be used as a tool to help improve p–version finite element solutions to vibration
problems. The relationship between the wavenumbers predicted by complex Fourier
analysis and those present in the finite element solution of boundary value problems
can be studied further by post-processing the discrete finite element data with a high
resolution parameter estimation technique. Wavenumbers extracted from a parameter
estimation of the finite element data can then be compared to dispersion curves. In
this paper, we have demonstrated that for simple boundary conditions the results
will correspond exactly, however it remains to be seen what correspondence occurs
for mixed boundary conditions such as the nonreflecting boundary conditions used in
infinite domain problems.
Complex wavenumber dispersion analysis can also be used as a powerful tool to

help design more accurate finite element approximations. The Galerkin/least-squares
(GLS) modification to the standard Galerkin finite element method involves the selec-
tion of a frequency dependent parameter designed to minimize numerical dispersion
over a wide range of frequencies. Presently, only the optimal GLS parameter for low-
order (p = 1) elements in one-dimension is available, see Harari and Hughes (1991a).
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We have completed an analysis for the optimal selection of GLS parameters in multi-
dimensions and higher-order quadratic (p = 2) elements; the results are reported in
Thompson and Pinsky (1995).
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