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Abstract

In this work we show how to combine in the exact nonre¯ecting boundary conditions (NRBC) ®rst derived by Grote and Keller, the

calculation of the exterior (far-®eld) solution for time-dependent radiation and scattering in an unbounded domain. At each discrete

time step, radial modes computed on a spherical arti®cial boundary which drive the exact NRBC for the near-®eld solution, are

imposed as Cauchy data for the radial wave equation in the far-®eld. Similar to the far-®eld computation scheme used by Wright, the

radial modes in the exterior region are computed using an explicit ®nite di�erence solver. However, instead of using an `in®nite grid',

we truncate the exterior radial grid at the far-®eld point of interest, and for each harmonic, impose the same exact NRBC used for the

near-®eld truncation boundary, here expressed in modal form. Using this approach, two di�erent methods for extrapolating the near-

®eld solution to the far-®eld are possible. In the ®rst, the near-®eld solution is computed using the exact NRBC, then, based on the

solution for the radial modes evaluated on the arti®cial boundary, the exterior solution may be computed as a post-process. In the

second, we show how to compute the far-®eld solution concurrently with the near-®eld solution and the NRBC. Numerical studies

demonstrate that the method is highly accurate and ef®cient for direct time-domain computations of far-®eld solutions. Ó 2000

Elsevier Science S.A. All rights reserved.

1. Introduction

Interest in direct time-domain solutions of the scalar wave equation on unbounded domains follows
from the need to accurately simulate radiation and scattering from pulse-driven structures of arbitrary
shape. Direct time-domain solution allows for the e�cient prediction of short-duration phenomena in-
volving a wide range of frequencies. In addition to accurate solutions on the surface of the scatterer and in
the near-®eld region surrounding the structure, results at some distance away from the radiator/scatterer
are often of interest, such as far-®eld beam patterns and focal points.

In theory, the exact time-dependent solution may be determined from the retarded potential formu-
lation of the well-known Kircho� integral representation [1±3] applied on the surface of the scatterer.
Since the Kircho� formula makes no approximations beyond the homogeneity of the unbounded medium,
the solution is valid whether the ®eld point of interest is in the near-®eld or far-®eld. However, because
the surface integrals must be discretized in both the temporal and spatial domains simultaneously, there is
no e�cient way of implementing Kircho�'s formula numerically for transient wave propagation. Due to
convolution, the time history of all the surface points must be stored, resulting in large memory re-
quirements. As they are nonlocal in both space and time, their numerical implementation can be com-
putationally expensive. In fact, the order of the number of operations required by direct numerical
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implementations of Kircho�'s formula is greater than that required by a simple explicit di�erence scheme
for the wave equation in the exterior domain. In addition, numerical instabilities may result [4]. A sta-
bilized version has recently been developed in [5], although the problem of the storage of time histories
remains.

Finite element/di�erence/volume numerical methods are limited by the number of grid points required to
accurately represent short wavelength components in a transient pulse. Generally, there must be at least
8±12 grid points per wavelength at the smallest wavelength of interest in the simulation to obtain accurate
solutions. A direct approach to accurately compute far-®eld solutions is to exploit the ®nite wave speed c, in
the medium, and extend the computational domain using an in®nite grid so that the boundary cannot
in¯uence the solution in the region of interest for times less than the ®nal time T. Far-®eld solutions ob-
tained by these domain based computational methods would require ®eld calculations in the region between
the source and the distant points of interest. This would require a large mesh/grid of width of order O�cT �
with corresponding increase in computer expense and memory. Even with the use of explicit time-inte-
grators, direct ®eld calculations for points distant from a radiating structure or scatterer are generally
impractical for moderate to large times.

To treat unbounded domains e�ciently using a ®nite di�erence method or ®nite element method, the
exterior ®eld is truncated at an arti®cial boundary surrounding the source of scattering. The impedance of
the exterior ®eld is usually represented on this boundary by either approximate boundary conditions, in-
®nite elements, or absorbing sponge layers, see [6,7] for extensive bibliographies. If accurate boundary
treatments are used, the ®nite computational region (near-®eld) can be reduced so that the arti®cial
boundary is relatively close to the radiator/scatterer, and fewer elements/grids than otherwise would be
possible may be used, resulting in considerable savings in both CPU time and memory. The use of a ®nite
element discretization for the near-®eld allows for a natural coupling to an elastic scatterer in applications
of structural acoustics.

E�cient evaluation of accurate radiation boundary conditions for the time-dependent wave equation on
unbounded spatial domains has long been an obstacle for the development of reliable solvers for time
domain simulations. Ideally, the arti®cial boundary would be placed as close as possible to the scatterer,
and the radiation boundary treatment would be capable of arbitrary accuracy at a cost and memory not
exceeding that of the interior solver. If the form of the boundary treatment is over-simpli®ed, spurious
re¯ected waves can be generated at the arti®cial boundary, which can substantially degrade the accuracy of
the numerical solution. For example, a standard approach is to apply local (di�erential) radiation boundary
operators which annihilate leading terms in the radial expansion for outgoing wave solutions [8]. As the
order of these local radiation boundary conditions increases they become increasingly di�cult to implement
in standard numerical methods due to the occurrence of high-order derivatives on the arti®cial boundary.
Although most approximate boundary conditions perform well at nearly normal incidence to the arti®cial
boundary, their accuracy deteriorates rapidly as grazing incidence is approached, especially as the arti®cial
boundary is moved near the scatterer and for low frequencies [9±11]. In general, scattered and radiated
waves arrive at the arti®cial boundary from several angles and frequencies, resulting in spurious re¯ections
which tend to produce errors, which accumulate with time and prevent accurate medium to long time
simulations. For accurate solutions, the use of approximate radiation boundary conditions requires that the
truncation boundary be placed far away from the structure resulting in a large computational domain for
the near-®eld solution with corresponding increase in computer memory and execution time. To verify the
accuracy of the approximate boundary conditions, a series of computations must be performed, where the
truncation boundary is progressively moved outward with more elements being added for each compu-
tation.

In recent years, a number of new boundary treatments have been developed, which have dramatically
improved the accuracy and e�ciency of time domain simulations. These new developments include fast
spherical harmonic evaluation of exact, local in time boundary conditions on spherical boundaries [12±16],
recursive methods of implementing high-order sequences of space and time localized radiation boundary
conditions [17], rational approximations to the Dirichlet-to-Neumann (DtN) kernal [18], and absorbing
sponge layers with re¯ectionless interfaces [19,20].

The ®rst serious attempt to develop exact nonre¯ecting boundary conditions for the time-dependent
wave equation is the treatment of Ting and Miksis [21,22], which makes use on the Kircho� integral

1552 L.L. Thompson, R. Huan / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1551±1577



formula on an arti®cial boundary C. This method uses a convolution integral requiring the storage of the
solution at a surface inside the arti®cial boundary for the time needed for waves to propagate across the
®nite computational domain. While, this approach improves both cost and storage compared to direct
implementation of the retarded potential form of the Kircho� integral, it does not appear to be competitive
on cost compared to equally accurate treatments discussed below.

In the frequency domain, it is well known that an exact nonre¯ecting boundary condition applied to a
spherical boundary is available through Fourier or Laplace transform methods and the so-called DtN
map [23,24]. The DtN map is a nonlocal (integral) operator obtained from the trace of the normal de-
rivative of the solution on the truncation boundary. For e�cient computation, it is most convenient to
express the DtN map in terms of its eigenvalues and eigenfunctions on a separable boundary. For the
special case of a sphere, the DtN representation simpli®es as the eigenfunctions are spherical harmonics,
which are independent of frequency, and the eigenvalues involve spherical Hankel functions, which may
be represented in terms of simple rational functions. The rationality of the eigenvalues (DtN kernal)
implies that the temporal convolution of the time-dependent counterpart can be localized, making
computation e�cient.

The time localization of the exact DtN boundary condition was ®rst recognized and used in [12,13,25±
28]. In [26], the time-convolution integral is approximated using special recurrence formulae. In [27,28], the
convolution is replaced with high-order time-derivatives, which may be implemented in discontinuous
Galerkin space-time ®nite element methods. In Grote and Keller [12], a local in time representation is
obtained by solution of an auxiliary Cauchy problem for linear ®rst-order systems of ordinary di�erential
equations on the boundary for each spherical harmonic. In [14], the Grote and Keller form of the exact
nonre¯ecting boundary condition (NRBC) is rederived based on the direct application of a result given in
Lamb [29], with improved stability. The NRBC involves ®rst-order derivatives only and does not require
saving past values of the solution. The implementation of this local-in-time representation of the DtN map
using ®nite di�erence methods is discussed in [13]. In [14] we showed how to implement the NRBC in a
standard semidiscrete ®nite element formulation with several alternative implicit and explicit time-inte-
grators. In [15], a modi®ed version of the exact NRBC ®rst derived in [13], is reformulated for imple-
mentation in the ®nite element method. The modi®ed version may be viewed as an extension of the second-
order local boundary operator derived by Bayliss and Turkel [8], and gives improved accuracy when only a
few harmonics are included in the spherical expansion/transformation. When implemented in the ®nite
element method, the NRBC's require inner products of spherical harmonics and standard C0 continuous
basis functions with compact support, appearing in the force vector. As a result, the NRBC may be
computed using standard element assembly procedures, and does not modify the banded/sparse structure of
the ®nite element matrix equations.

For a spherical boundary, the DtN may also be represented as a sequence of ®rst-order di�erential
equations in time with second-order local tangential derivatives of auxiliary functions on the boundary,
[17]. Hagstrom and Hariharan indicated that these conditions can be e�ectively implemented in a ®nite
di�erence scheme using only local tangential operators, but at the cost of introducing a large number of
auxiliary functions at the arti®cial boundary. Direct ®nite element implementation of this sequence in a
standard Galerkin variational equation would result in a nonsymmetric system of equations. In [16] we
showed how the Hagstrom±Hariharan sequence may be derived based on the local boundary operators
of Bayliss and Turkel [8]. For e�cient implementation, the sequence of local boundary operators are
written in terms of spherical harmonics and the recursive sequence is then reformulated as a Cauchy
problem involving systems of ®rst-order ordinary di�erential equations on the arti®cial boundary,
similar to that used in [12,14]. With this reformulation, the resulting time local boundary conditions are
implemented concurrently with standard semi-discrete ®nite element methods for the near-®eld solution
without changing the banded/sparse structure of the ®nite element equations. With the number of
equations in the Cauchy problem equal to the mode number, the reformulation is exact and can be
shown to be equivalent to the NRBC derived in [12,14]. If fewer equations are used, then the boundary
conditions form uniform approximations to the exact condition, allowing for reductions in memory and
computational work, yet maintaining su�cient accuracy [16]. Furthermore, using this approach, accu-
rate radiation boundary conditions may be e�ciently implemented for the 2D unbounded problem on a
circle [30].
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For the scalar wave equation in an unbounded domain, several methods are available for extrapolating
near-®eld solutions to the far-®eld. One approach is to save solutions on surfaces in the bounded com-
putational domain (near-®eld) for later use as time-dependent boundary conditions in far-®eld computa-
tions. Direct application of Kircho�'s formula is often used to extrapolate the solution on a near-®eld
sampling surface to the far-®eld [31,32]. However, this approach su�ers from the problem of convolution of
both the solution and normal derivative time-histories. While widely used in practice, the cost and memory
requirements are high.

Another two-stage approach is given in [33], where the solution on a spherical surface close to the
structure, which is independent of the truncation boundary, is saved for post-processing. Far-®eld solutions
are computed using the previously saved solutions as time-dependent boundary conditions, and then by
solving the external problem using a spherical harmonic expansion in the angular direction and the wave
equation for the radial harmonics. The radial wave equation is discretized using an explicit ®nite di�erence
scheme and an in®nite grid in the radial coordinate extending beyond the far-®eld point of interest such that
re¯ected waves from the boundary do not in¯uence the solution, for times less than the ®nal time of in-
terest. In this approach, a large radial grid of length of order O�cT � is required with corresponding increase
in computational work. For moderate to long time intervals I � �0; T �, the amount of disk storage and data
transfer required for this two-stage process may become excessive.

In this work, we develop a similar approach to the scheme used by Wright [33] and exploit a separable
coordinate system to e�ciently compute far-®eld solutions. Here, we take advantage of the exact NRBC
derived in [12,14] written in terms of harmonics de®ned on the spherical arti®cial boundary to drive the
solution to the exterior problem. We show how to combine in the Grote±Keller scheme the calculation of
the exterior (far-®eld) solution. At each discrete time step, the radial modes computed using a spherical
harmonic transform on the arti®cial boundary, and used for the near-®eld NRBC, are imposed as Cauchy
data for the radial wave equation in the far-®eld. Following the discretization used in Wright [33], the radial
modes in the exterior region are computed using an explicit ®nite di�erence solver and the method of
characteristics. However, instead of using an in®nite grid, we truncate the exterior radial grid at the far-®eld
point of interest, and for each harmonic, impose the same exact NRBC used for the near-®eld truncation
boundary, here expressed in modal form. If the point of interest is su�ciently far from the source of
scattering, then the asymptotic form of the NRBC for large radius may be used a priori to save compu-
tational work. The solution at any point in the far-®eld is then computed from an inverse spherical har-
monic transform of the far-®eld radial modes.

Using this approach, two di�erent methods for extrapolating the near-®eld solution to the far-®eld are
possible. In the ®rst, the near-®eld solution is computed using the exact NRBC, then, based on the the
solution for the radial modes evaluated on the arti®cial boundary, the exterior solution may be computed as
a post-process. Since the total number of harmonics included in the series expansion for the NRBC is
generally less than the number of grid points on the arti®cial boundary, and the spherical harmonic
transform is computed only once, the amount of computation and disk storage is reduced compared to
saving the entire solution on the arti®cial boundary surface. In the second method, we show how to
compute the far-®eld solution concurrently with the near-®eld solution using the exact NRBC de®ned in
[12,14]. In this approach, the radial modes on the arti®cial boundary are only computed as needed, so that
past time-histories do not have to be saved.

In the following, we de®ne the initial boundary value problem (IBVP) for both the near-®eld so-
lution in the bounded domain de®ned by the introduction of an exact nonre¯ecting boundary condition
on a spherical arti®cial boundary, and the far-®eld solution in the remaining unbounded domain ex-
terior to this boundary. We then describe the space-time discretization used for the near- and far-®eld
approximate solutions. To allow for natural coupling to elastic scatterers we use ®nite element dis-
cretization for the near-®eld. For accurate and e�cient far-®eld solutions we use an explicit ®nite
di�erence discretization of the radial wave equation. We then give a complete algorithm for computing
the far-®eld solution concurrently with the near-®eld solution using Newmark's time-integration method
for the near-®eld semidiscrete equations and the NRBC de®ned on the arti®cial boundary. Finally,
numerical studies are performed to assess the accuracy of the far-®eld computation, both for individual
harmonics, and for radiation and scattering problems involving an in®nite number of harmonics in the
solution.
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2. Initial-boundary value problem for the exterior problem

We consider time-dependent scattering/radiation in an in®nite 3D region. The boundary of the scatterer
is denoted S with surrounding external region R. Within R we assume the solution /�x; t� is governed by
the scalar wave equation. The IBVP for the scalar wave equation in the unbounded domain R may be
stated as

1

c2

o2

ot2

�
ÿr2

�
/�x; t� � f �x; t�; x 2 R; t P 0; �1�

/�x; 0� � /0�x�; x 2 R; �2�

_/�x; 0� � _/0�x�; x 2 R; �3�

a
o/
on
� b

o/
ot
� c/ � g�x; t�; x 2S; t P 0; �4�

where f ; g;/0;
_/0 are the prescribed data. The wave speed c and a; b; c are real, and we assume c > 0,

a; bP 0.
In the far-®eld, / satis®es the outgoing wave condition at in®nity [34]

lim
r!1

r
o
or

�
� 1

c
o
ot

�
/ � 0; �5�

where r � kxk is the radial distance from the source.

2.1. Near-®eld solution

For the near-®eld solution, the unbounded region R is truncated by an arti®cial spherical boundary C, of
radius R. We then denote by X � R the ®nite subdomain bounded by C and S, see Fig. 1. The source f and
initial data /0 and _/0 are assumed to be con®ned to the interior of the sphere, i.e.,

f �x; t� � 0; /0�x� � 0; _/0�x� � 0 �6�
for r � kxkP R.

Fig. 1. Illustration of in®nite region R surrounding a scatterer S. The near-®eld bounded domain X � R is surrounded by a spherical

truncation boundary C. Exterior region denoted by D � Rÿ X, with far-®eld radius R0.
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The IBVP for the solution /�x; t� : X� �0; T � 7! R, in the bounded domain X may be stated as

1

c2

o2

ot2

�
ÿr2

�
/�x; t� � f �x; t�; x 2 X; t P 0; �7�

/�x; 0� � /0�x�; x 2 X; �8�

_/�x; 0� � _/0�x�; x 2 X; �9�

a
o/
on
� b

o/
ot
� c/ � g�x; t�; x 2S; t P 0 �10�

supplemented by the exact nonre¯ecting boundary condition (NRBC) on C, ®rst derived by Grote and
Keller [12], and modi®ed with improved scaling in [14]

B1�/�x; t�� � ÿ 1

R

X
n P 1

X
jmj6 n

cn � znm�t�Ynm�h;u� on C; t P 0: �11�

The local di�erential operator,

B1�/� :� o
or

�
� 1

c
o
ot
� 1

r

�
/ �12�

is the ®rst-order condition of Bayliss and Turkel [8], which annihilates the leading radial term in outgoing
solutions to the wave equation. The functions Ynm in the expansion are orthogonal spherical harmonics
normalized on the unit sphere

Ynm�h;u� � �2n� � 1��nÿ jmj�!=4p�n� jmj�!�1=2
eimuP jmjn �cos h� �13�

for 06 h < p and 06u6 2p. The coe�cients involve the inner product of the constant vector cn � fcj
ng,

cj
n � �n�n� 1�j�=2R; j � 1; . . . ; n �14�

and the time-dependent vector znm�t�, which satis®es the ®rst-order system of ordinary di�erential equa-
tions,

d

dt
znm�t� � Anznm�t� � c/nm�R; t�e1 �15�

with initial conditions znm�0� � 0, and driven by the radial modes,

/nm�R; t� �
Z 2p

0

Z p

0

Y �nm�h;u�/�R; h;u; t� sin h dh du: �16�

Here, the star indicates complex conjugate. Alternatively, real spherical harmonics may be used, given by
the real and imaginary parts of (13) with a modi®cation to the normalization constant. In (15), the constant
n� n coe�cient matrix An � fAij

n g, is de®ned as [14]

Aij
n �

c
R

ÿn�n� 1�
2

if i � 1;

�n� i��nÿ i� 1�
2i

if i � j� 1

0 otherwise

8>>>><>>>>: �17�

and e1 � fej
1g is the constant unit vector,

e1 � �1; 0; . . . ; 0�T: �18�
The boundary condition (11) is termed exact since the truncated problem has a unique solution which, for
all t > 0, coincides with the restriction to X of the solution of the original problem posed on the unbounded
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domain R, [13]. In computation, the in®nite sum over n in (11) is truncated at a ®nite value N. We denote
the boundary condition (11) by NR1(N), where N de®nes the number of harmonics included in the trun-
cated series. Use of (11) on a spherical boundary C will exactly represent all harmonics /nm, for n6N . For
n > N , the truncated condition (11) approximates the harmonics with the local operator B1�/� � 0 on C,
with leading error of order, B1�/� � O� 1

R3�. Accuracy of the approximated harmonics n > N , may be im-
proved by increasing the radius of the truncation boundary R, but at the added expense of a larger
computation region X, resulting in increased memory and CPU times.

To improve the approximation to the truncated harmonics n > N , without a�ecting the modes n6N ,
(11) may be replaced with a modi®ed condition [15],

B2�/�x; t�� � 1

R

X
n P 2

X
jmj6 n

~cn � znm�t�Ynm�h;u� on C; t P 0; �19�

where ~cn � f~cj
ng

~cj
n � n�n� 1�j�jÿ 1�=2R2; j � 1; . . . ; n �20�

and

B2�/� :� 2

c
o
ot

B1�/� � 2

R
B1�/� ÿ 1

R2
DC�/� �21�

is the local second-order operator of Bayliss and Turkel [8] with second-order radial derivatives eliminated
in favor of tangential derivatives on the boundary C, through use of the wave equation in spherical co-
ordinates. The tangential derivatives are given by the Laplace±Beltrami operator,

DC�/� �:
1

sin h
o
oh

sin h
o/
oh

� �
� 1

sin2 h

o2/
ou2

: �22�

The vector functions znm�t� appearing in (19) satisfy the same ®rst-order system of ordinary di�erential
Eq. (15), driven by (16). In practice, the sum over n in (19) is truncated at a ®nite value N. For n > N , the
truncated condition (19) reduces to B2�/� � 0 on C. This condition approximates the harmonics n > N , with
leading error of order, B2�/� � O�1=R5�. Therefore, when truncated at a ®nite value N, the NRBC (19)
approximates the modes n > N with greater accuracy than (11).

In [15], we show how the modi®ed boundary condition (19) can be implemented in a symmetric ®nite
element variational formulation by introducing additional auxiliary functions qnm�t� and w�h;u; t�, such
that

B1�/� ÿ 1

2R
DC�w� � 1

2

X1
n�2

Xn

m�ÿn

qnm�t�Ynm on C; t P 0; �23�

R
c

o
ot

�
� 1

�
DC�w� � DC�/�; w�h;u; 0� � 0; �24�

R
c

d

dt

�
� 1

�
qnm�t� � ~cn � znm�t�; qnm�0� � 0: �25�

The three (23)±(25), de®ne an equivalent form of the exact NRBC (19), suitable for implementation in a
symmetric ®nite element formulation.

Alternatively, based on the recursive sequence of local boundary operators given in [17], we show in [16]
that the exact nonre¯ecting boundary conditions (11) and (19) may be reformulated as

B1�/�x; t�� �
X
n P 1

X
jmj6 n

vnm;1�t�Ynm�h;u� on C; t P 0 �26�
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and

B2�/�x; t�� � 2
X
n P 2

X
jmj6 n

vnm;2�t�Ynm�h;u� on C; t P 0; �27�

respectively, with time-dependent vector vnm�t� � fvnm;j�t�g, j � 1; . . . ; l, such that

d

dt
vnm�t� � Cnvnm�t� ÿ an /nm�R; t�e1 �28�

and banded, tridiagonal matrix Cn � �Cn�ij de®ned by,

�Cn�ij �
c
R

ÿi if i � j;
R if i � jÿ 1;
i�iÿ 1� ÿ n�n� 1�� �=4R if i � j� 1;

0 otherwise

8>><>>: �29�

and an � n�n� 1�c=2R2.
With l � n, then vnm;n�1 � 0 and the boundary condition is exact. The auxiliary functions satisfy the

property, vnm;j�1 < vnm;j, and vnm;j � O�Rÿ2jÿ1�, and thus may be implemented as an asymptotic boundary
condition, with fewer equations, l < n, see [16]. In this form, the functions vnm are interpreted as residuals of
the local operators acting on a multi-pole expansion, and may be implemented with seperate variations on
the radial and transverse modal orders of the radiation boundary condition.

2.2. Far-®eld solution

The far-®eld solution is the restriction of /�x; t� for r � kxkP R. With the source f �x; t� and initial data
con®ned to the bounded domain X, then in the exterior region D � Rÿ X, i.e., the unbounded domain
outside C, the scalar ®eld /�x; t� satis®es the homogeneous form of the wave equation, driven by the near-
®eld solution evaluated at r � R

1

c2

o2

ot2

�
ÿr2

�
/�x; t� � 0; x 2 D; t P 0; �30�

/�x; 0� � 0; x 2 D; �31�

_/�x; 0� � 0; x 2 D; �32�

/�x; t� � /�R; h;u; t�; x 2 C; t P 0 �33�

lim
r!1

r
o
or

�
� 1

c
o
ot

�
/ � 0: �34�

In (33), /�R; h;u; t� is the trace of the solution for the interior problem on C.
In order to e�ciently compute the far-®eld solution in D, we transform the problem using spherical

harmonics, and take advantage of the fact that every function on the surface of a sphere (speci®cally, every
function whose square is integrable) can be expanded in a series of spherical harmonics

/�r; h;u; t� �
X
n P 0

X
jmj6 n

/nm�r; t�Ynm�h;u�; �35�

where

DCYnm � ÿn�n� 1�Ynm �36�
and each mode /nm�r; t� satis®es the radial wave equation,

1

c2

o2/nm

ot2
� 1

r2

o
or

r2 o
or

� ��
ÿ n�n� 1�

�
/nm; r P R; t P 0; �37�

1558 L.L. Thompson, R. Huan / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1551±1577



/nm�r; 0� � 0;
o/nm

ot
�r; 0� � 0; r P R: �38�

On the truncation boundary C, at r � R, the near-®eld solution is expanded as,

/�R; h;u; t� �
X
n P 0

X
jmj6 n

/nm�R; t�Ynm�h;u� �39�

and the radial modes are computed from the spherical harmonic transform,

/nm�r; t� � �/; Ynm� :�
Z 2p

0

Z p

0

Y �nm�h;u�/�r; h;u; t� sin h dh du �40�

evaluated at r � R, i.e., /nm�R; t� � �/jR; Ynm�. The spherical harmonic transform de®nes an inner product
involving integration with respect to h and u on a sphere of radius r.

In the far-®eld D, at position r � R0, with R < R0 <1, the radial functions /nm�R0; t� satisfy the modal
form of the exact boundary condition given in (11)

B1�/nm� � ÿ
1

r
dn � wnm�t�; r � R0; �41�

where B1 is the local operator (12) and wnm�t� � fwj
nm�t�g; j � 1; . . . ; n are vector functions of order n,

which satisfy the ®rst-order system of ordinary differential Eq. (15) with R, replaced with R0, i.e.,

d

dt
wnm�t� � Bnwnm�t� � c/nm�R0; t�e1;

wnm�0� � 0

�42�

Here Bn � fBij
ng is the constant n� n matrix,

Bij
n �

c
R0

ÿn�n� 1�
2

if i � 1;

�n� i��nÿ i� 1�
2i

if i � j� 1;

0 otherwise:

8>>>>><>>>>>:
�43�

The constant n-component vector dn � fdj
ng is de®ned as,

dj
n � n�n� 1�j=2R0; j � 1; . . . ; n: �44�

Using (35) and (41), the extension of the near-®eld solution on C, to the far-®eld D, reduces to solving the
modes u�r; t� � r/nm�r; t�, for n P 0, and jmj6 n in the region R6 r6R0. Each mode n � 0; . . . ;N , satis®es
the following modi®ed radial wave equation with homogeneous initial data, and driven by the near-®eld
solution evaluated at r � R

1

c2

o2

ot2

�
ÿ o2

or2
� n�n� 1�

r2

�
u�r; t� � 0; R6 r6R0; t P 0; �45�

u�r; 0� � 0; R6 r6R0; �46�

_u�r; 0� � 0; R6 r6R0; �47�

u�R; t� � R�/jR; Ynm�; t P 0; �48�

o
or

�
� 1

c
o
ot

�
u�r; t� � ÿdn � wnm�t�; r � R0; t P 0; �49�
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and wnm satis®es (42). In practice, we restrict 06 n6N , and the solution at any point �r; h;u�, for
R < r6R0, is computed from the spherical harmonic evaluation (35) truncated at the ®nite value N. We
denote the application of the NRBC (49), for each mode n, as NR1. This boundary condition does not
require saving past values of u, which would be required in a Kirchoff-type time convolution. Instead, the
boundary condition involves the solution of the functions wnm�t� in (42), which can be computed ef®ciently
with standard time-integration. The memory needed to store these functions is approximately N 3 scalar
values. The extra work in applying the boundary condition results from computing the inner products in
the spherical harmonic transform (48) and the evaluation (35). In computation, we have found N 6 25 is
usually suf®cient for accurate solutions. If a large number of harmonics N are needed, the work required
could be reduced by an order of magnitude using recently developed fast spherical transform algorithms,
e.g., [35,36], to compute the inner products. For mode n � 0, the exact nonre¯ecting boundary condition
(49) simpli®es to the local B1 operator, which requires no storage and little extra work. Furthermore, for
modes n � 1; 2; . . . ; the radiation condition (49) reduces to the local B1 boundary operator in the asymp-
totic limit R0 !1. To see this, let F denote the Fourier transform with respect to frequency x, de®ned as
the dual of time t, and de®ne Fÿ1 as its inverse

/̂nm�r;x� �F/nm�r; t� :� 1������
2p
p

Z 1

ÿ1
/nm�r; t�eixt dt: �50�

In the frequency domain, time-harmonic solutions to the radial wave equation take the form,

/̂nm�r;x� �
hn�kr�

hn�kR0� /̂nm�R0;x�; �51�

where k � x=c is the wavenumber and hn�kr� are spherical Hankel functions of the ®rst kind [37]. Com-
puting the trace of the normal derivative of the solution at r � R0, de®nes the Dirichlet-to-Neumann map
for each mode,

o/̂nm

or
�R0;x� � kh0n�kR0�

hn�kR0� /̂nm�R0;x�: �52�

In the asymptotic limit kR0 � n2 � 1, the DtN map reduces to,

kh0n�kR0�
hn�kR0� � ik ÿ 1

R0

�53�

Taking the inverse Fourier transform of the asymptotic expansion for the DtN map gives,

o/nm

or
�R0; t� �Fÿ1 ik

�
ÿ 1

R0

�
/̂nm�R0;x�; �54�

which de®nes the local B1 operator,

B1�/nm�r; t�� :�
o
or

�
� 1

c
o
ot
� 1

r

�
/nm�r; t� � 0; r � R0: �55�

Comparing with (49), in the asymptotic limit, dn � wnm�t� � 0, and for a ®nite frequency range, the radiation
boundary condition for each mode u � r/nm tends to the local B1 condition,

o
or

�
� 1

c
o
ot

�
u�r; t� � 0; r!1: �56�

Thus if the far-®eld point is su�ciently distant from the source of radiation, such that kR0 � n2 � 1, the
exact boundary condition for modes n� ����������������

kR0 ÿ 1
p

, may be simpli®ed a-priori to the local B1 condition.
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3. Numerical formulation

The near-®eld problem can be solved using any ®nite domain computation method, e.g., ®nite element or
®nite di�erence. Grote and Keller [13] discuss implementation of (11) and (19) using a ®nite di�erence
method. In [14,15], we show how to implement (11) and (19), in a standard semidiscrete ®nite element
formulation with several alternative implicit and explicit time-integrators. The use of a ®nite element dis-
cretization for the near-®eld allows for a natural coupling to an elastic scatterer in applications of structural
acoustics.

For the far-®eld problem, discretization of the radial wave equation (37), or equivalently (45), may be
performed either with the ®nite di�erence method or ®nite element method. For accurate and e�cient
solutions, it is su�cient to use an explicit ®nite di�erence method. Adaptive ®nite element discretization
may be used together with a posteriori error estimation to track transient wave pulses along characteristics,
but this is not pursued here.

3.1. Space-time discretization for the near-®eld

The ®nite element discretization for the near-®eld is obtained by approximating the variational equation
associated with (7)±(9), (9)±(11). The variational equation within X is obtained by multiplying (7) with a
weighting function and using the divergence theorem [14]. The domain is discretized into a ®nite number of
subdomains (elements), associated with a ®nite number of nodes. Using a standard Galerkin ®nite element
approximation /�x; t� � N�x�/�t�, where N�x� is a vector array of C° basis functions with compact support
associated with each node, results in standard semidiscrete equations for the global solution vector /�t�

M �/�t� � C _/�t� � K/�t� � F�t�; t > 0; �57�

/�0� � /0;
_/�0� � _/0: �58�

In the above, M , C , and K are standard banded/sparse arrays associated with the discretization of the wave
equation and the local B1 operator; and F�t� � FS � FC is the discrete force vector composed of a standard
load vector FS and a part associated with the auxiliary functions appearing in the NRBC. For the NRBC
de®ned in (11), the force vector is,

FC�t� � ÿ 1

R

XN

n�1

Xn

m�ÿn

cn � znm�t�f nm; �59�

where,

f nm :�
Z

C
NTYnm�h;u� dC: �60�

In (59), the functions znm � zj
nm

� 	
are solutions to the system of ®rst-order Eq. (15), driven by,

/nm�R; t� � f �Tnm � /C�t�; �61�
where /C�t� � /I�t�f g, I � 1; 2; . . . ;NC, is a vector of nodal solutions on the arti®cial boundary C with NC

nodes. The nonre¯ecting boundary condition only requires inner products of spherical harmonics and ®nite
element basis functions with compact support within the force vector f nm. As a result, the nonre¯ecting
boundary condition is easy to implement using standard force vector assembly over each boundary element
on C, and does not disturb the symmetric, and banded/sparse structure of the ®nite element matrix
equations.

As discussed in [14], one time-integration approach is to apply the central di�erence method directly to
(57). This method requires only that the forcing term Fk � F�tk� at time step tk � kDt, be available.
Therefore, to update the solution dk�1 � /�tk�1�, only the evaluation of zk

nm � znm�tk� is needed. In this case,
zk�1

nm may be computed using either the explicit second-order Adams±Bashforth method or the implicit
second-order Adams±Moulton method (trapezoidal rule).
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An alternative approach is to apply the Newmark family of algorithms (and variations such as HHT-a)
in predictor/corrector form to the semidiscrete equations (57) [14]:

~dk�1 � dk � Dtvk � Dt2

2
�1ÿ 2b�ak; �62�

~vk�1 � vk � �1ÿ c�Dtak; �63�

�M � cDtC � bDt2K�ak�1 � Fk�1 ÿ C~vk�1 ÿ K~dk�1; �64�

dk�1 � ~dk�1 � bDt2ak�1; �65�

vk�1 � ~vk�1 � cDtak�1: �66�
In the above, dk � /�tk�; vk � _/�tk�, and ak � �/�tk�. Any of the members of the Newmark family may be
used, including the second-order accurate c � 1=2, and unconditionally stable trapezoidal rule (b � 1=4),
and conditionally stable central di�erence method (b � 0). When solving using the explicit central di�erence
method, Eq. (64) may be decoupled using standard diagonal mass and damping matrices.

The solution of (64) requires that the forcing term Fk�1, and therefore zk�1
nm be available. The value zk�1

nm ,
may be computed concurrently using an explicit time-integrator applied to (15); e.g., the explicit second-
order accurate Adams±Bashforth algorithm

zk�1
nm � zk

nm �
Dt
2

An�3zk
nm

� ÿ zkÿ1
nm � � ce1�3/nm�R; tk� ÿ /nm�R; tkÿ1��

�
: �67�

3.2. Space-time discretization for the far-®eld

Let uk
j denote the approximation of u�rj; tk� where rj � R� jDr, and tk � kDt. Following the discreti-

zation used in [33], for each mode n, the radial wave Eq. (45) is approximated using the central difference
operator for both u;tt and u;rr and with u, averaged about uk

j

�uk�1
j ÿ 2uk

j � ukÿ1
j �

�cDt�2 � �u
k
j�1 ÿ 2uk

j � uk
jÿ1�

�Dr�2 ÿ n�n� 1� �u
k
j�1 � 2uk

j � uk
jÿ1�

�2rj�2
: �68�

Using the method of characteristics, we set Dr � cDt, so that (68) specializes to the explicit di�erence
scheme,

uk�1
j � uk

j�1 � uk
jÿ1 ÿ ukÿ1

j ÿ n�n� 1� Dr
2rj

� �2

�uk
j�1 � 2uk

j � uk
jÿ1�: �69�

For n � 0, the radial equation reduces to the 1D wave equation, and with Dr � cDt, the discretization is
exact. For n P 1, the discretization is second-order accurate for integrating forward in time and the ap-
proximation error grows as the mode number n increases.

The discrete energy associated with this discretization, for each mode, is [38]

Ek=Dr � 1

2

X
j

uk�1
j ÿ uk

j

cDt

 !2

� 1

2

X
j

uk�1
j�1 ÿ uk�1

j

Dr

 !
uk

j�1 ÿ uk
j

Dr

 !
� 1

2
n�n� 1�

�
X

j

uk�1
j�1 � uk�1

j

2rj

 !
uk

j�1 � uk
j

2rj

 !
: �70�

If (68) is multiplied by 1=2�uk�1
j ÿ ukÿ1

j �, the identity Ek � Ekÿ1 results. Thus Ek � E0, for k � 0; 1; 2; . . ., and
the scheme appears to be stable. Other averaging schemes for uk

j=rj are possible; however, our numerical
studies indicate that the averaging used in (68), is stable, and more accurate compared to the competing
schemes.
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To ensure outgoing waves, an in®nite grid in the radial coordinate may be used as suggested in [33], such
that re¯ected waves from the boundary do not in¯uence the solution at the point of interest R < r6R0, for
times less than the ®nal time. In this approach, a large radial grid of length of order O�cT �, where c is the
wave speed and T is the ®nal time is required. For moderate to large times, this approach results in large
computer expense.

In this work, we truncate the exterior grid at the ®nite radius, rl � R� lDr � R0, and impose the
nonre¯ecting boundary condition (49). Using a simple di�erence formula for u;r and u;t centered at j � l,
and setting Dr � cDt gives,

uk
l�1 � ukÿ1

l ÿ uk�1
l � uk

lÿ1 ÿ 2Dr�dn � wk
nm�: �71�

Substituting (71) into (69) evaluated at j � l, and after rearranging, we obtain,

uk�1
l � uk

lÿ1 ÿ
n�n� 1�Dr2

8R2
0 ÿ n�n� 1�Dr2

uk
lÿ1

ÿ � 2uk
l � ukÿ1

l

�ÿ 2Dr 1

�
ÿ 4R2

0

8R2
0 ÿ n�n� 1�Dr2

�
dn � wk

nm: �72�

For n � 0, the boundary condition reduces to B1�u� � 0, and the inner product d0 � wk
om is set to zero. We

note a similar discretization may be used for the NRBC in the form (26), where dn � wk
nm is replaced by

ÿR0 vk
nm;1, where vk

nm;1 is a solution to (28) at R0 and time step tk.
To update the solution on the boundary for modes n P 1, the values wnm�tk� � wk

nm are needed. To
numerically solve (42), the second-order accurate, and the unconditionally stable, Adams±Moulton method
(trapezoidal rule) may be used

I

�
ÿ Dr

2c
Bn

�
wk�1

nm � BmI
�

� Dr
2c

Bn

�
wk

nm �
Dr
2

/nm�R0; tk�1�� � /nm�R0; tk��e1: �73�

The computational work required in solving (73) is negligible, since the matrices Bn, are relatively small
(usually N 6 25), and remain constant. For far-®eld points su�ciently distant from the source of radiation,
such that kR0 � n2 � 1, the exact boundary condition may be simpli®ed a-priori to the B1 condition, i.e.,
d0 � wk

0m may be set to zero in (72).

3.3. Far-®eld computation

One approach for computing the far-®eld solution is to save the near-®eld solution on the arti®cial
boundary C for later use. In this case, the computation would be performed in two stages. In the ®rst, the
near-®eld solution is computed, then, based on the solution on the arti®cial boundary, the far-®eld in the
exterior region D may be computed as a post-process. A general approach would be to save the nodal
solution /C�tk� on the C to disk at each time-step t1; t2; . . . ; T , then recompute the spherical harmonics
/nm�R; tk� � f �Tnm � /C�tk� to drive the far-®eld solution. Alternatively, since the total number of harmonics
NT � N�N � 1� included in the series expansion is generally less than the number of nodes on the arti®cial
boundary, i.e., NT � NC, the amount of computation and disk storage may be reduced by saving the modes
/nm�R; tk�; k � 1; 2; . . . ;K, already computed from the near-®eld solution and the NRBC, instead of the
entire nodal solution /C�t� on the arti®cial boundary surface.

However, even with this reduction, for moderate to long time intervals I � �0; T �, the amount of disk
storage and data transfer required for this two-stage process may become excessive. To address this
problem, we show how to solve the far-®eld solution concurrently with the near-®eld solution and the
NRBC. In this approach the modes /nm�R; t� are only computed as needed and stored in memory at time
step tk and the previous step tkÿ1. The complete algorithm for computing the far-®eld solution concurrently
with the near-®eld solution using Newmark's method and the NRBC de®ned in (11) is summarized below; a
similar procedure is used for the direct application of the central difference method to (57). The imple-
mentation of (19) for the near-®eld, in conjunction with the far-®eld computation follows the same pro-
cedures described herein, with little modi®cation:
1. (Initialize near-®eld data): Set z0

nm � zÿ1
nm � 0; d0 � /�0� and v0 � _/�0�, and calculate a0 � �/�0� from

Ma0 � F0 ÿ BmCv0 ÿ Kd0, dÿ1 � d0 ÿ Dtv0 � �Dt2�=2a0.
2. (Initialize far-®eld data): For each mode n;m, set w0

nm � 0, and u0
j � 0, for all points rj; j � 1; . . . ; l.
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3. (Compute the spherical harmonic transform): Calculate /nm�R; tk� and /nm�R; tkÿ1�, from (61), and set
uk

0 � u�R; tk� � R/nm�R; tk�.
4. (Update near-®eld solution): Compute zk�1

nm using (67); predict ~dk�1 and ~vk�1 from (62) and (63); Calculate
ak�1 from (64); update dk�1 and vk�1 using (65) and (66).

5. (Update far-®eld data): Compute wk
nm using (73); for each mode, update uk�1

j using (69) for
j � 1; . . . ; lÿ 1 and (72) for j � l.

6. (Compute the spherical harmonic expansion): Evaluate the far-®eld solution for speci®ed points �rj; h;u�,
in the range R < rj6R0, using (35).

7. Increment the time step from k to k � 1, Go back to step 3.

4. Numerical studies

4.1. Far-®eld calculation for individual modes

In this ®rst study, numerical examples are performed to assess the accuracy of the ®nite di�erence ap-
proximation (69) in integration of the radial wave equation for individual modes /nm�r; t�. The accuracy of
the approximate operator B1 and the nonre¯ecting boundary condition NR1 applied to the far-®eld
boundary are also compared for each mode. Both time-harmonic and transient radiation are studied.

4.1.1. Time-harmonic radiation
Consider time-harmonic radiation for radial modes u�r; t� � r/nm�r; t�, such that at R � 1:25,

/nm�R; t� � sin xt; t P 0: �74�
The exact steady-state solution to the radial wave equation for this input is,

/nm�r; t� � ÿImag
hn�kr�
hn�kR� e

ÿixt

� �
; r P R; t P 0: �75�

In the above, hn are spherical Hankel functions of the ®rst kind and k � x=c is the wave number. For n � 0,
h0�kr� is a simple exponential function, so that

/0m�r; t� � Imag
i

hn�kR� e
i�krÿxt�

� �
1

kr
: �76�

For this mode, B1�/0m� � 0, and the exact nonre¯ecting boundary condition NR1 reduces to the local B1

operator. In addition, for n � 0, the wave equation reduces to the 1D wave equation, and the time-inte-
gration scheme given in (69) with Dr � cDt is exact.

Using the large-argument asymptotic expansion for hn�kr�, in the limit kr � n2 � 1, we have,

/1nm�r; t� � ÿImag
1

hn�kR� e
i�krÿxtÿp

2
�n�1��

� �
1

kr
: �77�

In the asymptotic limit, the solution (77) satis®es B1�/1nm� � 0.
For numerical solutions, we set the frequency x � 4p, wave speed c � 1, and time step Dt � 0:005. Fig. 2

shows time-dependent solutions using NR1, and B1 at the far-®eld truncation point at R0=R � 2, compared
to the exact steady-state solution. Results are shown for three increasingly higher modes: n � 0; 10; 20. For
n � 0, the ®nite di�erence approximation (69) and boundary conditions are exact. With this frequency and
radial observation point, the normalized wave number is kr � 10, and solutions using B1 are accurate only
for n < 3. Numerical results for modes n � 10 and n � 20 using B1, exhibit signi®cant error in both am-
plitude and phase at steady state, while the NR1 solution matches the exact solution very well for both
n � 10 and n � 20.

Fig. 3 compares the relative error in steady-state amplitude vs mode n for results obtained using NR1
positioned at R0 � 2:5, and B1 positioned at R0 � 2:5; 5 and 15. Results are also given for an ``in®nite mesh''
solution, denoted (IM), obtained by extending the radial discretization to a distant point such that outgoing
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waves with speed c � 1 do not reach the far-®eld truncation boundary in the time-interval of interest. The
error in the IM solution is caused purely by the ®nite difference approximation (69) of the radial wave
equation. As expected, discretization error for the IM solution generally increases with n. The error for
n6 20 are all less than 0.4%, which indicate the high accuracy of the ®nite difference approximation (69) for
the current time step. The error in the B1 solution decreases, as expected, when the truncation boundary is
moved from R0 � 2:5 to 15. With the calculation truncated at R0 � 2:5, the NR1 gives very accurate results
with error only slightly higher than the IM solution.

Fig. 2. Time-dependent solutions for modes n � 0; 10 and 20, computed using NR1 and B1 compared to the exact steady-state solution

at kR0 � 10. Solid lines denote exact steady-state solution; Dashed lines denote NR1; Dotted lines denote B1.
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4.1.2. Transient radiation
Consider a pulse at R � 1:25 described by

/nm�R; t� � teÿbt; t P 0; �78�
where b � 4 controls the pulse width. The exact solution for the ®rst two radial modes are obtained by
Laplace transform, with the result

/0m�r; t� � �R=r�seÿbsH�s�; �79�

/1m�r; t� � �R=r�2 eÿbs
�n ÿ eÿ

c
Rs
��r ÿ R�=�cÿ bR�2 � seÿbs�br ÿ c�=�bRÿ c�

o
H�s�: �80�

In the above, H��� is the Heaviside step function and s � t ÿ �r ÿ R�=c.
Fig. 4 compares the transient solutions for modes n � 0 and n � 1 obtained using NR1 and B1, with

truncation boundary set at R0 � 2:5. As discussed earlier, for mode n � 0 NR1 coincides with B1 which is
exact for the mode n � 0. The solutions obtained using NR1 and B1 are observed to match the exact so-
lution perfectly for n � 0. For n � 1, the B1 solution captures the early time solution accurately yet exhibits
signi®cant error during the tail end of the pulse. In contrast, the NR1 solution cannot be distinguished from
the exact solution.

4.2. Transient radiation from piston on a sphere

We next consider axisymmetric radiation from a circular piston on a sphere with radius a � 0:5. The
piston is represented by,

/�a; h; t� � f �h� sin xt H�t�; �81�
where H�t� is the unit-step (Heaviside) function and,

f �h� �
1; 0°6 h6 15°
cos hÿ cos 30°

cos 15°ÿ cos 30°
; 15° < h6 30°

0 otherwise:

8>><>>: �82�

Fig. 3. Relative amplitude error vs mode n at r � 2:5. Results are computed using B1 with truncation boundary at R0 � 2:5; 5, and 15;

NR1 at R0 � 2:5; and IM.
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This problem is chosen since an exact solution is available and it is su�cient to study the accuracy of far-
®eld computations for a problem involving an in®nite number of spherical harmonics. The problem is
challenging in that the waves radiated at the piston pole h � 0° are attenuated by a geometric spreading loss
as they travel along longitudes down to the south pole h � 180°. In the region opposite the piston (shadow
zone), the amplitude of the waves are signi®cantly lower than near the piston, [39]. The exact transient
solution to this problem contains a term decreasing rapidly with time, which can be explained due to the
presence of ``creeping waves'', i.e., the radiation from the piston can encircle the sphere a number of times,
so that the transient solution in principle never reaches a steady-state, although in practice the exponen-
tially decreasing term quickly becomes negligible as time increases.

The problem is axisymmetric and independent of u. The exact steady-state solution to this problem is
obtained by expanding the function f �h� as a series of Legendre functions Pn, and evaluating the radiated
solution at r � a, with the result,

/�r; h; t� � ÿImag eÿixt
X1
n�0

An
hn�kr�
hn�ka� Pn�cos h�

( )
�83�

with coe�cients,

A0 � 1

4
�2ÿ cos 15°ÿ cos 30°� �84�

and for n � 1; 2; . . . ;

An � 1

2
Pnÿ1�cos 15°�� ÿ Pn�1�cos 15°�� � 2n� 1

2

Z cos 15°

cos 30°

uÿ cos 30°
cos 15°ÿ cos 30°

Pn�u� du;

where u � cos h. In the above, the integral is evaluated exactly using n=2� 1 Gaussian quadrature points.
Since the problem is independent of u, it is su�cient to compute the near-®eld solution in the domain X

de®ned by the �r; h� plane for a6 r6R, and 06 h6 p. The near-®eld is discretized with a uniform mesh of
standard four-node bilinear axisymmetric ®nite elements. The mesh is de®ned with 20� 240 elements and a
near-®eld truncation boundary set at R � 0:75, (20 evenly spaced elements in 0:56 r6 0:75, and 240 evenly
spaced elements in 06 h6 p), see Fig. 5.

For all calculations, the far-®eld solution is computed concurrently with the near-®eld solution using the
nonre¯ecting boundary condition NR1(N) with N � 20 applied on C, and Dr � cDt. The computation is
driven from rest to steady-state with a normalized frequency xa=c � p and a time step Dt � 0:005.

Fig. 4. Transient solutions at r � 2:5 obtained using NR1, B1 and analytic solution. (Left) n � 0 . (Right) n � 1.
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Fig. 5 shows contours of the near-®eld solution using NR1 (20). The far-®eld solution at observation
points de®ned with coordinates r=a � 2 and h � 0; 90° and 180° are shown in Fig. 6. Time-histories are
compared using the local B1 operator positioned at the far-®eld points R̂0 � R0=a � 2; 4; 12, and NR1 at
R̂0 � 2. Fig. 6 also shows the instantaneous error on a sphere with radius r0=a � 2, during the steady-state
time interval 15 < t < 20. The instantaneous error e�t� � /h�t� ÿ /�t�, measured in L2 norm is de®ned as,

E�t� �
Z p

0

/h�r0; h; t�
��

ÿ /�r0; h; t�
�2

sin h dh

�1=2

; �85�

where /h is the numerical solution with nonre¯ecting boundary and / is the exact steady-state solution.
Directly in front of the piston at h � 0, the far-®eld solution using the local B1 operator shows a slight

phase and amplitude error when placed at R̂0 � 2. Accuracy is improved by moving the far-®eld boundary
to positions R̂0 � 4; 12. At these more distant points, the solution can barely be distinguished from the exact
steady-state solution. As the observation point is moved around the sphere to h � p=2, solutions using B1

positioned at both R̂0 � 2 and R̂0 � 4, show large phase and amplitude errors. In this case, the local B1

operator must be moved to the distant point R̂0 � 12 to obtain accurate solutions. In the di�cult shadow
zone on the backside of the piston, the solution using B1 exhibits spurious re¯ections, even when the far-
®eld boundary is moved to R̂0 � 12. The solution obtained using NR1 matches the exact solution at all
observation points as expected. The error E�t� using the nonre¯ecting boundary condition NR1 is reduced
by an order of magnitude compared to the local B1 boundary condition applied at points R̂06 4. Only by
moving the B1 operator to far-®eld points R̂0 > 12 does the accuracy approach that of NR1.

4.3. Transient scattering of a plane wave by a sphere

Another common application involving an in®nite number of harmonics is the problem of scattering of
an incident wave. For a model problem with an exact solution, we consider a sphere of radius a � 1 on
which we assume a homogeneous Dirichlet boundary condition,

/ � 0 on kxk � a: �86�

Fig. 5. (Top) Near-®eld solution contours at t � 14, using NR1 (20) for radiating piston on sphere problem driven at ka � p. (Bottom)

Finite element discretization. Mesh consists of 20� 240 evenly spaced four-node axisymmetric elements over 0:56 r6 0:75, and

06 h6p.
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Let the incident wave be a traveling plane wave along the x-axis at speed c, i.e.,

/i �
sin�k�xÿ x0� ÿ xt�; t P xÿx0

c ;
0; t < xÿx0

c :

�
�87�

Here the wave is incident from the h � p direction, and x0 is the location of the plane wave at time t � 0.
The total ®eld /�x; t� is composed of a superposition of the incident wave /i�x; t� and a scattered wave
/s�x; t�, i.e., / � /i � /s. With the Dirichlet boundary condition (86), the scattered ®eld is a solution to the
wave equation subject to the boundary condition,

/s � ÿ/i � ÿ sin�k�xÿ x0� ÿ xt�H t
�
ÿ xÿ x0

c

�
; on kxk � a: �88�

The exact steady-state solution is obtained by setting x � r cos h and expanding the exponential form of
the incident wave in spherical harmonics by means of an addition theorem [39]. For /i given in (87), the
steady-state analytical solution is,

/s � Imag eÿi�kx0�xt�f �r; h�� 	
; �89�

where

f �r; h� �
X1
n�0

in�2n� 1� jn�ka�
hn�ka� hn�kr�Pn�cos h�: �90�

In the above, jn and hn are spherical Bessel's and Hankel's functions of the ®rst kind, respectively.

Fig. 6. Time-histories at observation points at R0=a � 2, and (top-left) h � 0, (top-right) h � p=2, (bottom-left) h � p. (Bottom-right)

Instantaneous error E�t� at steady-state. Results compared for local operator B1�R0=a�, at R0=a � 2; 4; 6; 12 and NR1 at R0=a � 2.
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The near-®eld is discretized with a uniform mesh of standard four-node bilinear axisymmetric ®nite
elements (20 evenly spaced elements in 1:06 r6 1:5, and 240 evenly spaced elements in 06 h6 p). The
computation is driven from rest to steady-state with a normalized frequency xa=c � p and a time step
Dt � 0:01. The far-®eld solution is computed concurrently with the near-®eld solution using the nonre-
¯ecting boundary condition NR1 (20) on C, and Dr � cDt.

Contours for the near-®eld solution computed using NR1(20) are shown in Fig. 7. Fig. 8 shows time-
histories of near-®eld scattering on the arti®cial boundary C, at h � 0, and the backscattered point h � p.
Results are compared using the local operators B1, B2 and NR1 �20� applied to the arti®cial boundary, with
the exact solution. At the backscattered point, the solutions using B2 and NR1 �20� can barely be distin-
guished with the exact solution after steady-state has been reached. Results for B1 show small errors in
amplitude and phase. However, on the other side of the sphere, at point h � 0, both operators B1 and B2

exhibit signi®cant spurious re¯ection. As expected, the solution using NR1 (20) matched the exact solution
very well.

The far-®eld solution at the observation point r=a � 2 and h � 0 is shown in Fig. 9. The far-®eld solution
is computed based on the near-®eld solution obtained from NR1 (20) at R=a � 1:5. Far-®eld results are
compared using the local B1 operator positioned at positions R̂0 � 2; 4; 12, and NR1 at R̂0 � 2. At h � 0,
the far-®eld solution using the local B1 operator positioned at both R̂0 � 2 and R̂0 � 4, show signi®cant
phase and amplitude errors. As the far-®eld boundary is moved to the distant position R̂0 � 12 the solution
can barely be distinguished from the exact steady-state solution. The solution obtained using NR1 matches
the exact solution as expected. The L2 error E�t� using NR1 is reduced by an order of magnitude compared
to B1 applied at points R̂06 4. The accuracy of B1 approaches that of NR1 when R̂0 > 12.

4.4. Transient radiation from a piston in in®nite planar ba�e

To study the accuracy of the far-®eld solution for a problem with an exact transient solution, we consider
a circular piston of radius a � 1 embedded in a rigid in®nite planar ba�e moving with a uniform velocity in
the normal direction. The velocity of the piston is speci®ed to be a ®nite-duration modi®ed Ricker [40] pulse

Fig. 7. ((Top) Near-®eld solution contours at t � 28, using NR1 (20) for scattering from a sphere with wave incident from the (h � p)

direction, and normalized frequency xa=c � p. (Bottom) Finite element discretization consists of 20� 240 evenly spaced four-node

axisymmetric elements over 1:06 r6 1:5, and 06 h6p.
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v�t� �
�0:25u2 ÿ 0:5�eÿ0:25u2 ÿ 13eÿ13:5

0:5� 13eÿ13:5
when 06 t6 6

���
6
p

xr
;

0 otherwise:

8><>: �91�

In the above, u � xrt ÿ 3
���
6
p

where xr is the dominant frequency of the excitation. Fig. 10 shows the
modi®ed Ricker pulse and the amplitude of its Fourier transform. The Ricker pulse has the property that its
Fourier transform has a single well-de®ned central frequency xr and has non-zero values only over a
narrow frequency band. With this wavelet, we are able to excite a well-de®ned range of frequencies.

Let / denote acoustic pressure, then the sound pressure ®eld is determined by the wave equation and by
the boundary conditions,

o/
oz
�

ÿq0 _v�t� on piston P � f06 r6 a; h � p=2g;

0 on baffle B � fr > a; h � p=2g;

8<: �92�

Fig. 9. Far-®eld scattering at xa=c � p. (Left) Time-history at far-®eld observation point r=a � 2. (Right) Instantaneous error E�t� at

steady-state. Results compared for operator B1�R0=a� positioned at R0=a � 2; 4; 12, and NR1 at R0=a � 2.

Fig. 8. Time-histories of near-®eld scattering on the arti®cial boundary C, at (left) h � 0, and (right) backscattered point h � p. Results

compared for local operators B1, B2 and NR1 �N� with N � 20.
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Fig. 10. Modi®ed Ricker pulse and its Fourier transform. (Left) Pulse vs normalized time xrt. (Right) The amplitude spectrum vs

frequency x=xr.

Fig. 11. Solution contours of NR1 (25) for transient radiation from circular piston in in®nite planar ba�e. (top-left): t � 0:6 s; (top-

right): t � 1:2 s; (middle-left): t � 1:8 s; (middle-right): t � 2:4 s; (bottom-left): t � 3:0 s; (bottom-right): t � 3:6 s.
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where z is the coordinate normal to the piston and baf¯e, v�t� is the velocity of the piston, and a super-
imposed dot denotes a time derivative.

The solution /�r; h; t� is rotationally symmetric about the z-axis normal to the center of the piston. Since
the problem is axisymmetric, it is convenient to introduce cylindrical coordinates �q; z�, where q �

��������������
x2 � y2

p
is the polar radius (distance off the axis) of the circular piston. The analytic solution to this problem is
obtained by means of an impulse response function h�q; z; t� which is derived by Stepanishen [41] for a
circular piston

/�q; z; t� � ÿq0

o
ot

v�t� � h�q; z; t�� �; �93�

where q0 is the density of the medium, and the asterisk is used to denote convolution in time. For ob-
servation points on the z-axis, the time convolution may be evaluated in closed-form. Points off-axis are
integrated numerically. For this input, the solution on the z-axis consists of two Ricker pulses of opposite
amplitude. The time delay of the initial pulse corresponds to the propagation time from the center of the
piston to the spatial point, and the time delay of the second pulse corresponds to the propagation time from
the edge of the piston to the spatial point.

For this semi-in®nite problem, the truncation boundary C, for the near-®eld solution, is a semi-sphere in
3D. For a half-plane modeled as a rigid ba�e, the sum on the indices in the spherical harmonic expansion

Fig. 12. Near-®eld solution at truncation boundary C for radiation from circular piston in in®nite ba�e. Time-histories at (top-left)

h � 0, (top-right) h � 30°, (bottom-left) h � 60°, (bottom-right) h � 90°. Solid lines denote analytic solution; dashed lines denote NR1

(25); Dash±dotted lines denote B2; Dotted lines denote B1.
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Fig. 13. Far-®eld solution for radiation from piston in in®nite ba�e. Time-histories at (left): r � 1:75, and (right): r � 8, and angles

(top) h � 0°, (middle) h � 30°, (bottom) h � 90°. Solid lines denote analytic solution; dashed lines denote NR1; dotted lines denote B1.
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appearing in the NRBC are restricted to n� m � even, and the transform is modi®ed by a factor of two,
with integration over the semi-sphere, i.e.,

/nm�r; t� � 2

Z 2p

0

Z p=2

0

Y �nm�h;u�/�r; h;u; t� sin h dh du; n� m � even: �94�

In this study, the frequency xr � 3p is used with a time step Dt � 0:003. The truncation boundary C is
positioned close to the radius of the piston at R=a � 1:25. The ®nite element mesh consists of 150 evenly
spaced elements along the z-axis from 06 z6 1:25, and 90 evenly spaced elements from 0 < h6p=2.

Fig. 11 shows contours of the near-®eld solution using NR1 (25) on C at several time steps. Fig. 12 shows
the near-®eld results at four discrete points on the truncation boundary R � 1:25. The results obtained
using the local boundary conditions B1, B2 and non-re¯ecting boundary condition NR1 (25) are compared
to the analytic solution. The NR1 (25) solution is observed to match the analytic solution at all points; the
B2 solution exhibits signi®cant error at the trailing end of the second pulse, while B1 causes signi®cant
spurious re¯ections during both the initial and secondary pulses. These results again demonstrate the high-
accuracy achieved by the nonre¯ecting boundary condition compared to approximate operators.

The far-®eld solution is computed based on the near-®eld solution obtained from NR1 (25) at R � 1:25.
The far-®eld solutions at observation points r1 � 1:75 and r2 � 8 are shown in Fig. 13 at three di�erent
angles h � 0°; 30°, and 90°. These results are obtained using NR1 and B1 with the far ®eld truncated at
R0 � r1 and R0 � r2, respectively. It is observed that the NR1 solution matches the analytic solution well at
all points. The B1 solution shows signi®cant errors when positioned at r1 � 1:75. However, when the far-
®eld truncation boundary is moved further away from the radiating piston to position r2 � 8, the B1 local
operator asymptotically approaches the exact nonre¯ecting boundary condition, and accurate solutions are
obtained.

5. Conclusions

By exploiting the separable coordinate system outside a spherical arti®cial boundary, we pose an e�cient
method for accurately computing far-®eld solutions directly in the time-domain. At each discrete time step,
radial modes computed using a spherical harmonic transform, and appearing in the exact nonre¯ecting
boundary condition for the near-®eld solution, are imposed as Cauchy data for the radial wave equation in
the exterior region outside the arti®cial boundary. The radial modes in the far-®eld are computed using an
explicit ®nite di�erence solver and the method of characteristics. The exterior radial grid is truncated at the
far-®eld point of interest with an exact NRBC expressed in modal form. This NRBC involves ®rst-order
derivatives only and does not require saving past values of the solution, which would be required in a
Kircho�-type time convolution. The solution at any point in the far-®eld is then computed from a spherical
harmonic expansion of the far-®eld radial modes. In practice, the number of modes N included in this
expansion is the same as the number of harmonics used in the NRBC. In computation, we have found
N 6 25 is usually suf®cient for accurate solutions. If a large number of harmonics N are needed, the work
required could be reduced by an order of magnitude using recently developed fast spherical transform
algorithms. If the far-®eld point is suf®ciently distant from the source of scattering, such that kR0 � n2 � 1,
where k � x=c is the nondimensional frequency and R0 is the radius of the far-®eld point, then the exact
boundary condition may be simpli®ed a-priori to the asymptotic form of the NRBC, i.e., the local B1

condition.
Far-®eld computations may be performed using two di�erent approaches. One method is to ®rst solve

the near-®eld solution using the exact NRBC, then, based on the the solution for the modes /nm�R; t� on the
arti®cial boundary, the exterior solution may be computed as a post-process. This two-stage approach
enables great ¯exibility in the computation of far-®eld points of interest, however, for moderate to long
time intervals, the amount of storage required for this two-stage process may become excessive. To address
this problem, an ef®cient algorithm is given where the modes /nm�R; t� are computed as needed, and the far-
®eld is solved concurrently with the near-®eld solution and the NRBC.
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Numerical studies were performed and compared to analytical solutions to assess the accuracy of the
method, both for individual harmonics, and for radiation and scattering problems involving an in®nite
number of harmonics. The results demonstrate that the concurrent method is highly accurate and e�cient
for direct time-domain computations of far-®eld solutions. The numerical results also con®rm that the exact
NRBC reduces to the local B1 condition for far-®eld points su�ciently removed from the source of radi-
ation/scattering. However, for a wide range of intermediate points, the use of exact nonre¯ecting boundary
conditions for both near-®eld and far-®eld solutions shows signi®cant improvement in accuracy over the
local B1 condition. Further computational e�ciency may be obtained by replacing the exact NRBC with
the asymptotic form given in (28), and recently descibed in [16]. In this form, the radial order may be
lowered to reduce the number of auxiliary equations needed for high accuracy.
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