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Abstract

When solving the wave equation in in®nite regions using ®nite element methods, the domain must be truncated. We investigate the

accuracy of time-dependent non-re¯ecting boundary conditions (NRBC) derived in Grote, Keller (1995), when implemented in the

®nite element method. The NRBC annihilate the ®rst N wave harmonics on a spherical truncation boundary. High-order temporal

derivatives are formulated as a system of ®rst-order ordinary di�erential equations. Several versions of implicit and explicit multi-step,

time-integration schemes are presented for solution of the ®nite element equations concurrently with the ®rst-order system appearing in

the NRBC. An alternative scaling of the boundary variables is introduced which leads to a well-conditioned coe�cient matrix. Al-

though the boundary conditions are global over the boundary, when implemented in the ®nite element method, they only require inner

products of spherical harmonics within the force vector, and as a result, they are easy to implement and do not disturb the banded/

sparse structure of the matrix equations. Several numerical examples are presented which demonstrate the improvement in accuracy

over standard ®nite element methods. Ó 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

When domain based computational methods such as ®nite element methods are used to model in®nite
domains, accurate non-re¯ecting boundary conditions (NRBC), in®nite elements, or absorbing layers, are
required on an arti®cial truncation boundary C that surrounds the source of radiation or scattering [1]. If
the form of the boundary treatment is over-simpli®ed, spurious re¯ected waves can be generated at the
arti®cial boundary, which can substantially degrade the accuracy of the numerical solution. For example
the simple `spherical-damper' on C,

o/
or
� 1

c
o/
ot
� 1

R
/ � 0; �1�

where /�x; t� is the solution to the scalar wave equation, R the radius of a spherical arti®cial boundary C,
and c the wave speed, while exact for all uniform spherical outgoing waves, exhibits signi®cant spurious
re¯ection for higher-order wave harmonics, especially as the position of C approaches the source of ra-
diation or scattering [2,3], and for low frequency (long wavelength) components [4]. If accurate non-
re¯ecting (radiation) boundary conditions are applied to this boundary, the ®nite computational region can
be reduced in size and the truncation boundary moved closer the radiator/scatterer, so that fewer ®nite
elements are needed, resulting in considerable cost savings.
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In the frequency domain, it is well known that an exact NRBC applied to a separable truncation
boundary is available through the Dirichlet-to-Neumann (DtN) map [5,6]. The DtN map is a nonlocal
(integral) operator composed of a series of wave harmonics relating DtN data on the truncation boundary.
The DtN map is easily implemented in the ®nite element method as a `natural' boundary condition using
standard C0 continuous interpolation functions in the frequency domain.

Time-dependent NRBC based on the DtN map which match the ®rst N wave harmonics on a spherical
boundary have been derived in Refs. [4,7,8]. Two alternative sequences of NRBC have been derived, the
®rst involves temporal derivatives while retaining a spatial integral (local in time and non-local in space
version), while the second involves both temporal and spatial derivatives (local in time and local in space
version). As the order of these local NRBC are raised they become increasingly di�cult to implement
directly in standard semidiscrete ®nite element formulations due to the occurrence of high-order time-
derivatives on the truncation boundary. In practice, this has limited their use to second-order when
implemented with standard ®nite element methods [3].

Recently, following a suggestion by Buneman, Grote and Keller [8] have shown how to replace the high-
order derivatives appearing in the NRBC with a system of linear ®rst-order di�erential equations in time.
By reducing the time-derivatives to ®rst-order, the resulting form of the NRBC is easily combined with
standard ®nite di�erence methods and ®nite element methods [9]. In Ref. [9], Grote and Keller show how to
combine the NRBC with the semidiscrete ®nite element formulation and give numerical examples imple-
mented using an explicit ®nite di�erence method.

In this work, examples of ®nite element computations using a modi®ed version of the exact NRBC are
reported. Several versions of implicit and explicit multi-step, time-integration schemes are presented for
solution of the ®nite element semidiscrete equations concurrently with the system of ®rst-order di�erential
equations appearing in the NRBC. In Ref. [8] derivation of the NRBC relied on an integral transform of
radial harmonics. We show that the NRBC can be derived in a straight-forward approach based on a
recurrence relation given by Lamb [10], which does not require the use of an integral equation. In order to
improve the condition number of the coe�cient matrix appearing in the discrete form of the NRBC, we
introduce an alternative scaling of the solution variables than used in Ref. [8]. Several numerical experi-
ments are performed to assess the accuracy and convergence properties of the NRBC when implemented in
the ®nite element method. Comparisons are made to a local second-order boundary condition [2,3]. Two
model problems are studied, in the ®rst we investigate the ability of the NRBC to annihilate high-order
spherical harmonics on the truncation boundary, and in the second we investigate the accuracy of the
NRBC for a challenging test problem of radiation from a piston on a sphere.

2. Exact non-re¯ecting boundary condition

In this section we show how the NRBC follows directly from a recurrence relation given by Ref. [10]. We
consider time-dependent scattering/radiation in an in®nite domain. The unbounded region is truncated by
an arti®cial boundary C, and we denote by X the ®nite computational domain inside C. The boundary C is
restricted to be a sphere of radius R. In X we assume the solution /�x; t� is governed by the non-homo-
genous wave equation:

r2/ÿ 1

c2

o2/
ot2
� ÿf in X � �0; T �; �2�

/�x; 0� � /0;
_/�x; 0� � _/0; x 2 X: �3�

At t � 0, the source f �x; t� and initial data are assumed to be con®ned to the computational region X, so
that in the exterior domain D, i.e., the region outside C, the scalar ®eld /�x; t� satis®es the homogeneous
form of the wave equation,

r2/ÿ 1

c2

o2/
ot2
� 0 in D � �0; T �; �4�
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/�x; 0� � 0; _/�x; 0� � 0; x 2 D: �5�
A general solution to Eq. (4) in spherical coordinates �r; h;u� is

/�r; h;u; t� �
X1
n�0

Xn

m�ÿn

/nm�r; t�Ynm�h;u�; �6�

where Ynm are orthogonal spherical harmonics normalized on the unit sphere

Ynm�h;u� � ��2n� 1��nÿ jmj�!=4p�n� jmj�!�1=2
eimuP jmjn �cos h�: �7�

The time-dependent radial functions /nm�r; t� are obtained by multiplying Eq. (6) by the complex con-
jugate of Ynm, denoted Y �nm, and integrating over the unit surface, i.e., forming the inner product,

/nm�r; t� � �/; Ynm� �
Z 2p

0

Z p

0

Y �nm�h;u�/�r; h;u; t� sin h dh du; �8�

The radial functions /nm�r; t� satisfy the following equation and initial conditions:

Ln�/nm� �
1

c2

o2

ot2

�
ÿ o2

or2
ÿ 2

r
o
or
� n�n� 1�

r2

�
/nm�r; t� � 0; r P R; �9�

/nm�r; 0� � 0; _/nm�r; 0� � 0; r P R: �10�
The presence of the index m in /nm for jmj6 n; n � 0; . . . ;1 denotes di�erent members in the solution

family of Eq. (9). For clarity, in the discussion below, the index m will be suppressed, i.e. we de®ne
/n � /nm.

Based on a result given by Lamb [10], /nm satis®es the recurrence relation

/n �
o
or

�
ÿ nÿ 1

r

�
/nÿ1; �11�

where /nÿ1 is the solution to Lnÿ1�/nÿ1� � 0:
The following equality can be easily veri®ed,

Ln
o
or

��
ÿ nÿ 1

r

�
/nÿ1

�
� o

or

�
ÿ nÿ 1

r

�
Lnÿ1 /nÿ1� �: �12�

Since /nÿ1 satis®es Lnÿ1�/nÿ1� � 0, then it follows from Eq. (12) that �o=or ÿ �nÿ 1�=r�/nÿ1 satis®es
Ln�/n� � 0, which implies (11).

Recursive use of Eq. (11) gives

/n �
o
or

�
ÿ nÿ 1

r

�
/nÿ1

� o
or

�
ÿ nÿ 1

r

�
o
or

�
ÿ nÿ 2

r

�
. . .

o
or

�
ÿ 1

r

�
o
or

/0

�
Yn

j�1

o
or

�
ÿ jÿ 1

r

�
/0: �13�

The function /0 � /00 satis®es Eq. (9) with n � 0, i.e.

1

c2

o2

ot2

�
ÿ o2

or2
ÿ 2

r
o
or

�
/0�r; t� � 0: �14�
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Using the transformation /0 � rÿ1v, Eq. (14) reduces to the one-dimensional wave equation in r

1

c2

o2

ot2

�
ÿ o2

or2

�
v � 0: �15�

For outgoing waves, general solutions of Eq. (15) take the form vn�r ÿ ct�: Using this result in Eq. (13)
gives,

/n �
Yn

j�1

o
or

�
ÿ jÿ 1

r

�
vn�r ÿ ct�

r
; n P 1; jmj6 n: �16�

Expanding (16) leads to an operator form involving nth-order radial derivatives. For the ®rst several
terms in Eq. (16) we have,

/1 �
o
or

v1�r ÿ ct�
r

� 1

r
ov1

or
ÿ v1

r2
; �17�

/2 �
o
or

�
ÿ 1

r

�
o
or

v2�r ÿ ct�
r

� 1

r
o2v2

or2
ÿ 3

r2

ov2

or
� 3v2

r3
; �18�

/3 �
o
or

�
ÿ 2

r

�
o
or

�
ÿ 1

r

�
o
or

v3�r ÿ ct�
r

�19�

� 1

r
o3v3

or3
ÿ 6

r2

o2v3

or2
� 15

r3

ov3

or
ÿ 15

r4
v3: �20�

By induction, the nth term takes the form

/nm �
Yn

j�1

o
or

�
ÿ jÿ 1

r

�
vnm�r ÿ ct�

r
�
Xn

j�0

�ÿ1�j
rj�1

aj
n

onÿj

ornÿj
vnm�r ÿ ct�: �21�

The coe�cients

aj
n �

�n� j�!
2jj!�nÿ j�! �22�

are obtained from an evolution formula derived by equating coe�cients of the expression for /n with /n�1,
see Appendix. The result (21) is the same equation given in Ref. [8], Lemma 7.1, and proved by an alternate
method involving an integral operator.

The expression for /nm given in Eq. (21) involves high-order radial derivatives which are di�cult to
implement in a numerical method. Making use of the special property of the wave functions vnm�r ÿ ct�

�ÿ1�k ok

ork
vnm�r ÿ ct� � 1

ck

ok

otk
vnm�r ÿ ct�; �23�

the radial derivatives in Eq. (21) are replaced with time-derivatives to obtain

/nm�r; t� � �ÿ1�n
Xn

j�0

1

cnÿj

aj
n

rj�1

onÿj

otnÿj
vnm�r ÿ ct�: �24�

Following Grote and Keller, we apply the `spherical damper', denoted B1,

B1�/nm� �
o
or

�
� 1

c
o
ot
� 1

r

�
/nm�r; t�; �25�

to Eq. (24), and use Eq. (23) with k � 1 to eliminate the radial derivative in favor of a time-derivative to
obtain,
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�
/nm�r; t� �

�ÿ1�n�1

r

Xn

j�1

j
cnÿj

aj
n

rj�1

onÿj

otnÿj
vnm�r ÿ ct�: �26�

Multiplying Eq. (26) by Ynm�h;u�, summing over n and m, setting r � R and using Eq. (6) gives

B1�/�R; h;u; t�� � ÿ 1

R

X1
n�1

Xn

m�ÿn

Ynm�h;u�
Xn

j�1

j
cnÿj

aj
n

Rj

dnÿj

dtnÿj
wnm�t�; �27�

where

wnm�t� � �ÿ1�nvnm�Rÿ ct�=R: �28�
Eq. (27) is the exact NRBC given in [8], Theorem 7.1, with the functions wnm rescaled by �ÿ1�n=R. The B1

operator is exact for the breathing mode /00 � vn�r ÿ ct�=r and annihilates any spherically symmetric
outgoing wave such as the leading term 1=r, of the multipole expansion [2,15], for /�x; t�

/�r; h;u; t� �
X1
j�1

gj�r ÿ ct; h;u�
rj

: �29�

When B1 is applied to Eq. (29), then

B1/ � O
1

r3

� �
�30�

which shows that the boundary condition B1/ � 0 is only approximate for modes n P 1. The summation
over the series in Eq. (27) may be viewed as an extension of the B1 operator. In computation, the sum over n
in Eq. (27) is truncated at a ®nite value N P 1. The modes n6N will be represented exactly. The boundary
condition (27) approximates the modes beyond the point of truncation, i.e. it reduces to B1/ � 0 at r � R,
for the modes n > N .

The functions wnm�t� are obtained from Eq. (24) evaluated at r � R,

/nm�R; t� �
Xn

j�0

1

cnÿj

aj
n

Rj

dnÿj

dtnÿj
wnm�t�: �31�

Using a0
n � 1 and rearranging Eq. (31) we ®nd that wnm�t� is the solution of a linear ordinary di�eren-

tial equation of order n in the dependent variable wnm�t�, with non-homogenous term
/nm�R; t� � �/; Ynm��R; t�,

1

cn

dn

dtn
wnm�t� � ÿ

Xn

j�1

1

cnÿj

aj
n

Rj

dnÿj

dtnÿj
wnm�t� � /nm�R; t�: �32�

The initial conditions on wnm�t� are obtained from Eq. (10)

wnm�0� � d

dt
wnm�0� � � � � � dnÿ1

dtnÿ1
wnm�0� � 0: �33�

The right side of Eq. (27) involves wnm�t�, the solution to Eqs. (32) and (33), and its time-derivatives up to
order nÿ 1. The nth-order di�erential equation (32) is reduced to a system of ®rst-order di�erential
equations for wnm�t� and its derivatives up to order nÿ 1 by de®ning the vector function,

znm�t� � b1
n

dnÿ1

dtnÿ1
wnm�t�; b2

n

dnÿ2

dtnÿ2
wnm�t�; . . . ; bn

nwnm�t�
� �T

; �34�

zi
nm�t� � bi

n

dnÿi

dtnÿi
wnm�t�; i � 1; . . . ; n: �35�
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To eliminate the large aj
n and Rj that appear in Eqs. (27) and (32) we have scaled wnm and its nÿ 1 de-

rivatives by,

bi
n �

1

Riÿ1cnÿi

ai
n

a1
n

: �36�

This scaling is di�erent from that used by Grote and Keller [8], where the following alternative scaling was
used:

~bi
n �

1

cnÿi

ai
n

a1
n

: �37�

The functions zi
nm�t� in Eq. (35) are the terms on the right side of Eq. (27),

B1/ � ÿ 1

R

X1
n�1

Xn

m�ÿn

Ynm

Xn

j�1

ej
nzj

nm�t� on C � �0; T �; �38�

where

ej
n �

ja1
n

R
� n�n� 1�j=2R j � 1; . . . ; n �39�

or in vector form with coe�cient vectors en � fej
ng

B1/ � ÿ 1

R

X1
n�1

Xn

m�ÿn

�en � znm�Ynm�h;u� on C � �0; T �: �40�

Eq. (40) is the exact NRBC written in a form with only ®rst-order derivatives in r and t. The vector
functions znm�t� are solutions to the system of ®rst-order di�erential equations obtained by replacing wnm�t�
in Eq. (32) and its time-derivatives with znm�t�.

Di�erentiating Eq. (35) gives,

dzi
nm�t�
dt

� bi
n

dnÿi�1

dtnÿi�1
wnm�t�; i � 1; . . . ; n: �41�

For i � 1,

dz1
nm�t�
dt

� b1
n

dn

dtn
wnm�t� � 1

cnÿ1

dn

dtn
wnm�t�: �42�

Using de®nition (35) and Eq. (42) in (32), the nth-order di�erential equation in wnm�t� is reduced to the
following ®rst-order equation in znm�t�,

dz1
nm�t�
dt

�
Xn

j�1

A1j
n zj

nm�t� � c/nm�t�; i � 1; �43�

where

A1j
n � ÿ

c
R

a1
n � ÿ

n�n� 1�c
2R

: �44�

Combining Eqs. (35) and (41), gives the remaining di�erential equations,

dzi
nm�t�
dt

� bi
nziÿ1

nm �t�; i � 2; . . . ; n; �45�
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where

bi
n �

bi
n

biÿ1
n

� c
R

ai
n

aiÿ1
n

� c�n� i��nÿ i� 1�
2iR

: �46�

The system of equations (43) and (45) may be written in standard matrix form as,

d

dt
znm�t� � Anznm�t� �Unm�t� �47�

with homogeneous initial conditions znm�0� � 0, obtained from Eq. (33).
In Eq. (47), the n� n matrices An � Aij

n

� �
, take the form

An � c
R

ÿn�n� 1�
2

ÿn�n� 1�
2

. . .
ÿn�n� 1�

2

ÿn�n� 1�
2

�n� 2��nÿ 1�
2� 2

0 . . . 0 0

0
�n� 3��nÿ 2�

2� 3
. . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 1 0

26666666666664

37777777777775
�48�

with coe�cients,

Aij
n �

ÿn�n� 1�c
2R

if i � 1;

�n� i��nÿ i� 1�c
2iR

if i � j� 1;

0 otherwise:

8>>>><>>>>: �49�

With scaling (36), every coe�cient in the matrices An are scaled by a common factor of c=R. The non-
homogenous vector function Unm has the nmth coe�cient of / on C as its only non-zero component

Unm�t� � �c/nmjr�R; 0; . . . ; 0�T; �50�
where

/nmjr�R � �/; Ynm�C �
Z 2p

0

Z p

0

Y �nm�h;u�/�R; h;u; t� sin h dh du: �51�

The scaling (37) used in Ref. [8] leads to a system of di�erential equations in the same form as Eq. (47)
but with a di�erent coe�cient matrix ~An

~Aij
n �

ÿn�n� 1�c
2Rj

if i � 1;

�n� i��nÿ i� 1�c
2i

if i � j� 1;

0 otherwise:

8>>>><>>>>: �52�

The ®rst row of ~An is a function of 1=Rj for j � 1; . . . ; n. For large n and R < 1 this may lead to an ill-
conditioned system.

The stability of a numerical solution to the system of di�erential (47) is determined by the eigenvalues of
the coe�cient matrix An. If the real part of the eigenvalues are negative, the numerical solution will be
asymptotically stable. Solutions to Eq. (47) are equivalent to solutions of the nth-order di�erential (32). As
a result, the eigenvalues of matrices An are equivalent to the roots of the characteristic polynomial asso-
ciated with Eq. (32), i.e.,
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det�An ÿ kI� �
Xn

j�0

1

cnÿj

aj
n

Rj
knÿj � 0: �53�

The eigenvalues of the matrix An appearing in Eq. (47) are identical to the eigenvalues of ~An since they both
are derived from the original nth-order di�erential Eq. (32). The eigenvectors associated with An and ~An will
be di�erent since they are based on a di�erent scaling of znm.

The eigenvalues k may be normalized with the common factor c=R appearing in Eq. (48),

~k � R
c

k; �54�

resulting in the polynomialXn

j�0

aj
n
~knÿj � 0: �55�

The roots (eigenvalues) of Eq. (53) coincide with the roots of Eq. (55) multiplied by c=R.
In Ref. [9] it was veri®ed numerically that the roots of Eq. (55) lie strictly in the left half of the complex

plane up to n � 76. Fig. 1 shows numerical solutions for the maximum real part of the eigenvalues asso-
ciated with matrix An normalized with c=R, i.e., max�Re ~k� vs. dimension n. These results verify that the
max�Re k� are negative for n6 76. Based on these results, the series in Eq. (40) should be truncated at
N 6 76 for the boundary condition to be stable.

3. Finite element implementation

De®ne standard inner products,

�d/;/�X :�
Z

X
d// dX;

�d/;/�C :�
Z

C
d// dC:

The variational equation within X is obtained as usual by multiplying Eq. (2) with a weighting function
d/�x�, and using the divergence theorem to obtain,

1

c2
d/;

o2/
ot2

� �
X

� �rd/;r/�X � d/;
o/
on

� �
C

� �d/; f �X: �56�

Fig. 1. Maximum real part of eigenvalues of coe�cient matrix An normalized with c=R, vs. dimension n.
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For a spherical boundary, the normal derivative on C is equivalent to a radial derivative, i.e.
o/=on � o/=or. The exact NRBC Eq. (40) may be implemented directly by replacing the radial derivative
on C with the radial derivative appearing in the B1 operator (26), with the result

1

c2
d/;

o2/
ot2

� �
X

� �rd/;r/�X �
1

c
d/;

o/
ot

� �
C

� 1

R
�d/;/�C � L�d/�; �57�

where

L�d/� � �d/; f �X ÿ
1

R

X1
n�1

Xn

m�ÿn

en � znm�d/; Ynm�C: �58�

Using a standard Galerkin ®nite element approximation, results in the following second-order system of
ordinary di�erential equations in time for the global solution vector /�t�

M �/�t� � C _/�t� � K/�t� � F�t�; t > 0; �59�
where

M �
Z

X

1

c2
NTN dX; C �

Z
C

1

c
NTN dC; �60�

K �
Z

X
�rN�T�rN� dX�

Z
C

1

R
NTN dC; �61�

F�t� �
Z

X
NTf �x; t� dXÿ 1

R

XN

n�1

Xn

m�ÿn

en � znm�t�
Z

C
NTYnm dC �62�

and N�x� is an array of basis functions with compact support associated with each node in a ®nite element
mesh. The sum over n is truncated at a ®nite value N. For N � 0, the formulation reduces to the B1

boundary condition. For N P 1, the NRBC is global over C, yet only requires inner products of spherical
harmonics within the force vector F. As a result, the NRBC is easy to implement and does not disturb the
banded/sparse structure of the ®nite element matrix equations. In Eq. (62), the functions znm � zj

nm

� 	
are

solutions to the system of ®rst-order equations (47).

4. Time-integration

Several time-marching schemes are developed to integrate the second-order equations (59) concurrently
with the ®rst-order equations (47). In the ®rst method, we adopt the Newmark family [11] to integrate
Eq. (59). Let dk � / tk� �, vk � _/ tk� �, ak � �/ tk� �, be the numerical solution and Fk � F tk� � the force at time-
step tk � kDt, then the Newmark method in predictor/corrector form is [12]

predictors:

~dk�1 � dk � Dtvk � Dt2

2
1� ÿ 2b�ak; �63�

~vk�1 � vk � �1ÿ c�Dtak; �64�
solve for ak�1

M
ÿ � cDtC � bDt2K

�
ak�1 � Fk�1 ÿ C~vk�1 ÿ K~dk�1: �65�

correctors:

dk�1 � ~dk�1 � bDt2ak�1; �66�
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vk�1 � ~vk�1 � CDtak�1: �67�
Any of the members of the Newmark family may be used, including the second-order accurate c � 1=2,

and unconditionally stable trapezoidal rule �b � 1=4�, and conditionally stable central di�erence method
�b � 0�. When solving using the explicit central di�erence method, equations (65) may be decoupled using
standard diagonal mass M, and damping matrices C , e.g. using nodal quadrature, row-sum technique, or
the HRZ lumping scheme [14].

The solution of Eq. (65) requires that the forcing term Fk�1 be available at time-step tk�1, i.e.,

Fk�1 �
Z

X
NTf x; tk�1� � dXÿ 1

R

XN

n�1

Xn

m�ÿn

en � znm tk�1� �
Z

C
NTYnm dC: �68�

To compute ak�1, we need the values of znm�t� at t � tk�1. The numerical solution zk�1
nm � znm tk�1� � to the ®rst-

order di�erential equation (47) is computed concurrently using an explicit time-integrator; for example the
second-order accurate Adams±Bashforth algorithm [13]

zk�1
nm � zk

nm �
Dt
2

3 Anzk
nm

ÿ� �Uk
nm

�ÿ Anzkÿ1
nm

ÿ �Ukÿ1
nm

��
: �69�

Note that Eq. (69) requires only the evaluation at t � tk, the value at t � tkÿ1 being known from the
previous step. The stability condition imposed on Dt by the Adams±Bashforth method depends on the
eigenvalues k of the coe�cient matrix An, that is ÿ16 kDt6 0 with critical time-step

Dt < Dtc � 1

jmin�Re k�j : �70�

As shown in Fig. (2), jmin�Re k�j increases with dimension n. Therefore, for a ®xed c=R, the critical time-
step Dtc decreases when more terms N are included in the NRBC.

The complete algorithm proceeds as follows:

(A1) : Algorithm 1

1. Set z0
nm � zÿ1

nm � 0 and initialize d0 and v0,
2. Calculate a0 from Ma0 � F0 ÿ Cv0 ÿ Kd0,

dÿ1 � d0 ÿ Dtv0 � Dt2

2
a0,

3. Compute Uk
nm and Ukÿ1

nm from Eq. (51) and
Compute zk�1

nm using Eq. (69) for n � 1; . . . ;N ,

Fig. 2. Minimum real eigenvalues of matrix An scaled by c=R vs. dimension n.
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4. Predict ~dk�1 and ~vk�1 from Eqs. (63) and (64),
Calculate ak�1 from Eq. (65),
Update dk�1 and vk�1 using Eqs. (66) and (67),

5. Increment k to k � 1, Go back to Step 3.

In the above method, an explicit algorithm is used ®rst to compute zk�1
nm so that Fk�1 is available to

compute dk�1 from Eqs. (65) and (66).
We next show how to compute dk�1 and zk�1

nm in parallel. In this algorithm, the central di�erence method
[14] is applied directly to integrate Eq. (59)

1

Dt2
M

�
� 1

2Dt
C

�
dk�1 � Fk ÿ Kdk � 1

Dt2
M 2dkÿ ÿ dkÿ1

�� 1

2Dt
Cdkÿ1: �71�

Eq. (71) is decoupled using standard diagonal mass and damping matrices. The solution of (71) requires
only that the forcing term Fk be available. Therefore, to compute dk�1, we only need to evaluate values of
znm�t� at t � tk.

The solution zk�1
nm to the ordinary di�erential equation (47) is advanced concurrently with dk�1 using the

explicit Adams±Bashforth algorithm (69).
The complete algorithm proceeds as follows:

(A2) : Algorithm 2

1. Set z0
nm � zÿ1

nm � 0 and initialize d0 and v0,
2. Calculate a0 from Ma0 � F0 ÿ Cv0 ÿ Kd0,

dÿ1 � d0 ÿ Dtv0 � Dt2

2
a0,

3. Compute dk�1 from Eq. (71),
4. Compute Uk

nm and Ukÿ1
nm from Eq. (51) and

Calculate zk�1
nm using Eq. (69) for n � 1; . . . ;N ,

5. Increment k to k � 1, Go back to Step 3.

Steps 3 and 4 may be computed in parallel. The stability condition for central di�erence method with
lumped mass is

Dt6 h���
3
p

c
; �72�

where Dt is the time-step, h is the smallest element size in a three-dimensional ®nite element mesh. Generally,
for a given mesh and N, the stability constraint on Dt imposed by the explicit central di�erence method
applied to Eq. (59) is more restrictive than the explicit Adams±Bashforth method Eq. (69) applied to Eq. (47).

Alternatively, the numerical solution zk�1
nm to the ordinary di�erential equation (47) may be computed

using the second-order Adams±Moulton method (trapezoidal rule)

I

�
ÿ Dt

2
An

�
zk�1

nm � I
�
� Dt

2
An

�
zk

nm �
Dt
2

/k�1
nm

ÿ � /k
nm

�
: �73�

The implicit trapezoidal rule applied to Eq. (47) is unconditionally stable for N 6 76.
In this case the solution procedure is

(A3) : Algorithm 3

1. Set z0
nm � 0, and initialize d0 and v0,

2. Calculate a0 from Ma0 � F0 ÿ Cv0 ÿ Kd0,
dÿ1 � d0 ÿ Dtv0 � �Dt2�=2a0,

3. Compute dk�1 from Eq. (71),
4. Compute Uk�1

nm and Uk
nm from Eq. (51),

5. Compute zk�1
nm from Eq. (73) for n � 1; . . . ;N ,

6. Increment k to k � 1, Go back to Step 2.
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The computational work required to solve the coupled linear systems (73) is negligible, because the ma-
trices An are small. To ensure accurate solutions to Eq. (73) we examine the condition number of the matrix

Dn :� I

�
ÿ Dt

2
An

�
;

denoted cond Dn� �, resulting from the Adams±Moulton method. If the condition number is close to 1, then
small relative changes in the data can lead to only small relative changes in the solution, so that the problem
is well-conditioned. If the condition number is large, the problem may become ill-conditioned, but not
necessarily.

Consider the model problem of scattering from a sphere of radius a � 0:5. Assume an element mesh size of
h � pa=100, with a time-step Dt � h=

���
3
p

c, and take N � 20 terms in the series present in the NRBC. The
cond Dn� � for this problem measured in the L2 matrix norm is plotted in Fig. 3 as a function of the non-re-
¯ecting boundary radius R. The condition number is given for An de®ned by Eqs. (49) and (52). Using scaling
(36) to de®ne An results in a condition number of approximately 10 which is relatively uniform as R decreases.
In contrast, the scaling (37) results in a condition number which increases substantially for R=a6 1:8.

5. Numerical examples

Numerical experiments are performed to assess the accuracy and convergence properties of the NRBC
when implemented in the ®nite element method. Comparisons are made to a local second-order boundary
condition [2,3] and [4], denoted B2

B2/ � o
or

�
� r

c
o2

orot
� r

c2

o2

ot2
� 2

c
o
ot
� 1

r
ÿ 1

2r
DC

�
/ � 0 on C �74�

with Laplace±Beltrami operator DC de®ned as,

DC/ :� 1

sin u
o
ou

sin u
o/
ou

� �
� 1

sin2 u

o2/

oh2
: �75�

When B2 is applied to the multiple expansion (29), then

B2/ � O
1

r5

� �
�76�

Fig. 3. Condition number of matrix I ÿ �Dt=2�An� � appearing in implicit Adams±Moulton method measured in L2 norm vs. nor-

malized truncation radius R=a. Comparison of de®nition An, denoted Scaling 2, and de®nition ~An, denoted Scaling 1.
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which shows that the boundary condition B2/ � 0 is more accurate than B1.
We denote Eq. (40) by NR1(N), where N de®nes the number of harmonics included in the truncated

series. NR1(0) annihilates the ®rst harmonic appearing in Eq. (6) and coincides with the local boundary
condition B1 de®ned in Eqs. (1) and (25). Both NR1(1) and B2 annihilate the ®rst and second harmonics in
Eq. (6). Two model problems are studied, in the ®rst we investigate the ability of NR1(N) to annihilate
high-order spherical harmonics on C, in the second we investigate the accuracy of NR1(N) for a challenging
test problem of radiation from a piston on a sphere.

5.1. Spherical harmonic radiation

Consider time-dependent radiation from a sphere of radius a � 1, such that

/�a; h; t� � Pn�cos h� sin xt; 06 h6 p; t P 0: �77�

Fig. 4. Spherical wave harmonic n � 6. Time-dependent solutions computed using the boundary conditions B2, and NR1(6) compared

to the steady-state exact solution on C at h � 0°. (Top) Normalized frequency xa=c � p=4, mesh 20� 120. (Bottom) Normalized

frequency xa=c � 2p, mesh 40� 240.
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The exact steady-state solution for this problem is,

/�r; h; t� � ÿImag
hn�kr�
hn�ka� Pn�cos h�eÿixt

� �
; r P a: �78�

In the above, Pn are Legendre polynomials, hn are spherical Hankel functions of the ®rst kind, and
k � x=c is the wavenumber. The local boundary condition B1 � NR1�0� annihilates the leading 1=r term in
the multiple expansion (29) and is exact for the `breathing' mode corresponding to n � 0 in Eqs. (77) and
(78), yet only approximates higher modes. The local boundary condition B2 annihilates the terms 1=r and
1=r2 in the expansion Eq. (29) and is exact for the ®rst two modes corresponding to n � 0 and n � 1. The
boundary condition NR1(N) annihilates the leading term 1=r in the expansion (29) and is exact for har-
monics n6N .

The problem is axisymmetric and independent of u. Therefore it is su�cient to compute the solution in
the domain X de®ned by the �r; h� plane for a6 r6R, and 06 h6 p. The arti®cial boundary C is located at
R � 2. The computational domain is discretized with uniform meshes of standard 4-node bilinear axi-
symmetric ®nite elements.

Fig. 5. Spherical wave harmonic n � 6. Time-dependent solutions computed using the boundary conditions B2, and NRI (6) compared

to the steady-state exact solution on C at h � 0°. (Top) Normalized frequency xa=c � p=4, mesh 20� 120. (Bottom) Normalized

frequency xa=c � 2p, mesh 40� 240.
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We begin with a calculation driven with n � 6 and a relatively low frequency xa=c � p=4 on a mesh with
20� 120 elements (20 evenly spaced elements in 16 r6 2, and 120 evenly spaced elements in 06 h6 p). A
time-harmonic solution is obtained by starting from rest with initial data /0 and _/0 equal to zero and
driving the solution to steady-state with a time-step Dt � 0:03. Numerical results using NR1(N) are ob-
tained using both (A1): Algorithm 1, and (A3): Algorithm 3.

Fig. 4 (Top) shows time-dependent solutions at the pole of C, R � 2, and h � 0, obtained using B2,
NR1(6), and the exact steady-state solution. The numerical solution using B2 exhibits both large amplitude
and phase errors. The solution obtained using NR1(6) can barely be distinguished from the exact time-
harmonic solution in the steady-state interval beyond t > 6. The instantaneous error e�t� � /h ÿ /, mea-
sured in L2 norm on C is de®ned as,

E�t� �
Z

C
/h�R; h; t���

ÿ /�R; h; t��2
dC

�1=2

; �79�

where /h is the approximate ®nite element solution and / is the exact steady-state solution. The error E�t� is
shown in Fig. 5 (Top) over the steady-state interval 66 t6 15. By using NR1(6) instead of B2, the error is

Fig. 6. Spherical wave harmonic n � 6, and normalized frequency xa=c � p=4. The L2 error E�t� on C for the boundary conditions B2,

and NR1(6), computed using (A1): Algorithm 1, and (A3): Algorithm 3. (Top) Mesh: 20� 120. (Bottom) Mesh: 40� 240.
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reduced by an order of magnitude in accuracy. The solution using Algorithm 3 shows some small-ampli-
tude oscillation in the numerical solution.

In Fig. 5 (Bottom) we perform the same comparison with a mesh re®ned by a factor of two in r and h, i.e.
40� 240 elements. Using this re®nement, the error drops by a factor of nearly four, indicating second-order
convergence to the exact solution, and the error in using NR1(6) is due to discretization error only. The
solution obtained using B2 does not improve signi®cantly with the re®ned mesh, indicating that the error
using B2 is dominated by spurious re¯ection.

In Fig. 4 (Bottom) and Fig. 6, we perform the same comparison with the frequency increased to
xa=c � 2p on the 40� 240 mesh. To minimize time-integration error, we decrease the time-step to
Dt � 0:01. Fig. 4 (Bottom) shows the time-dependent solution at the pole, R � 2, and h � 0. The error E�t�
is shown in Fig. 6. The maximum error due to B2 is slightly less than 4% and is smaller than the lower
frequency case. This is expected since the accuracy of solutions obtained from local boundary conditions
tend to increase with an increase in wavenumber [4]. By using NR1(6) instead of B2, the error is reduced by
a factor of four to 1%. Fig. 6 (Bottom), shows the error for a re®ned mesh using 60� 240 elements. The

Fig. 7. Spherical wave harmonic n � 10, and normalized frequency xa=c � 2p. Mesh: 60� 360. (Top): Time-dependent solutions

computed using the boundary conditions B2, and NR1(10) compared to the steady-state exact solution on C at h � 0°. (Bottom): The

L2 error E�t� on C.
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re®ned mesh reduces the discretization error in the NR1(6) solution by a factor of two to less than 0.5%,
while the B2 solution does not improve.

As the harmonic driver is increased to n � 10, the acoustic radiation pattern becomes more complex.
Fig. 7 (Top), shows the time-dependent solution at the pole computed on a 60� 360 mesh and driving
frequency of xa=c � 2p. The error E�t� is shown in Fig. 7 (Bottom). The solution using B2 exhibits rela-
tively large amplitude and phase errors. This result demonstrates the di�culty low-order boundary con-
ditions have when attempting to absorb high-order harmonics on C. In contrast, the solution using
NR1(10) can barely be distinguished from the exact time-harmonic solution in the steady-state interval. By
using NR1(10) instead of B2, the error is reduced by over an order of magnitude in accuracy.

5.2. Radiation from a piston on a sphere

To study the accuracy of the NRBC for a problem involving an in®nite number of spherical harmonics,
we consider axisymmetric radiation from a circular piston on a sphere with radius a � 0:5, see [4,16]. The
piston is represented by time-harmonic motion /�a; h; t� � sin xt in the range 0°6 h6 15°, and
/�a; h; t� � �30°ÿ h� sin xt=15° over 15°6 h6 30°, and /�a; h; t� � 0 otherwise. This problem is challenging
because the waves radiated at the piston pole h � 0° are attenuated as they travel along longitudes down to
the south pole h � 180°. In the region opposite the piston, the amplitude of the waves are signi®cantly lower
than near the piston.

We use a 20� 120 mesh of axisymmetric elements (20 in 0:56 r6 1:0 and 120 in 06 h6 180°), with a
driving frequency set at xa=c � p. Results are compared to the second-order local boundary condition (74),
denoted B2, and a ®nite element solution obtained from a large mesh which extends beyond the region
in¯uenced by the transient disturbance, denoted IM. For a spherical truncation boundary set at R � 1:0
and N 6 20, the minimum eigenvalue (real part) of the system matrix An is kmin � ÿ13:57. For the Adams±
Bashforth algorithm, this results in a stability condition Dt < 0:074. We use a time-step Dt � 0:01, and
compare solutions for NR1(N) using Algorithms 1 and 3.

Fig. 8 (Top) compares contours of ®nite element solutions obtained using B2, NR1(20), and the in®nite
mesh solution, IM, at time t � 4. The solution sample time is chosen such that steady-state has been
reached and several spurious re¯ections between C and the radiating sphere could have occurred. The
solution obtained using B2 captures the physics of the solution in the vicinity of the piston yet shows a

Fig. 8. Solution contours for radiating piston on a sphere. Solid contour lines denote in®nite mesh solution (IM); Dashed contours

denote NR1(20); Dotted contours denote B2. (Top) Normalized frequency xa=c � p, at t � 4, (Bottom) Normalized frequency

xa=c � p=8, at t � 10:5.
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Fig. 9. Radiation from a piston on a sphere of radius a � 0:5 and normalized frequency xa=c � p. (Top) Time-dependent solutions

computed for B2, and NR1(20), computed using Algorithms A1 and A3, compared to in®nite mesh (IM) solution at R � 1:0, and

h � 180°. (Bottom) Solution pro®le for h � 180°, and 0:56 r6 1:0, at t � 6.

Table 1

Radiation from piston at ka � p. Comparison of max (L2 error) (�10ÿ4) at r=a � 1:5 for NR1(N), 06N 6 20 and B2, and truncation

boundary radius R=a � 1:56R6 2:5

NR1 Boundary radius R=a

N 1.5 1.75 2.0 2.5

0 226.19 119.30 84.95 56.11

3 191.01 87.73 55.90 39.58

5 61.32 15.63 6.23 2.18

6 24.34 4.35 1.64 1.25

7 7.55 1.27 1.04 1.24

10 2.38 1.21 1.03 1.24

15 1.25 1.21 1.03 1.24

20 1.25 1.21 1.03 1.24

B2 54.24 18.43 8.82 3.38
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signi®cant loss in accuracy in the more di�cult south pole region h � 180°. In contrast, the contour lines for
the NR1(20) matches the in®nite solution throughout the computational domain.

In Fig. 9 (Top), these observations are quanti®ed by plotting time-dependent solutions at the south pole
of C, r � R and h � 180°. In Fig. 9 (Bottom) the solution pro®le is displayed at time t � 6 along the z-axis,
0:56 r6 1 and h � 180°. The solution using B2 shows signi®cant spurious re¯ection at the south pole, while
NR1(20) coincides almost perfectly with the IM solution. Fig. 10 shows the instantaneous error E�t� at
R � 1:0 measured in L2 norm after the solution has reached steady-state. The results illustrate the reduction
in error obtained from increasing the number of terms in the truncated series from N � 7 to N � 20.

In Fig. 11 and Table 1, we compare the maximum error at steady-state obtained using NR1(N), for N
increasing from 0 to 20. Results are given at r � 0:75 for four di�erent computational domains positioned
with truncation boundary at R=a � 1:5; 1:75; 2:0; 2:5 respectively. These results show the interplay between

Fig. 10. Instantaneous error E�t� on the truncation boundary R � 1:0 due to a radiating piston on a sphere of radius a � 0:5 and

normalized frequency xa=c � p. Results compared for boundary condition B2, and NR1(N) using N � 7 and N � 20 terms in the

truncated series.

Fig. 11. Radiation from a piston on a sphere of radius a � 0:5 and normalized frequency xa=c � p. The maximum error measured at

r � 0:75 for the NR1(N) solution as a function of the number of terms N included in the NRBC. Results plotted for the arti®cial

boundary C positioned at R � 0:75 to R � 1:25.
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the number of terms N used in NR1(N) and the approximation to harmonic modes for n > N . Recall that
NR1(0) coincides with the local B1 boundary condition. NR1(N) is exact for all modes n6N . For harmonic
modes n > N , NR1 approximates the solution by annihilating the leading term 1=r. B2 approximates high-
order modes by annihilating leading terms 1=r and 1=r2 for all modes, and thus will be more accurate than
NR1(N) when only a few terms N are included. For this problem, we observe that the B2 boundary con-
dition is more accurate than NR1(N) for N < 5. For N > 5 the error is reduced by an order of magnitude
and is signi®cantly lower than the error using B2. As N is increased the solution converges to a ®nite error
value of approximately 1� 10ÿ4. This limiting value is controlled primarily by the boundary approximation
of the term N ; Ynm� �C appearing in Eq. (62).

As the truncation boundary radius R is reduced, more terms N are required to accurately represent the
solution. In particular, when the radius is reduced to R=a � 1:5, N � 15 terms are needed for the error to
converge, whereas when R=a � 2:0, only N � 7 terms are needed. For B2 to approach the accuracy of the
NRBC NR1(15) at R=a � 1:5, the truncation radius must be larger than R=a � 2:5. This triples the size of
the computational domain, which triples both memory requirements and total execution time. For
NR1(15) the extra computer time to compute the inner products /; Ynm� � over C and advance the func-
tions znm�t� for jmj6 n; 16 n6 15 is small. The additional memory needed to store the functions znm�t� is
only of the order of � N 3 scalar values, independent of the mesh size used in X. This extra storage is
negligible compared to the memory required to solve the ®nite element equations, especially on a three-
dimensional mesh. In practice, it is not usually necessary to use more than N � 25 terms to obtain good
accuracy.

We ®nally compare the e�ect of decreasing the frequency using the local boundary condition B2, with
that of NR1(20). Fig. 8 (Bottom) compares contours of ®nite element solutions obtained using B2,
NR1(20), and the in®nite mesh solution, IM, at a reduced frequency ka � p=8. Fig. 12 shows the solution
pro®le on C. The solution obtained using B2 shows signi®cant error, even in the vicinity of the piston. In
contrast, NR1(20) matches the in®nite solution throughout X. Table 2 gives the maximum error measured

Fig. 12. Solution pro®le on the truncation boundary C, r � R and 06 h6p, at xa=c � p=8, and t � 11:5 for a piston on a sphere.

Table 2

Comparison of max (L2 error) during steady-state for normalized frequencies ka � p, and ka � p=8

ka B2 NR1(20)

p 1:2317� 10ÿ3 3:4911� 10ÿ5

p=8 3:1993� 10ÿ3 1:0365� 10ÿ5
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in L2 norm on C for a ®xed value of N � 20 and R=a � 2. The accuracy of the boundary condition NR1
improves as the frequency is reduced from ka � p, to ka � p=8, because the solution becomes smoother. In
contrast, the accuracy of B2 tends to deteriorate as the frequency is lowered, as expected [4].

6. Conclusions

In conclusion, the NRBC have been found to be very accurate in ®nite element computations, are easy to
implement and require little extra memory. We have shown that their derivation follows directly from a
recurrence result given by Lamb [10]. An alternate scaling of the boundary variables lead to a well-
conditioned coe�cient matrix. Three algorithms were presented to numerically solve the semidiscrete ®nite
element equations combined with the NRBC. In the ®rst algorithm, we use standard time-marching
schemes from the Newmark family implemented in predictor/corrector form, to integrate the ®nite element
equations, while the solution to the ®rst-order boundary equations are computed concurrently using the
explicit Adams±Bashforth method. In the second algorithm, we use the explicit central di�erence method to
integrate the ®nite element equations combined with the explicit Adams±Bashforth method for the
boundary equations. In the third method, we use the explicit central di�erence method for ®nite element
equations, and the implicit Adams±Moulton (trapezoidal rule) for the boundary equations. All three al-
gorithms are multi-step methods that are easy to implement in standard ®nite element codes. Other closely
related multi-step methods, such as the HHT-a method [17] can also be used to advance the solution in time
with no signi®cant changes to the time-marching schemes presented. Although the boundary conditions are
global over the truncation boundary, when implemented in the ®nite element method, they only require
inner products of spherical harmonics /; Ynm� � over C, appearing in the force vector, and as a result, they
are easy to implement and do not disturb the banded/sparse structure of the matrix equations. The extra
computer time and memory required to evaluate the inner products /; Ynm� � over C and advance the
boundary functions znm�t� is negligible compared to the memory and time required to solve the ®nite ele-
ment equations, especially on a three-dimensional mesh. In practice, it is not usually necessary to use more
than N � 25 terms to obtain good accuracy.

Numerical studies con®rm the ability of the NRBC to annihilate spherical harmonics on the truncation
boundary. Results show signi®cant improvement in accuracy over the local B2 operator, especially as the
truncation boundary is positioned near the source of scattering/radiation and for low frequencies. For a
given level of accuracy, the NRBC give a large reduction in computer memory and execution time com-
pared to the B2 boundary condition.
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Appendix A

Expanding Eq. (16) leads to an operator form involving nth-order radial derivatives. The kth term takes
the form,

/k �
Yk

j�1

o
or

�
ÿ jÿ 1

r

�
vk�r ÿ ct�

r
�
Xk

j�0

�ÿ1�j
rj�1

aj
k

okÿj

orkÿj
vk�r ÿ ct�; �A:1�

where aj
k are coe�cients to be determined. To obtain evolution formula for aj

k, we develop an expression for
/k�1,
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/k�1 �
Yk�1

j�1
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�
ÿ jÿ 1

r

�
vk�1�r ÿ ct�

r
� o
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�
ÿ k

r

�Yk

j�1

o
or

�
ÿ iÿ 1

r

�
vk�1�r ÿ ct�

r
: �A:2�

Expanding,

/k�1 �
o
or

�
ÿ k

r

� Xk

j�0

�ÿ1�j
rj�1

aj
k

okÿj

orkÿj
vk�1�r

"
ÿ ct�

#

�
Xk

j�0

�ÿ1�j�1

rj�2
�k � j� 1�aj

k

okÿj

orkÿj
vk�1 �

Xk

j�0

�ÿ1�j
rj�1

aj
k

ok�1ÿj

ork�1ÿj
vk�1 �A:3�

and collecting terms we have,

/k�1 �
a0

k

r
ok�1

ork�1
vk�1 �

Xk

j�1

�ÿ1�j
rj�1

aj
k

� � �k � j�ajÿ1
k

� ok�1ÿj

ork�1ÿj
vk�1 � �ÿ1�k�1

rk�2
�2k � 1�ak

kvk�1: �A:4�

Equating coe�cients in Eq. (A.4) with coe�cients in Eq. (A.1) for k replaced by k � 1, we obtain the
evolution equation for aj

k,

a0
k�1 � a0

k ; �A:5�

aj
k�1 � aj

k � �k � j�ajÿ1
k ; 16 j6 k; �A:6�

ak�1
k�1 � �2k � 1�ak

k: �A:7�

From Eq. (17) we have the starting values,

a0
1 � 1; a1

1 � 1: �A:8�

From Eq. (A.5) and a0
1 � 1, we obtain the coe�cients for j � 0,

a0
n � 1: �A:9�

From recursive use of Eq. (A.7) and a1
1 � 1, we obtain the coe�cient for j � n,

an
n � �2nÿ 1�anÿ1

nÿ1 � �2nÿ 1��2nÿ 3� � � � �5��3��1� � �n� n�!
2nn!

: �A:10�

The coe�cients for 16 j6 nÿ 1 are obtained from Eq. (A.6). In the following, we make use of the result,

Xnÿ1

k�j

aj
k�1

ÿ ÿ aj
k

� � aj
n ÿ aj

j; j � 1; . . . ; nÿ 1: �A:11�

From Eqs. (A.6) and (A.11), we have,

aj
n � aj

j �
Xnÿ1

k�j

�k � j�ajÿ1
k : �A:12�

For j � 1 and using the starting value a1
1 � 1,

a1
n �

Xnÿ1

k�0

�k � 1� � �n� 1�!
2�nÿ 1�! : �A:13�
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For j � 2,

a2
n � a2

2 �
Xnÿ1

k�2

�k � 2�a1
k : �A:14�

Using Eqs. (A.13) and (A.10), we have

a2
n �

Xnÿ1

k�1

�k � 2��k � 1�k
2

� �n� 2�!
222!�nÿ 2�! : �A:15�

For j � 3, and using Eqs. (A.10) and (A.15),

a3
n �

Xnÿ1

k�2

�k � 3��k � 2��k � 1�k�k ÿ 1�
222!

� �n� 3�!
233!�nÿ 3�! : �A:16�

By induction,

aj
k �

�k � j�!
2jj!�k ÿ j�! : �A:17�

so that

aj
n � aj

j �
Xnÿ1

k�j

�k � j�ajÿ1
k �

Xnÿ1

k�jÿ1

�k � j�!
2jÿ1�jÿ 1�!�k ÿ j� 1�! �

�n� j�!
2jj!�nÿ j�! : �A:18�
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