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Abstract

A space-time finite element method for solution of the exterior structural acoustics problem involving the interaction of
vibrating elastic structures submerged in an infinite acoustic Auid is formulated. In particalar, time-discontinuous Galerkin and
Galerkin Least-Squares (GLS) variational formulations for coupled structural acoustics in unbounded domains are developed and
analyzed for stability and convergence, The formulation employs a finite computational fiuid domain surrounding the structure
and incorporates time-dependent non-reflecting boundary conditions on the fluid truncation boundary. Energy estimates are
obtained which allow us to prove the unconditional stability of the methad for the caupled fluid-structure problem with absorbing
boundaries. The methods developed are especiaily uscful for the application of adaptive solution strategies for transient acoustics
in which unstructured space-time meshes are used to track waves propagating along space—time characteristics. An important
feature of the space~time formulation is the incorporation of temporal jump operators which aliow for finite element
interpolations that are discontinuous i time. For additional stability, least-squares operators based on local residuals of the
structugal acoustics equations including the non-reflecting boundary conditions are incorporated. The energy decay estimates and
high-order accuracy predicted by our a priori error cstimates are demonstrated numerically in a simple canonical example.

1. Introduction

In this paper a space—time finite element method based on a new time-discontinuous Galerkin
variational formulation for the coupled structural acoustics problem in infinite domains is presented. In
this approach, the concept of space-time slabs is cmployed which allows for discretizations that are
discontinuous in time. The order of accuracy of the solution is related to the order of the finite element
spatial and temporal basis functions, and can be specificd to any accuracy and for general unstructured
discretizations within a space-time slab. The proposed space-time finite element formulation provides
a powerful framework for simultancous spatial and temporal discretization for transient structural
acoustics. This is especially useful in the application of self-adaptive solution strategies, in which both
spatial and temporal enhancement can be employed to efficiently track transient waves propagating
along space-time characteristics in complicated fluid—structure interaction applications. In regions
where ihe solution is smooth, the mesh can be relatively coarse while a finer mesh can be employed
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near wave fronts. Thus, an accurate solution may be obtained without resorting to a uniformly refined
(and computationally expensive) mesh. Furthermore, the use of space-time Ap-adaptive discretization
strategies, where a combination of mesh size refinement/unrefinement (h-adaptivity), and finite
element basis enrichment (p-adaptivity), can easily be accommodated in both space and time
dimensions. In addition to these advantages, the resulting space-time algorithm possesses beneficial
numerical fltciing needed to resolve any steep gradients in the transient response and leads to stable
higher-order accurate methods. An important property of the proposed time-discontinuous approach
for structural acoustics in infinite domains is that it allows for the implementation of high-order accurate
non-reflecting boundary conditions involving high-order temporal derivatives in a simple and straight-
forward manner.

Considerable progress has been made in the development of stabilized space—time finite element
methods based on a time-discontinuous Galerkin formulation for problems that can be written as a
system of first-order equations (se¢ e.g. [1-5]). Classical linear acoustics equations can be converted to
first-order hyperbolic form and these methods are thus immediately applicable. However, in this
approach, the coupled state vector consists of fluid pressure and velocity components, which is
computationally uneconomical.

A direct approach is to develop space~time finite element methods for structural acoustics based on
the natural framework of second-order hyperbolic equations for elastodynamics and the acoustic wave
equation. Recently, Hughes and Hulbert [6] and Hulbert and Hughes |7] have successfully generalized
time-discontinuous space—time finite element methods developed for first-order systems to the second-
order hyperbolic equations of elastodynamics. In this paper, the space-time formulation is extended to
include both the elastic structure and acoustic fluid posed in second-order hyperbotic form together with
their interaction. Throughout the development, a priori energy estimates for the continuum problem
are used as a guide for the design of the proposed space-time algorithms. The formulation employs a
finite computational tluid domain surrounding the structure and incorporates high-order accurate
radiation (non-reflecting) boundary conditions on the fluid truncation boundary. Non-reflecting
boundary conditions are incorporated as natural’ boundary conditions in the spacc—time variational
equation, i.c. they arc enforced weakly in both space and time. For the coupled equations, scalar
velocity potential ¢ is used as the solution variable for the acoustic fluid, while the displacement vector
u is used as the primary variable for the structure. As a consequence of this choice of variables, the
coupled variational equations for the fluid and structure gives rise to a positive form, which enables us
to prove the unconditional stability of the space—time finite element formulation.

An important ingredient for the success of the proposed space-time finite element method is the
incorporation of time-discontinuous jump operators that weakly enforie continuity of the solution
between space-time slabs. The specific forin of these tempera! jump operators are designed such that
unconditional stability can be proved a priori for general unstructured discretizations within a space-
time slab. An algorithm is termed unconditionally stable if in the absence of forcing terms but for
arbitrary initial conditions, the computed total structural acoustic energy plus the radiation energy
absorbed through the artificial boundary is always less than or equal to the initial total energy for the
system, for arbitrary step sizes.

For additional stability, and to prove convergence, least-squares operators based on local residuals of
the Euler-Lagrange equations for the coupled system, including the non-reflecting boundary con-
ditions, are incorporated into the space-time formulation. Stabilized methods of this type are referred
to as Galerkin Least-Squares (GLS) methods. GLS methods were originally developed to improve the
stability of numerical solutions for the advection~diffusion equation {], and the Euler and Navier-
Stokes equations {3]. These ideas have since been extended to other applications requiring improved
stability and/or accuracy; e.g. the reduced wave equation for time-harmonic wave propagation in
[9-12], steady advection-diffusion with production [13], and to second-order hyperbolic equations in
the context of elastodynamics in {6, 7). In this paper, we extend the idea of GLS stabilization to the
coupled fluid-structure interaction problem for transient structural acoustics including the incorporation
of fluid-structure interaction and non-refiecting boundaties.

Previous approaches to the transient structural acoustics problem involving the interaction of
vibrating structures submerged in an infinite acoustic fluid have employed: (i) boundary element
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methods based on Kirchhoff's retarded potential integral formulation (see e.g. [14-16}), (ii) semi-
discrete finite element methods which employ finite difference techniques for integrating in time (also
referred to as the method of lines) (see e.g. (17, 18]), and (iii) Taylor-Galerkin methods (e.g. [19]).
Semi-discrete finite element methods developed within the context of structural dynamics, e.g. [20, 21],
HHT-o algorithms will generally not adequately capture all the important solution features appearing in
physically realistic transient structural acoustics applications. Other difficulties include the incorporation
of high-order accurate absorbing boundary conditions and truly self-adaptive schemes in a semidiscrete
finite clement formulation for transicnt wave propagation in infinite domains. The difficulties and
limitations of standard computational methods for structural acoustics have motivated the development
of the new space-time finite clement formulation proposed in this work.

In Section 2 the coupled system for the exterior structural acoustics problem is described where the
governing differential equations for the structure, the acoustic fluid and their interaction are summa-
rized. In Section 3 a number of important a priori energy estimates for the continuum problem are
established. These results play a centrat role in the analysis of stability for both the continuum and
discrete problems and form the basis for the design of the new time-discontinuous Galerkin variational
formulation proposed in this paper. In Section 4 the space-time finite element method for the coupled
structural acoustics problem is formulated. Galerkin Least-Squares stabilization is discussed in Section
5. In Section 7 an analysis of the coupled space-time variational formulation is performed where the
unconditional stability and convergence of the method is established. Energy estimates and convergence

rates are demonstrated numerically with a onc-dimensional canonical example. Conclusions and
extensions are given in Section 10.

2. Governing equations for structural acoustics

In this work, the exterior structural acoustics problem involving solution of the coupled wave
equation defined over an infinite domain is transformed to a coupled fluid--structure interaction
problem defined over a finite computational domain through the introductior: of an artificial fiuid
truncation boundary. Radiation boundary conditions are prescribed on the fluid truncation boundary in
the form of a linear operator which approximates the asymptotic behavior of the solution at infinity.

The coupled fluid—structure system is illustrated in Fig. 1. and consists of the artificial truncation
boundary I, enclcsing 2 finite computational domain £2, The finite computational domain is composed
of the fluid domain {2, which in ture surrounds the structural domain 2, such that 2 = (3, U f),. The
fluid boundary a£),, is divided into the fluid-structure interface boundary I and the artificial boundary
I.. The structural boundary 342, , is composed of the shared fluid-structure interface boundary I and a
traction boundary I. The infinite domain outside the artificial boundary and extending to infinity is
denoted by £2,. The fluid is assumed to be homogeneous in (2, but may be inhomogeneous within £2,.

Fig. 1. Coupled system for the exterior fluid~structure interaction problem, with artificial boundary I, enclosing the finite
computational domain 2= Q,U .
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The domain interior to the elastic body is assumed to be in vacuo, although the inclusion of an interior
fluid can be accommodated with no special difficulty. The density of the fluid is assumed comparable to
the inertial and elastic forces in the structure so that significant interaction exists. In the following, the
equations governing the structure, the acoustic fluid and their intcraction are summarized.

The governing equations for the structure are statzd for a linear solid continuum without the explicit
imposition of kinematic constraints common to structural models such as plates and shells. In this way,
full generality of the formulation is maintained in order to accommodate a wide class of shell models
into the formulation. Consider an elastic body occupying the bounded domain £, C RY, where d =1, 2
or 3 is the number of space dimensions. The structural displacement vector is denoted by u(x, r), where
x € and r€1=]0, T}, is the time interval of interest of length T > 0. The equations of motion for the
structure are governed by the linear momentum balance,

Veo=pi inQ =0 x0.T] {1

where p, = p,(x) >0 is the structural density, a superposed dot indicates partial differentiation with
respect to time r, and o is the symmetric Cauchy stress tensor which is related to the displacements
through the constitutive equation,

o =C:¢lu] )

In this expression, the strain tensor is denoted by £[u] = V'u, where V'u is the symmetric gradient of the
displacement vector. The elastic coefficieats C =C(x) are assumed to satisfy the usual positive-
definiteness (pointwise stalility; and major and minor symmetry assumptions for an elastic solid
continuum.

With I, and I. denoting non-overlapping subregions of a0, such that af2, =I, UT,. prescribed
tractions f, are enforced through the boundary condition,

0'"=i 0“):r:=C1x]O'T[ (3)

The specification of coupling conditions on the structure-fluid interface I} are discussed later in this
section. Here, we note that two interface conditions are required: (i) a kinematic interface condition,
and (ii) a traction interface condition.

The acoustic fluid is modeled under the usual assumptions governing the linearized theory of sound.
Under the standard acoustic approximation, the motion of an inviscid, irrotational and compressible
fluid is regarded as a small perturbation from a uniform reference state. Linearizing the conservation
equations of compressibie inviscid flow around a reference state in which the fluid has a uniform density
py and is at rest, and with products of small quantities neglzcted, the equations of momentum and of
continuity for the acoustic fluid take the form (sce e.g. [22]):

pv+Vp=0 (4)
p+pcVoo=0 (5)
where p and v denote perturbations of pressure and velocity from the reference state. The relationship
between changes in pressure and density are given by the linearized equation of state, p = ¢*p, where

¢ >0 is the speed of sound.
Defining a state vector as

U=(p.v,.v..0,)" (6)

where v, are the velocity components in R’, these equations can be arranged in standard first-order
hyperbolic form as

W o« WU
- EA,a—xl=0 7

=1

and 4, €R", i=1,....3 are sparse unsymmetric matrices for the system in R'. Considerable
progress has been made in the development of stabilized time-discontinuous Galerkin finite elements
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methods for first-order hyperbolic and parabolic systems; see for example [1-3, 23] and references
therein. These methods are immediately applicable to the classical linear acoustics equations written in
the first-order form (7). However, in this approach, the state vector consists of both pressure and
velocity components, requiring a large number of solution variables, which may be computationally
uneconomical. Another difficulty with this approach is the coupling between the natural second-order
form of the momentum equations governing the structure, and a first-order form for the system of
cquations describing the acoustic fluid. As a result of the mismatch between the second-order and
first-order systems for the structure and fuid, respectively, rigorous stability and convergence proofs for
the coupled fluid—structure system are difficult to obtain.

A natural approach for the coupled problem is to recast the first-order system of acoustic equations
given in (7) as a sccond-order hyperbolic equation in terms of a single scalar variable. The most
common choice is to eliminate the velocity in terms of the scalar pressure variable. Taking the
divergence of (4) and the time derivative of (5). and after climinating the velocity in terms of pressure
the second-order scalar wave equation is obtained,

Vp=d'p 8)

where @ =¢ ' >0 is the slowness and V° = Div(Grad) is the Laplacian operator. Traditional variational
(weak) formulations for the coupled structural acoustics problem are based on this second-order
hyperbolic wave equation in terms of the scalar acoustic pressure p, together with the equations of
elastodynamics in terms of the structural displacement u, see ¢.g. [24] for this approach in the context
of the semidiscrete finite element method. While this approach reduces the number of solution variables
in the formulation. the use of {u, p} variables leads to an unsymmetric coupled system of equations for
the fluid-structure problem. As a result of this lack of symmetry, stability and energy estimates for both
the continuum and discrete structural-acoustic problems are difficult to obtain a priori.

To eliminate this difficulty for the coupled problem, the scalar velocity potential ¢ is chosen as the
solution variable for the acoustic fiuid, in conjunction with the displacement vector u, for the structure.
In the following discussions it will be shown that as a consequence of this chnice of variables, the
coupled variational equations associated with the fluid-structure interaction problem gives rise to a
positive form. The positive form is essential for the proof of stability and convergence of the space-time
finite element method.

The use of the velocity potential follows directly from the assumption of an irrotational acoustic fluid.
For an irrotational fluid the acoustic velocity v can be written as the gradient of the velocity potential ¢:

v=V¢ &)

Substituting (9) into (4) and (5) and eliminating the pressure in terms of the velocity potential ¢(x, 1),
results in the second-order hyperbolic wave equation.

Vo =a'$ inQ:=0,%x10,T] (10)

The unique solution to the coupled problem requires two interface conditions between the structure

and fuid: (Y 2 on boundary condition. and (i) a kinematic compatability condition, The traction

il NE5 o= ediaiun coanlnal; TORLINTUL. anl (4 XINCT

boundary condition represents the acoustic fluid pressure acting on the structure and is given by
o-n=-pn onY :=Ix]0,T| (1)

where the acoustic pressure is related to the velocity potential through the equation of momentum for
the fluid, p = —p,d and n is the unit outward normal to f), and inward normal to §%, on I}. The
kinematic boundary condition provides for the compatibility of the normal velocity across the fluid-
structure interface and is given by

v-n=u-n onY,:=x]0,T[ (12)

where v =V,
Non-reflecting boundary conditions are imposed on the artificial boundary I, in the form of a linear
operator S,,, relating the velocity potential to the normal velocity on I
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veon=-8,6 onY,:=I x|0,T] o

This boundary condition approximates the asymptctic behavior of the solution at infinity as described
by the Summerfeld condition, i.e.

19

a
lim r""”’z(5+Fa)¢ =0 r+ct = constant (14)

where r is the radial distance from the source and d is the number of spatial dimensions. This condition
asserts that at infinity all waves are outgoing. The non-reflecting boundary condition {13) can take
several different forms depending on the local (differential) or non-local (integral) operators appearing
in S,,. An example is given here for the first-order accurate boundary condition,

1 129
veon=-S,¢, where §"=E+?5 (15)
and r = R is a fixed radius for a spherical truncation boundary I’,. This radiation boundary condition is
exact only for axially symmetric waves in R’. A number of high-order accurate non-reflecting boundary
conditions which take the form of (13) are available, e.g. [25]. Here, we note that the index m, is
related to the order of temporal derivatives appearing in the operator.

The strong form
After collecting the governing equations defined in the preceding sections, the strong (locat) form of
the fluid-structure initial/boundary-value problem may be stated as:
Given a prescribed traction £: 17, X - R and a source f: £, x IR,
Find u:0, x I—>R" and ¢:0, x IR, such that

V-o=pii inQ =6 xI (16)
o=C:%V’u inQ.:=0x] (17)
Vé-a'd=f inQ. =0 xI (18)
og-n=f onY,:=T xI (19)
a-n=p,dn onY;:=I x| (20)
Vo -n=d-n onY;:=Ix] 21
Vo.n=-S,.¢6 onY,:=I %I (22)
with initial conditions,
u(x,0) = u,(x) forxe, (23)
i(x,0) =ny(x) forxef, (24)
d(x,0)=¢y(x) forxe, (25)
$(x,0) = dy(x) for x € & (26)

Egs. (16)-(22) together with the initial conditions define a linear coupled system of second-order
hyperbolic type.

. Energy estimates for the continuum problem
In this section we establish some a priori estimates for the continuum problem in terms of the energy

for the hyperbolic structure—fluid coupled system using structural displacement u and acoustic velocity
potential ¢ variables. The study of these important mathematical properties provides a general
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framework for the design and stability analysis of the proposed space-time finite element formulation.
Let the solution vector be defined in abstract form as

xi={u. ¢} 7
Then define the total energy for the coupled domain €2 = £, U (), by the expression,
E(x}:=¥.(u) + £(d) (28)

where the total structural energy in terms of the structural displacements is
]
()= ﬂ [poti - + e(u): C: e(u)] A2 (29
12,

and the acoustic energy or ‘wave energy’ in terms of the velocity potential is

’c’;’r(qb)::%L‘ ,,"[(—‘:—‘_)1 + v-v] 40

| o
~3 |, nle'(6y+ %6 volan )

The first and second terms in (29) are the kinetic and strain erergy for the elastic structure,
respectively. The form of the acoustic energy written in terms of velocity potential is in reverse order:
the first term (time derivative squared) and second term (gradient squared) in (30) are the potential
and Kinetic energies, respectively. The total cnergy for the coupled system E(x) defines a natural energy
norm on the space ¥ =[H'{Q2)]" x H'(,). i.e. E(x):= l|x||}-

The acoustic intensity for sound waves is defined as the vector I := pu, where p and v are the acoustic

pressure and velocity, respectively (see e.g. [26]). In terms of the velocity potential the acoustic
intensity vector takes the form,

I=-p, 6% (€2))
whose component { « n is the rate per unit area at which energy is transmitted in the direction of the unit

normal n. For the exterior problem the rate of energy (power), %, absorbed through the artificial
boundary I, is then,

D)= - L pydV-ndl (2)
In terms of the absorbing boundary conditions defined through the linear map S, given in (13),
96)= | pibS, 64T (33)

With these definitions in place, the following energy estimate for the coupled structural acoustics
problem 1n exterior domains can be proved.

LEMMA 3.1 (Energy estimate). Under the conditions of zero sources f=0 in &}, and homogeneous
traction boundary conditions t =0 on I, then the time rate of change of structural acoustic energy in
2 =0 UL, is equal to the total rate of transport through the artificial boundary T’,, i.e.

SEX =), Y10 34)
where x = {u, d}.

PROOF. The proof of this important result employs integration by parts and provides the key

motivation for the space~time finitc clement formulation proposed in this paper. Computing the time
derivative we have,



202 L.L. Thompson, P.M. Pinsky | Comput. Methods Appl. Mech. Engrg. 132 (1996) 195-227

“(%“?\(u) =L‘ |p.te- i + e(d):C:e(u)] dN2
= [1 la-(V-a)+e(u):C:e(u)] d2

= J: p(]‘ﬁ.d -ndl’ (35)

Similarly,
d. _f 2 .5
37 l":’)f(d’) = o, p(,[a od + Vd" ¢] da2
= L pol$V' + V- Vp] d2
{

== L pduindl - J’ po$S,ddll (36)
Combining (35) and (36) gives the desired energy estimate (34). O

REMARK. 1t is important to note that by choosing the velocity potential ¢ for the acoustic variable
and enforcing the compatibility of normal velocity (12) across I, then the coupling integrals defined on
the fluid-structure interface boundary I, cancel when (35) and (36) are added together to form (34).
This is the key property associated with the choice of x variables and plays an important role in the
stability (energy) estimates for the space~time formulation.

THEOREM 3.1 (Energy identity). At any given time t >0, the energy in 2 =, U ), plus the energy
absorbed through the artificial boundary I, is equal to the initial energy in the coupled system, i.e.

£,00) + E60) + ABO) = &)+ 5dn) . V120 @
where
260):= [ 96 ar (38)

is the radiation energy.

PROQF. Integrating (34) over time,

E(x)lo + J: (d(r))dr =0 (39)
and using definitions (29), (30) and (38) gives,

& (u()) + & (1) + R((1)) = E,(u(0)) + E((0Y) , V=0 (40)
Using the initial conditions (23)-(26) gives the desired energy identity (37). O

This result provides a natural measure of stability for the exterior structural acoustics problem, and
will be used to guide the design of the space-time finite element formulation described in the next
section. As a specific example for the energy estimates given in (34) and (37", consider the first-order
non-reflecting boundary condition defined in (15). In this case the rate of energy absorbed through the
artificial boundary I is given by the surface integral (33) with the normal derivative replaced with

1 |
~Sip=-go-7é (41



L.L. Thompson, P.M. Pinsky | Compui. Methods Appl. Mech. Engrg, 132 (1996) 195-227 203

Defining the following weighted L, norms on I, as

= J; pu()’ dI (42)

1915, 5= [ 1415, ¢ )

then with the lincar operator S, defined in (15), the rate of energy transport through the artificial
boundary specializes to

1 , 1 -
@(¢)=§ﬁ_ pydd dr+;ﬁ_ po(@) dI

3G, rl‘, +C|I|¢l|;’ (44)

where ¢, = 1/R and ¢, = 1 /¢ are positive constants. An energy identity of the form (37) is obtained by
integrating (44) over time with the resuit,

1
€ () + () + 3

IR, = uy) + 40 )

In the above, we have used the fact that ¢, = ¢, = 0 on I',. This is the stability (energy) estimate for the
continuum problem with S,. It states that the total energy for the structure €, and the fluid &, plus the
radiation energy absorbed through the arificial boundary I, is equal to the initial energy in the system.
An analogous result will be derived for the proposed space—time finite element formulation incorporat-
ing S,, see Theorem 7.1. Eq. (45) can also be used to prove uniqueness of the coupled structural
acoustic problems with y variables and radiation boundaries (see [27]).

4. Discontinuous Galerkin formulation

The development of the space~time finite element method follows the procedure outlined in {6], by
considering an ordered partition of the open time interval, / =0, T[, of the form: 0=¢,<¢, <---<
t, =T, with variable time step A1, =t,,, —1,. Then, the time interval of interest can be written as
F= (UM YU {t bty )y Where the nth open time interval is defined by

L=, .00 (46)
Using this notation nth space-time slabs for the structure and fluid are defined respectively as
@ =0.x1,, Q@ =9xI, (47)

with boundaries Y2 = a2, x [, and Y' = af), x I,. For the nth space-time slab (n,);, and (nﬂ) denote
the number of space —time ﬁmte elements in the subdomains Q° and QF, respectively. With these
deﬁmlmns, 0, ‘C Q denotes the interior of the eth element in the structural domain with bounda
Y. Similarly, @" C Q" denotes the interior of the eth element in the fluid domain, with boundary Y*.

Flg 2 shows an illustration of two consecutive space—time <labs 0, _, and Q,, for the fluid where the
superscript is omitted for clarity. Within each space-time element, the trial solution and v.el%htmg
function are approximated by pth order polynomials in x and 1. These functions are assumed C(Q,)
continuous throughout each space-time siab, but are allowed to be discontinuous across the interfaces
of the slabs. Assuming the function w(x, t) to be discontinuous at time ¢,, suppressing the argument x,
the temporal jump operator is defined by

Iwie )= wit,) —wit,) (48)
where

w(t,) =el_i.r‘1)1= w(t, +€)
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Fig. 2. lllustration of two consccutive space-time slabs with unstructured finite clement meshes within a slab.

This discontinuity of the finite clement functions across space-time slab interfaces, allows for the
general use of high-order elements and spectral-type interpolations in both space and time, and
provides freedom of changing the discretization from one time step to another. The discontinuity is also
essential for the unconditional stability of the space-time method proposed in this paper. For
simplicity, the collections of finite element shape functions are stated for equai-order interpolation in
space-time; however it should be noted that unequal orders are atlowed.

Trial structural displacements

F'= Ut P Wl € QN 8oy €@HEIN)

n=0
Trial fluid potential

N-1 .
T'=U7g..  7,={8"w0le"€C'(Q,). 8"y €27(Q)))

In the above, #* and #" denote the space of kth order and pth order interpolation polynomials
within 2 space-time element for the structure and fluid, respectively. Inclusion of essential boundary
conditions is straightforward with the usual restrictions placed on the trial and weighting function
spaces.

Before stating the space-time variational equations, it i> useful to introduce the following notation.

~ [

0.= U Q. (element interiors) (49)
e=1

(Meihy

Y,= U Y. -Y, (interior mesh boundaries) (50)
e=1
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Space-time element boundaries which coincide with the artificial boundary (Y, ). =T, x I, are denoted
(Y.), =Y, N(Y,),, where the overbar indicates the closure. Using this notation, the interiors of the
clement boundaries restricted to the artificial boundary are defined as

o),

(F),= UL, (51)
The strain-energy inner product for the structure is denoted by

a(w, u),, = J;I Vw - (V) df2 (52)

Standard L, inner products are defined as
(w.u), =J’)w-udﬂ (53)
s

and equipped with norm [|w||,, = (w.w)' *. Inner products for the Auid are weighted by the fluid
reference density p,. Integration over element interiors is defined as

(),

(wh' d’h)é,, . 2] J’Q' whd)h dQ (54)
4.1, Variational equations

The space-time variational formulation for the coupled structural acoustics problem is obtained from
a weighted residual of the governing equations (16)-(22) within a space-time slab and incorporates
time-discontinuous jump terms across slab interfaces. The specific form of this variational equation is
designed such that a priori stability and energy estimates analogous to those described in Theorem 3.1
for the continuum problem are obtained for the discrete problem. ]

Within each space-time slab, =0, 1.... N -1, the objective is to find " := {u", ¢"} € F" x T
such that ¥ ¢" := {w", w*} € 7" x W'\, the following coupled variational equations are satisfied,

B.(w", x"), = L(w"), (55)

B(w'. x"), = Lw"), (56)
with the following definitions,

B (W' x"), = E (W' u"), - AW, ¢"), (57)

B(W' x"), 1= E(w". ¢"), + A" w"), + E(w". ¢"), (38)
and

E(w",u"), = (6" pyii") gy + @08 ") g + (0] ), plt" (1)), +aW' (1)), 4"y, (59)

Ew' "), 1= 00", *6") gy + (", V") g0 + (57(17). 226"} )y, + (W6 V(1] )y, (60)

A(wh, d’h)n = (“"h. Pnd.’;'n)(?‘.'" (61)
L"), i= (9", 0), + 00 (0). 0" (e D), + alw'(t) ). 6t ), .
L(w"), = (8", oy + (8"0). @t ), + (W'(17). 971, ), )

The operator E,(w", ¢"),, incorporates the time-dependent non-reflecting boundary operators S, as
natural boundary conditions, i.e. they are enforced weakly through integration over both the artificial
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boundary I, and the time interval /,. The formal definition of this boundary operator with details for
the implementation of the non-reflecting boundary conditions are given in the next section.

In order to guarantee a stable space-time finite element algorithm, the coupled variational equations
(55) and (56} are constructed in a form which is consistent with the energy (stability) estimates given in
Lemma 3.1 and Theorem 3.1 for the continuum problem. The design criteria then is to construct a
coupled variational equation such that the natural energy norm emanating from this variational
equation satisfies a stability (energy) identity analogous to that obtained for the continuum problem. A
key feature is the usc of the time derivative (time rate of change) of o' ie = {W". Wh}, as the
weighting function in the terms evaluated over Q, in (59) and (60). With this choice of weighting
function, the form of these terms are consistent with the time rate of change of structural acoustic
energy defined in (34)-(36). In the operator E(-,-),, the terms evaluated over Q). act to weakly
enforce the momentum balance in the structure and are identical to Eq. (105) in [6]. In E(-,-),, the
terms evaluated over Q! , act to weak!y enforce the scalar wave equation in the fluid within the interior
of the nth space-time slab.

The terms evaluated over the structural domain £2, in (59) and (62), together with the terms
evaluated over the fluid domain (2, in (60) and (63) act to weakly enforce contmuny across space-time
interfaces. Weak enforcement of the velocity v" =Vg" and pressure p" = —p,¢" for the acoustic fluid is
prescribed through the temporal jump operators associated with (86 and (63), i.c.

(")), @ D" Do, +(W'(1,), [%6"E,)D)p,
[
pressere jump velocity jump

Similar temporal jump operators associated with (59) and (62) defined over £2, act to weakly enforce
structural velocities and stresses across time steps. The specific form of these jump operators are
designed such that continuity is weakly enforced via a kinetic and strain eneigy inner product for the
structure and similarly a kinetic and potential energy inner product for the acoustic fluid. These jump
conditions are the mechanism by which information is advanced from one space-time slab to the next.
Physically, they add a consistent numerical dissipation into the algorithm which helps control any
oscillations that may occur in the vicinity of discontinuities or sharp gradients in the solution [7].

Fluid-structure interaction is accomplished through the coupling cperators A(:, -), integrated over
the fluid-structure interface (Y;), = I’ x I,. These coupling terms appearing in (57) and {58) weakly
enforce the acoustic pressure interface condition (11) and continuity of normal velocity condition (12),
respectively. The fact that the coupling operators m both (57) and (58) are of the same form; namely
(61), follows directly from the chcnce of x":={u", ¢"} for the structure-fluid solution variables and
the consistent weighting " := (%", w"}. This global symmetry property of the coupled space-time
variational equations facilitates the establishment of stability and convergence proofs for the coupled
finite element formulation in a manner similar to that obtained for the continuum problem.

REMARK 1. The method is applied in one space-time slab at a time; data from the end of the
previous slab are employed as initial conditions for the current slab. Because the solution is weakly
enforced across slab interfaces, the finite element mesh may change from one slab to the next and it is
not required that the meshes match across the discrete time levels. This is especially useful for adaptive
schemes where the finite element discretization can be refined/unrefined within space-time slabs to
track wave fronts as they propagate 2long space-time characteristics.

REMARK 2. In [6] an extension of the time-discontinuous Galerkin space-time formulation is given
where independent interpolation functions are used for the solution and its time derivative, e.g. for
elastodynamics, independent interpolations are used for the displacements and velocities. In [27, 28] an
extension of the formulation presented in this paper is developed as a multi-field formulation
incorporating second-order non-reflecting boundary venditions wiih independent velocity potential and
pressure variables for the fluid. This multi-field formulation allows for a variety of combinations of
high-order interpolations, including equal-order for ¢"* and p*.
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4.2. Non-reflecting boundary conditions

The lincar mapping S,,¢ defined previously in (13) is assumed to take the following abstract form,

n aj ‘b
S.6=2 C;[_/] onY,:=T, x| (64)
1=0 ot

In this expression. the index m reflects the order of the temporal derivatives appearing in the operator,
and C;, j=0, i,...,m, are spatial operators that may be local differential operators that couple only
adjacent points on the artificial boundary, or non-local integral operators that couple all points on the
artificial boundary I’,. Specific examples of time-dependent non-refiecting boundary conditions which
can be expressed in this general form are discussed in detail in [25]. Here, we note that the first-order
operator {m = 1) defined previously in (15) conform to this representation with the spatial operators C;,
j=0, 1 reducing to 1/R and 1/c.

In general, boundary conditions of the form (64) provide increasing accuracy with the order m;
however, as the order increases, they become increasingly difficult to implement in a standard
semidiscrete finite element setting due te the occurrence of high-order time derivatives on the
truncation boundary Y,. Semidiscrete metheds for second-order hyperbolic wave equations, which
discretize the spatial domain with finite elements, lead to a second-order sysicm of ordinary differential
equations ir time. These ordinary differential equations are then integrated using standard finite
difference algorithms such as the Newmark family of time integrators. Since standard semidiscrete
algorithms are restricted to integrating up to second-order time derivatives, their application to (64) are
limited to orders m <2 only.

Space-time finite element methods, in which the solution is allowed to be discontinuous across
spacc-time slabs places no restriction on the order m of time derivative appearing in the operator S,,.
Since continuity is enforced weakly between time steps, standard C” continuous interpolation functions
in the time coordinate can be used up to the order dictated by the operator S,,. An advantage of the
space-time formulation is that the order of the tempora! interpolation can be increased near the
non-reflecting boundarv so that temporal accuracy is increased locally to a level required by the
boundary condition. It is this special property of the discontinuous Galerkin formulation that provides
for the potential to directly implement (64) up to any order desired. It is noted however, that
high-order non-reflecting boundary conditions beyor+ sccond-order may involve high-order spatial
derivatives appearing in C,. that require increased continuity in the spatial coordinate. In this case
special local boundary elements which incorporate high-order continuous spatial basis functions would
be needed (see e.g. [29]). In the discussion to follow, we describe how the time-discontinuous Galerkin
space~time method provides a natural variational setting for the incorporation of non-reflecting
boundary conditions of the form (64). and how under certain conditions on the boundary operators
stability and convergence can be proved a priori.

For boundary operators up to second-order m =1, 2, the bilinear form E,(-,), appearing in the
spacc—time variational equation (58), is defined as:

Form=1,

E(w'.¢"),1=(5".5,6"),,, +d,w"(; ). [6"C,)D), (65)
Form=2,

E(w" ¢"),:= (w". S:0"), ) +d(w"(0;). ("€, + dyw'(1). 16"t D)y, (66)

The term evaluated over (Y, ), :=T, X I, acts to weakly enforce the non-reflecting boundary condition
{64) over the time interval |r,,1,.,{ and I,. The form of this boundary operator is guided by the
definition of the acoustic intensity given in (33). Replacing the trial solution with w", we have

Tnss
5.5, W0,, = [ 900 (67)
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indicating that this term represents an acoustic radiation inner product integrated over the time interval
I,. As a specific example, consider the first-order, (m = 1), non-reflecting boundary condition defined
previously in (15) and repeated here as

§l¢’=cn¢+cl‘?$ (68)

where the spatial operators reduce to the positive values C, = 1/R and C, = 1/c. For this case, the
acoustic radiation operator takes the form

(0", $,0")y.,, 1= dy(i" . "), +d(W" ")y, (69)

where the index on the bilinear operators d, and d, reflects the order of the fime derivative appearing
on the trial solution. For this simple case, the bilinear operators reduce to

h 1 (' . .
d"(w',fbh)m,fﬁf’ L poe" dr &t (70)

. 1 [fner .
d,(w", ¢")“. ) =;j J p " dr di (71)
n S
Similarly, extending the sequence (64) to second-order (m = 2).

$,¢=C + Cl‘i’ + C:QS (72)

the radiation operator reduces to
-k h . - hog - wh
(", 8,0")y,), = do(W" 6 )y, +d (0", 8")y, H (8, )y, (73)

The form of the bilinear operators d, depends on the focal or non-local character of the spatial
operators C; appearing in (72). The index for the operators 4,, j =0, 1, 2, reflects the order of the time
derivative on the trial solution appearing in the operator. Specific examples for S, are given in [25].

The terms evaluated over the space-time slab interface at the boundary I, in (65) and (66) act to
weakly enforce continuity of the trial solution across space-time slab interfaces. The specific form of
these operators are designed such that continuity of the artificial boundary I, is weakly enforced in a
form which is consistent with the radiation bounddry term evaluated over (Y.),. Thus, for m =2, the
form of the consistent temporal jump operators [¢"(r, )] and 1I¢ (r,)} embedded in the last two terms of
(66) depend on the form of the spatial derivatives appearing in the bilinear operators d,(", *)y. ), and
d.(, )(, y given in (73). These consistent temporal jump operators are required in order to ensure that
the discontinuous Galerkin solution is unconditionally stable and are the crucial element that enable
generalization of the space-time finite element method to handle exterior domains. Note that no jump
operator is needed for the term corresponding to d, (%", ‘i’h)u;y in (73). The reason for this becomes
clear from the stability analysis described in the next section where it is shown that this term naturally
leads to a well-defined norm, requiring no additional stabilization.

For m=1, since the first-order non-reflecting boundary condition defined in (15) involves only
first-order temporal derivatives, the only consistent jump operator needed is dy(*, *),- . The form of this
jump operator follows from (70), i.e.

466D, = J, 18" 6T ar (74)

To facilitate the stability and convergence proofs incorporating non-reflecting boundary conditions,
boundary operators arc assumed to be spatially non-negative, i.c.
dw' . w"),. =0, j=0,1,2 VYw'eH”" (75)

Examining the boundary operators defined in (70) and (71) for S, it is clear that these operators satisfy
condition (75) explicitly, i.e.
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do("’”- Wh)l', = Cnnwhuf‘, =0 (76)
d,(w', W’l)l; = C.||W"||f, =0 m

where C,=1/R and C, = 1/c are positive constants, and |jw" |7, is the weighted L, norm restricted to
the boundary I .

5. Galerkin least-squares stabilization

In order to enhance the stability of the basic time-discontinuous Galerkin space—time formulation,
and to prove that the method converges for arbitrary space-time discretizations, local residuals of the
governing differcntial equations in the form of least-squares operators are added to the variational
equations {55) and (56). Stabilized methods of this type are referred to as Galerkin Least-Squares
(GLS) methods [8]. The time-discontinuous GLS formulation for coupled structural acoustics is stated
formally as:

Within each space-time slab. n =0, 1,.. | N-1: Find x" = (u" ") €S x T"_ such that V¢":=
(w'ow"y e v x wh,
Bius'. X", = Lis('), (78)
B s x"), = Liys"), (1)
where
Bysw' x"), =B, . x"), + Biw". x"), (80)
L"), = Lw"), + Ly, (81)
similarly,
Baus' X", = Bw" . x"), + Bis(w". x"), (82)
Loisw™), = Ldw"), + Li(w"), (83)

The least-squares addition to the Galerkin variational equation for the structure is an extension of Eqs.
(101) and (102) in [6] and is defined as:

Bisw' x"), 1= (Lw" p. ' 72u") g, + (lo(W") ()] m. 0, sla (V" )()] - m) 5,
+(@ (W) n, p ' so(V"y m), , H(F W0 5L X ), (84)
Lis") = (@(W") n.p"st)y, (85)

where tke residual for the structure is given by the equations of motion Lu":=pi" -V (") and
Lx"=a(%u") - n - p,é"n is the residual for the traction interface boundary condition.
Similarly for the fluid domain, the least-square addition takes the form,

Bmw¢m:mwfmwm+mwﬁ@wmm
+ (W', (). sle, D) + (2" sty )y, (86)
Ligw"), = (Lw".c1f) g (87)
where the norm i} derivative is denoted ¢'_'n =V¢" -n and

S =a’d" - To" (88)
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%" :=¢"+S,0" (89)
fTQX’, = lih o - d’{‘" (90)

The GLS weighting parameter 7 has dimensions of time and can be interpreted as an intrinsic
time-scale, while the parameter s has dimensions of inverse speed and is a slowness scale. For the
structural domain, the intrinsic time scale 7 and slowness scale s are matrices of size d X d. These GLS
weighting parameters arc functions that are dependent on element size and interpolation order, and
may be designed to improve stability without degrading the accuracy of the underlying time-discontinu-
ous Galerkin formulation. When these GLS parameters are set to zero, the formulation specializes to
the discontinuous Galerkin method.

From 2 Fourier analysis of the time-discontinuous method for first-order hyperbelic equations,
Shakib and Hughes [30] have shown that GLS parameters can be optimized to achieve higher-order
accuracy and minimize undesirable high frequency response without introducing excessive algorithmic
damping in the low frequency regime. Fourier analysis has also been used to design optimal GLS
parameters to enhance the stability and accuracy of solutions to the related reduced wave equation
(Helmholtz equation) governing time-harmonic acoustics in the frequency domain (sce [9-12]).

For second-order hyperbolic systems, a practical value for 7 and s as suggested by Hughes and
Hulbert [6] is

1 Ax
-1 (91)

T=Axs= 3
where I is the d X d identity matrix, ¢, is the dilitational wave speed and Ax is interpreted as a local
clement size in the space dimension. Similar expressions can be defined for 7 and 5, e.g. T=Axs=
Ax/2c, or 7= At/2. In Hulbert [32], the intrinsic time-scale used for a uniform quadratic interpolation
was taken as

Ar

=— 2]
CWiie 2

where C is the Courant number. While the definitions of these parameters are crucial to GLS
performance, for the purposes of proving convergence, it is sufficient that they be dimensionally
consistent. Both slowness 2nd time scale parameters are needed in the convergence proof. However,
from an algorithmic point of view, the implementation of the terms involving the slowness parameters
involve unconventional and expensive calculations. As indicated by Hulbert [31] and the results from
onr numerical experience in Section 7, optimal convergence rates are achieved with the omission of the
slowness parameters, and therefore in practice, it is suggested that these parameters be set to zero, i.e.
s=0and s=90.

For numerical solutions exhibiting sharp gradients or discontinuities due to shocks, non-linear
discontinuity capturing operators are available to help further control oscillations that may occur in the
solution [32]. However, for linear structural acoustics problems, the added «xpense resulting from a
non-linear solve as required from the use of these discontinuity capturing operators is not justified.

6. Euler-Lagrange equations

Weak enforcement of the governing Euler-Lagrange equations for the structure is exposed by
integrating (78) by parts to yield the following weighted residual expression,
0= B;ia.s(wh~ X")n - L:;l.s(”’h)n
= (" +p 2w ) + (" 4 p 5o (W) m o (V) m - D)y,
+(0" + . slo(W" )] n o (V")) n) iy + 8" +p] 'sEr))yy,
£ 0910 T ) D, + 2w @) Ta" @)D, (93)
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where

! =" (equation of motion) (94)
ri=%x" (coupling boundary condition)

The second line in (93) describes the weak enforcement of the momentum balance residual r',’, for the
structure within a space-time slab; the third line acts to weakly enforce the prescribed traction at the
boundary I,; while the terms in line four define the weak enforcement of the traction continuity across
element boundaries. This term arises from integration-by-parts over the spatial domain. Line five
describes the weak enforcement of the traction coupling boundary condition r), at the interface
between the structure and the fluid. The last two lines in (93) show how continuity between space-time
slab interfaces is weakly enforced via a total structural energy inner product.

Similarly for the fluid domain. integrating (79) by parts yields,

0= By s x"), = Lesw"),
=(w" + 1" Ew", r'{)o.ﬂ +0" s T W) , "+ 5w ()], l[d){',,(x)]l)m)"
+ (" L), +0). a1 1D, + (W), 19" (,)Dg,
+dy (9" (). 167D, + dyw'(e,). 16D, (95)
where
ri=%4¢"-f (wave equation)
=" {radiation boundary condition) (96)
ri=%x"  (coupling boundary condition)

The second line in (95) describes the weak enforcement of the wave equation r?. over the space~time
slab; the third line acts to weakly enforce the non-reflecting boundary conditions r”, at the artificial
boundary; while the terms in line four define the weak enforcement of the gradient continuity in space.
This term arises from integration-by-parts over the space-time domain. The notation [¢” (x)]=
&" (x* . 1)— &" (x”.1) is defined as the spatial jump in the gradicnt across element boundaries. Line five
describes the weak enforcement of the kinematic coupling boundary condition r3 ai the interface
between the fluid and the structure.

The last four lines in (95) show how continuity of the solution is weakly enforced across space-time
slabs through the temporal jump operators. Within the domain £2,, continuity is weakly enforced via a
total acoustic energy inner product. At the artificial boundary I",, continuity is weakly enforced via the
radiation boundary operators d,(-. ). and dy(-, -),- . These additional operators are needed in order to
ensure stability and arc ihc crucial cloment that enable generalization of the time-discontinuous
space~time finite clement method to handle non-reflecting boundary conditions.

Examining the Euler-Lagrange equations, it is clear that as a result of being a residual based
method, the space—time finite element formulation is consistent, in the sense that the error in the finite
element solution is orthogonal with respeci to

Bys(w',E), =0 (97)
Bgs(wW' E), =0 (98)

where E = x" - x is the error; in components E = {u”" — u, ¢" ~ ¢}. Clearly, the time-discontinuous
Galerkir formulation with (r =0, s =0) and/or (r = 0,5 = 0) also satisfies a consistency condition.

7. Stability and convergence analysis

In this section we prove that the space—time variational formulation inherits a stability estimate of the
form given by Theorem 3.1 for the continuum problem. Using this estimate we conclude that the
proposed space-time method for the coupled structural acoustics problem with the direct implementa-
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tion of radiation boundary conditions is unconditionally stable and converges at an optimal rate. The
“algorithm is termed unconditionally stable if, in the absence of forcing terms and for arbitrary initial
conditions, the computed total energy for the system plus the radiation energy absorbed through the
artificial boundary is always less than or equal to the initial energy in the system for arbitrary step-sizes.

In the following analysis a series of Lemmas are proved which give the strong coercivity (positive-
definite) conditions for the coupled variational equations. Using these results, we then establish an
energy decay inequality (stability condition) for the coupled space-time algorithm which is the discrete
counterpart to the energy estimate obtained for the continuum problem. As a prelude to the more
complicated fluid-structure interaction problem, a priori error estimates are obtained for the uncoupled
acoustics problem with non-reflecting boundary conditions. We then return to the coupled problem,
where error estimates are given for the coupled fluid-structure system.

7.1. Preliminaries

Summing (79) over the time slabs and after rearranging terms we have

N-1
Basw', X"y = E(w". 6" + AW" W) + E(w", 6" + 3 Bl (W' x"), (99)
N-1 .
Los(w') = Z {00, lgr+ LisOW"),} + (97(07), @ y)g, + (Tw'(07). Wy )y, (100)
where the global operators are defined as
E(w", ¢"):= E(w", ¢") + E(w", 4"} (101)
E,(W",¢"):= Dy(w", ¢") + D,(w", 6") + D,(w", 6") (102)
N-1
AW W)= 3 (", o)y, (103)
n=0 v
and
N-1 A N-1 A
E(w", ¢") = 2 ("¢ ) g + 21 ("(t;). a'6"(t,)Dg, + (4"(0°), a*6"(07)),, (104)
N-1 N-]
E(w'.6") = 2 (V" V") gy + 2 (W'(t]). [Vt )], + (WW'(07), ¥6"(07)),, (105)
n=0 =0

N-1

N-1
D,(w", ¢") = z d:(wh~ d;h)()")n + Z:" d:(wh(’.: 2 W(l., M + dy(w"(0*), 6"(0" i, (106)

n=0

N-1 N-1
Do, 8" = 2 dy(", 8", 2w @) "Dy, + (0. 6707y, (107)

N-1
D' 8" = 2 di(w". é")s,), (108)
such that
Bf(;Ls(Wh‘ Xh) = L'ots(wh) (109)

Similarly for the structure, summing (78) over the time slabs. we obtain:

Boysw'. x") = Ligis(w") (110)

where
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N-1
By ', x") = E(w'. u") - A" ¢") + 2, BLw' x"), (111)
n=0
N-1
Los®') = 2 (00" D)y, + Ligw'), )+ (00°(07), 0.t} + a(w’(07), )y, (112)

=0
and
-1

N
Es(w’l. uh) - 2

Lt

N1
(6" ")y + 2, (5403, pJi" () + (907 ). "0y,

N-1§ N
+ 2 a" )+ 2 aw' () [u' (@)D +a(w'(07), w"(0" Ny, (113)

n=0 !

From (97) and (98) it follows that for a sufficiently smooth exact solution x, the global consistency
conditions for (109) and (110) are, respectively,

Bousw'. x" ~x) =0 (114)
B:".Ls(”'h‘Xh -x)=0 (115)
7.2. Energy estimates
LEMMA 7.1 (Total acoustic energy).

Eqw", wh)={lw"liI? (116)
where

N-1

w2 := € w" (0 ) + 2 EIw" @)D + &w"(T ) (117)

n=1
and for linear acoustics, the total energy within the domain {), is defined as in (30):
1, a1 ,
&w)= 2 flaw] ot 7 ”lein, (118)

This is the coercivity condition for the fluid.

PROOF.

N-1 N-1

el d
skl _ ra b3
"zzn(w W )o-n—g"f’" P llaw "], de
PRI INVIURTINS i DR )
=7 W ™(T)G, = 3 Kb O, +5 2 (v NS, = law"EDlE,)  (119)

Therefore,

it 1 e N T 1 : IR
E:(Wh‘wi)‘_“f"awl(’r )”n,+_2_”awh(0 )”Il,
1 N-1
P PR RN T L he 2. he - . -
3 2 (a5, =208, g, + "G}

1 I TR B =
=3 ek )G, + 3 "0 )G, + 5 2 el ", ), (120)

Similarly,
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h /] ] - 1 et y12 1 R 2
By’ w") =3 [T 7)o, + 3 1905, + 5 2 M09 ), (121)
Combining (120) and (121) and using (101) completes the proof. O

LEMMA 7.2 (Radiation energy). For the exterior problem, assuming the non-reflecting boundary
conditions satisfy condition (75), then

E,w",w") = llw"lll? (122)
where
N-1 N-1
w17 = 2 4" 0", + EWHOT) + Z (W' @)D+ £Ww"(T)) (123)
and the operator &,(-) is defined as
1 1
& (w):= 7 dy(w, W)y + 3 dy(w, w)y, (124)

Eq. (123) represents a norm that is stronger than the radiation cnergy absorbed through the truncation
boundary I’,. For boundary operators up to second-order (m = 2):

T
R(w):= [ ) f,  pWS,wdrl dt
=€) +d, (W, W)y, (125)

PROOF. Proceeding as in Lemma 7.1,

N-i 1 1 . X
2 vt i)y, =5 T HT )y =5 dy(H01) 0",

n=0

1 & hy - b~ s he + phe ¥
+7 20570, )97 D, - 09" 5 6)), ) (126)
Therefore,
k k l - h - ] - l chen LBt 1 5 . .
Do W) =3 oW (T ), 8" (T D)y, + 3 0" (0°), 80 Ny, + 3 2 ol )1 b 6D,
(127)
Similarly,

‘ - l + hen+ 1 5 h
Dy(w". w") =%d.,(w"(r'). WHT Dy, 45 dy"(07), W' (07N, +5 2 dy@w' ) " e)Dr,

(128)
Combining (127), (128) and (102) completes the proof. O
LEMMA 7.3 (Total structural energy).
E,w" ") ={[w"[Il (129)
where
Wl = B, w0 ) + ‘Z] E(IW' @)D + £0"T Y (130)

and for elastodynamics, the total energy within the domain ), is defined as in (29):
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. I 1
Ew) =7 (W, p W), +5alw, W), (131)

This is the coercivity condition for the structure.

The proof of Lemma 7.3 follows the same steps taken to prove Lemma 7.1 and so is omitted (see also
[6)).

~ .« norm associated with the coupled fluid-structure system (109) and (110) is defined by:

N-1
1 (e e W T P | [ B I (6 AR N AT P
n=i "

+ ([e(W" @) n, p. ' slo (W )®)] - 0) 5, + (@(W')-n, p; 'sa(Ww') )y,
(G0 W)y, ller 2L + lles' 2wy,
+lles™ D’ @G, + (b CsLatr") s, ) (132)
LEMMA 7.4 (Stability condition for the coupled system).
"I = Boosw”, ") + B s (w", 4% (133)
PROOF. The proof foilows directly from the superposition of (109) and (110),
Boys0w", 0" + BG (W 4") = E,(w", w") - A", w")
+Ew", w')+ AW, w") + EwW", w")

N-1
+ Z(; {BELS(th l!‘),, + B::,LS(Wh, l[l)"} (134)

Using the definitions in Lemmas 7.1, 7.2 and 7.3, and cancelling the coupling terms A(-, -) completes
the proof. The discontinuous Galerkin method (7 =90,5=0) and/or (r =0,s =0), also satisfies a
coercivity condition. 0

REMARK. By the choice of displacement/ velocity potential variables x", weighting ", and weakly
enforcing the traction and kinematic interface boundary conditions across I, x /,, then the coupling
terms A(-, -), cancel when the structure and the fluid variational equations are combined. Recall that an
analogous result occurred in the construction of Lemma 3.1 for the continuum problem. This is the key
result which allows for the establishment of a well-defined norm (132) for the coupled problem.

In the following, we establish the discrete counterpart to the energy identity obtained in Theorem 3.1
for the continuum problem.

THEOREM 7.1 (Energy estimate). In the absence of external loading, i.e. f =0 and =0, and assuming
the raa‘zauon boundary operators satisfy (75), then at the end of a time interval the total structural energy,
ie. E(x" (t.,)). within the computanonal domain =100, plus the radiation energy absorbed
through the artificial boundary I, i.e. R($"(])). is boumled above by the initial energy in the system,
ie. E(xo)-

PROOF. With f=0and =0,
ous(@") + Lois(8") = (@"(07), pytiy)y +a(W"(0°), ), +(°(0"), 6 Gy, + (V6"(07), V),
<{(@"(0"), pig)o, + a(u"(0" ), uy)o,
+(6"(07), 8’y ), + (V6"(07), Vb, )|
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1 . + . + 1 . . 1 iy + e
=3 ("(0"), p,"(0 Do, * 2 (88, potiy)g, + 5“("‘(0 ). 4"(0 Do,
1 | I | R
ty aluy, )y + 75 lag"(0")|) i!, +t3 lladull,
1 FONTE] 1 2
LR, + 2 ISR,

= €,"(07)) + €,(u,) + &(8"(0")) + &(8,) (135)

where &,(u,) and &(¢,) denote the initial total energy in the domains {2, and {2, respectively. Adding
{109) and (110), and using Lemma 7.4 and the definition of {{jy”|||* results in the energy estimate,

EW"(T )+ E(d"(T7) + R("(T 7)) =< &,(w,) + &(&y) (136)
Since T is arbitrary,

E(x"(t; )+ R(e"¢; ) <E(x), n=0,12,...,N-1 (137)
where

E(x"(; ) 1= &,("() + €(6"(;) (138)

E(xy) = &,(up) + Elehy) (139)

and R(¢"(1;)) is defined as in (125). Eq. (137) also holds for the time-discontinuous Galerkin method
where (r =0,5=0) and/or (r=5=0). O

This result is the algorithmic counterpart to the energy identity derived for the continuum problem
and stated in Theorem 3.1. The energy decay inequality in (137) states that the total energy in the
fluid-structure system, plus the energy absorbed through the radiation boundary, is always less than, or
equal to the initial energy in the system, which implies that the space-time formulation is unconditional-
ly stable.

COROLLARY 7.1 (Energy decay inequality for acoustics). For the uncoupled problem of linear
acoustics, with zero sources, f=0, and ‘rigid’ boundary conditions, i.e. i* =0, then (137) reduces 10

€' + RGN <E(dy), n=0,12,... . N-1 (140)

As a specific example of the energy estimate (137), consider the first-order S,, non-reflecting
boundary condition defined in (15). In this case the radiation energy (125) reduces to

1 ch s
¥ R(8h) =7 6" ")y, +di($" 6",
1 ) -
=5 cllo"l7. +cllé"l, (141)
where ¢, = 1/R and ¢, = 1/c are positive constants and (137) specializes to
- 1 .
Ex"e) + 5 clle’l7, +ellé*I, <Ex) (142)
This result is the discrete counterpart to (45).

REMARK. The approach taken here for *he coupling between the fiuid and structure is applicable for
cither the interior or exterior problem. For the interior problem, no radiation boundaries are present
and we have the energy estimate.

COROLLARY 7.2 (Energy decay inequality for the interior problem). For the interior (bounded)
problem, (137) reduces to
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B¢, ) <E(x). n=0.1.2,... ,N-1 (143)

This result establishes the unconditional stability of the formulation for the interior problem.
7.3. A priori error estimates for acoustics

Before stating the convergence rates for the coupled fluid-structure system, a priori error estimates
for the simplified uncoupled problem of linear acoustics with ‘rigid’ boundary conditions are derived.
To further simplify the analysis, non-reflecting boundary operators are restricted to the first-order S,
condition defined in (15). In this case, second-order time-derivatives do not appear in the radiation
boundary condition and the boundary term d,(-, -} is omitted. The proof of convergence follows along
the same lines as in [6], with the additional complication of including the non-reflecting boundary
operators for the exterior problem.

For the acoustics problem with ‘rigid’ boundary conditions, (i.e. 4"-n=0 on I), the coupling
operator A(u”, w") vanishes and the norm associated with (109) reduces to

N-1
Ml = w1 + Al 17 + 20 Uller' £ lIGy + les" 2w (15,
n-
+ fles" D’ s
The coercivity condition for the uncoupled acoustics problem is then

“lw,'“Iz:BrGLs(Wh-Wh) (145)

where the right-hand side is defined by (109) with A(-, -) = 0. The consistency condition in this case is

o lles' Woll ) (144)

B:sl.s(wh~ e)=0 (146)
where e = ¢" - .

Let d;h € 9" denote an interpolant of ¢, and letn = (5" - ¢ denote the interpolation error. Then the
solution error, ¢ = ¢" — ¢, can be split into the sum

e=e"+7 (147)
where
d=¢" - ew" (148)

is the difference between the finite element solution and the interpolant. An appropriate space—time
mesh parameter is given by

h = max{c At, Ax} (149)

where ¢ is the acoustic wave speed and Ax and Ar are maximum element diameters in space and time,
respectively.

THEOREM 7.2 (Error estimates). Assume 7 and s satisfy
chstsch (150)
cySs<c, (151)

where ¢, ¢,. €, and ¢, are positive constants (¢, >c,, ¢, > c,). Assuming the exact solution ¢ to the local
acoustics problem with S|, is smooth in the sense that, ¢ € H" “Y(Q,) and assuming the interpolation
error, . satisfies the following estimates:

N-1
2, dy(ih i), S C@H! (152)
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N-1
2 llar™ il < ety (153)
N-‘!
2 ler' Ll < (@) (154)
N-1
2 o™ All5,, < c@h™™" (155)
N-i
2 lles"*Zallfy,, <c@)r™™! (156)
2 llas™ 2115, < @I (157)
N-1

2 Alies" In, @]

n=0

I3, + les'*nll vy, ) S cl@)h™™! (158)

N-1
TN+ E@ON + 2 (&N )+ G D) <! (159)
dyfn(T).n(T Yy, +don(07). (07D,

N-1
+ 2 {dulnle; )0t Dy + dyln(e]).mle Dy ) S e(p)n™ ! (160)

n=|

where c(¢) is independent of the mesh parameter h, then
elll* = c(e)™ ™" (161)

The following Lemmas aid in the proof of Theorem 7.2.

LEMMA 7.5.
N-1 N-1
Ee'm) == 2 @".a* )y = 2 (16" 0,) a0, o, + (€T ). 0T N, (162
N-1 N-1
Eye'n) == 2 (V" Bigy = 2 (90,0 1, Vo, + (%' (T ). (T ) (163)
N-1 N-1
Dyietm == T dye' oy, ~ S Al )L, + AT T, (164)

Results (162)-(164) follow directly using definitions (104), (105) and (107), and from integration-by-
parts in time. O

LEMMA 7.6.
(€. @) g + (V" Vi)gy +dy(e", )y, + i€ M)y,
= (" gy + (e i), + (@D sy + €l iy, (163)
PROOF. By integration-by-parts and the divergence theorem
(%", Vi) g1 = = (V" ) gy + €' )y, + (L@@ WDt + (€5 )iy, (166)

Thus
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- 2. i . i . L i .
(€ an)g + (V' V) +dy(e" )y, Tdi (" 1)y,

= (azi"lr -V, fl)(p}, + (e',ln + Slfh~ Mo, nt (ﬂe’.’n(x)lh 7”)"',, + (e,.ln' ﬁ)()’,),, (167)

where use is made of (69)-(71) with the first-order m = 1, non-reflecting boundary operator defined as
in (15), i.c.

SRR
S,¢" =—Ee’ +;e’ (168)

Employing the definitions (88) and (89) completes the proof. O

The following two incqualitics are also needed.

N-1
Z. {= " a5, Ny, = (19" (1)) Vinle, Ny} + (T )o@ i(T Wy, + (V" (T7), V(T 7))y,

1 N-1 ' ) . ] , )
<3 [ 2‘ {Edle" @) + 4 dmr, N} + £ (T ) + 46 ((T ))] (169)

Similarly,
N-1

-2 dy(le" (). 00, )y, + dyle" (T ) (T ),y

n=

<3 ['2 {3 e e, + 24600, )0 |

n=1

I . ) .
+ 3 dyfe (T7). (T Yy, + 2d,(n(T ). (T )),-,] (170)
Results (169) and (170) follow directly from repeated use of the inequality

Pgl, o, )
w0 <3 (Sl + ellof) . Ve>o0 an)
The proof of Theorem 7.2 procecds as follows
eIl = BE 4(e". e") {by the coercivity condition. (145))
=Bgusle".e~m) (by (147))
=-BL (e".m)  (by the consistency condition, (146))
<|Bgste", m|
=|E,(e".n) + Eye".n) + D, (" ,n) + D (¢". 7)

N-1
+ 2 {("(f[eh' szfm)@f’ + (&-:‘el" C:&Zﬂ)( Yody

n=0

+ ([, @1 sl @D+ €. )y, ) (by definition of B, s, (101)-(108))

N-1
= | 2 (- (&e" g + (L. CrEm) g

n=0

~(Le" )y, T (e L)y, 2y )y,

= (e, 751 = (€ )iy, + (O Psln, D51 + (€ Pon )y )

N-1
+ 2 {= @] ity Do, — (19" @)1 e, o}

n=1

+(EMT ). @ T Wy + (V' (T7), Un(T 7)),

-3 dy(le" @)1 10y, + dye"(T ). n(T 7)), | (by Lemmas 7.5 and 7.6)
n=]
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N-1
1 2 . PP 1 S ep W2 i 2
<2 {z ller*Zie" W, + Nlar " “3llG; + 5 ller" eIy + ller*Zimll

-1:3

! 2 2 2.2 1 2ep h|2 2 2
7 les L, + llas™ 0l 7 e e ), + les' gy,
4 n 4

l hooh . . 1 2 2 ~1i2 .
+§d|(ef~el)n,;n+2d|(’7~"7)n‘_pn+zncsl lle'.'.(x)ﬂllf-;+||as ' n

5

1+ lles™ I, (ol

12 h =102 .y

l . 3 2 1 z
+ -4— ”Cs .e,n”I),I,, + “as U!l(-)',),, +Z "CS“ ﬂeﬁl(x)ﬂ

i
1 12 hy2 112 2 1 5 h _

+ g lles™ LI, + lles nlle, 5 2:1 {€(e"(t, D) + 4€,(n(z; )}
1 1 . o

*3 E(e"(TT) +2€(m(T 7)) + 3 21 {dy(le" @)D T @)Dy, + 4dy(n(t, )om(e; D)y}

| W4 RN
+34,"(T7), €' (T )y, +4d(n(T ) (T )y,
(by (171) and results (169) and (170))

The terms involving e" may be subsumed by the left-hand side. The interpolation estimates
(152)-(160) then yield

"Il = clopn ™ (172)
Likewise,

Ninlll* < (o)™~ (173)
By the triangle inequality,

Illefll* < 211le"|1I* + 2l < c@)n™ (174)

which completes the proof. O

This result indicates that the errcr as measured in the natural norm (145) for the discontinuous GLS
solution to the exterior acoustics problem converges at the rate (2p — 1)/2,

8. A simple model problem

To demonstrate the convergence and energy properties of the space-time finite element formulation,
the response of a one-dimensional mode] problem in the semi-infinite interval 0= x <= was calculated
by introducing a truncation boundary I, = L, and imposing an exact non-reflecting boundary condition.
Consider the following initial / boundary-value problem,

d=c’¢, forx€,:>0 (175)
3(0.0=0, & (L.)=-(1/c)d(L,1) (176)
0 =6, x0=0 (177)

where 2 =0, L[ and the condition at x = L in (176) is the exact ‘plane-wave' non-reflecting boundary
condition for this one-dimension problem. The initial pulse,

bu(x) =%(l -—coszTﬂ(x —x,,))2 (178)

is positioned at the distance x, = 2.4 from the fixed end, with A = 0.8, and the computational domain is
taken as 2=10,4|, i.c. L =4. The domain 2 is discretized uniformly with standard biquadratic
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interpolations, Q2, in space-time, with 3x3 Gaussian quadrature used throughout Quadratic
interpolation in time is used to resolve the second-order teizporal derivatives appearing in (60).

The exact solution is given by D’Alerubert. Half of the initial pulse propagates with velocity ¢ = 1, in
each direction, i.e.

1
S, ')=i[d’n(§+)+¢u(f— )] (179)

for0<¢,<aand 0<s¢_ <A where é, =x—~x,—ct and & =x—x,+ct. At time 1=0.8, the wave
propagating to the right, @,(£.), reaches the truncation boundary I, = L, and at r= 1.6, this wave
leaves {2 entirely. At time ¢ = 2.4 the wave propagating to the left, ¢,(£_), reaches the fixed end and is
reflected back. At time 1 =7.2, the reflected wave leaves 12, resulting in a quiescent solution. The form
of ¢, i chosen such that the solution ¢(x, r) has sufficient smoothness (continuity) for the interpolation
estimates given in (152)-(160) to be valid. For ¢, defined in (178), and quadratic space—time elements
P =2, the exact solution satisfies the requircment ¢ € H 5,

Fig. 3 shows the numerical solution using the time-discontinuous Galerkin Least-Squares algorithm at
three representative times. Each space-time slab was discretized with a uniform mesh of 160 Q2
elements. The intrinsic time scale used for all computations is

Ar

e (130)

where C=cAt/Ax is the Courant number. The effect of the slowness parameter s, has little
consequence on the solution to this problem, and as pointed out by Hulbert and Hughes [7], due to the
complications involved with its assembly, this term is omitted in all the computations.

The energy properties of the exact solution are summarized in the following. The total energy within
0 is the sum of the kinetic and potential energies, i.e.

1, ., 1 2
&) =7 lladlly +5 . (181)

where
. L
ladly= | (adte. 0 ax
L 2
o= [ (6,007 a

For the initial condition @, given in (178), [lad|l?, = [|¢,.|I}, for £ =1/ 2c. In addition to the energy in £,
the power flow, or rate of transfer of energy past the truncation boundary I, = L, is

%(d}(l,,t))l;@ (182)

and it can be shown that the total energy in (2, plus the energy entering the exterior domain x > L, is
conserved, i.e.

E((1) + R((1)) = €(y) (183)
where the radiation energy defined in (125} is specialized in one dimension to
1( .
6)=1 [ (SL ) e (184)

Fig. 4 shows the energy calculations for the time-discontinuous Galerkin Least-Squares formulation,
with the Courant number set at C = 1. At t=10, all the energy is potential, and as the initial pulse begins
10 propagate, energy is transformed from potential to kinetic. For 1= A/2c = 0.4, the initial pulse has
completely separated into a lift and right wave, and the spacc—umc ﬁmte clement solution preserves the
equality of the potential and kinetic energies, i.e. [Jad"||7, = |[#" [|5- At £=0.8, the right going wave
reaches I, = L, and the loss in total energy €(¢") within £, is absorbed by the non-reflecting boundary
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Fig. 3. One-dimension semi-infinite problem: Numerical solution using time-discontinuous GLS algorithm with 160 (2 elements
and a Courant number of C = 1. At time ¢ = 0.6 two waves travel in opposite directions. At 1= 1.2 the wave propagating to the
right is absorbed by the non-reflecting boundary located at x =4. At 1= 1.8 only the left-going wave remains.

condition as measured by the radiation energy ®(¢"). Results confirm that the Galerkin Least-Squares
method is indeed dissipative, and matches the energy-decay inequality given in Thecrem 7.1, i.e. the

total energy plus the radiation energy is bounded above by the initial energy in the computational
domain, i.c.

E@"((12) + RS, ) = E(dy) (185)

To study the numerical convergence, the response was calculated for the time interval 0<r<T=18.
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The convergence rates for the time-discontinuous Galerkin and Galerkin Least-Squares formulations
are shown in Fig. 5. Errors were measured in two ditferent norms: ||| - |||, denotes the norm (144), with
s=0, and |||- |||, denotes the Galerkin norm, with =0, s =0. Note that the convergence rates are
identical for afl formuiations measured in both norms, and are the same as those predicted by Theorem
7.2. Results for this example show that the Galerkin formulation converges at the same rate as the GLS
formulation, with slightly larger errors.

9. A priori error estimates for the coupled problem

In this section, error estimates are given for the coupled structural acoustics formulation. The
convergence proof for the coupled fluid—structure problem follows the same basic steps as the
uncoupled acoustics problem given in Section 7.3; further details are given in [27]. The results are
stated for the S, boundary condition only. Let {x" € #" x 7" denote an interpolant of x := {u, ¢}.
Then the error E = x" ~ x. can be written as:

E=E"+H {186)
where

E'=(x"-Ix") eV x#" (187)

H=1 x" - Xx (interpolation error) (188)

In components, E = {e.e}, E"={e" ¢"}, and H={n,n} where e=u"-u and e=¢"-¢. An
appropriate space-time mesh parameter for the structural domain {2, is given by h, = max{c, At, Ax}
where ¢, is the dilatational wave speed and Ax and At are maximum element diameters in space and
time, respectively. For the fluid domain £, h, = max{c Az, Ax} where ¢ is the acoustic wave speed.

Assuming 7 and s satisfy the conditions given previously in (150) and (151). Similarly, assuming 7
and s satisfy,

e =) <.k, (189)
cy<flsli=e, (190)
where ¢,, ¢,. ¢, and ¢, are positive constants (c,>c,,c,>c,), and assuming x € (H*"'(Q,))* x
HT I(Q,.). together with standard interpolation estimates for H, then it can be shown that the following

estimaic holds:

NEN < cwh ™ +c()h ! (191)

where c(u) and c(¢) are values that are independent of the mesh parameters, k and p are the order of
the finite element interpolations for the structure and fluid, respectively, and ||| - ||| is the natural norm
for the coupled system defined in (132). The proof of this a priori estimate follows the same basic steps
as Theorem 7.2; details are given in [27]. This result indicates that the error for the coupled system is
controlied by the convergence rates in both the structure and the fluid. In other words, for an accurate
solution to the coupled fluid-structure problem, discretizations for both the structural domain and the
fluid domain must be adequately resolved.

10. Closure

In this paper, a new space-time finite element formulatica for transient structural acoustics involving
the interaction of elastic structures vibrating in an unbounded acoustical fluid domain has been
presented. The formulation is based on the time-discontinuous Galerkin method for second-order
hyperbolic systems originally developed in the context of elastodynamics by Hughes and Hulbert [6]
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and Hulbert and Hughes [7]. extended here to time-dependent structural acoustics in exterior domains.
A new space-time variational equation for the coupled problem is written in terms of structural
displacement and acoustic velocity potential variables and includes the incorporation of high-order
accurate non-reflecting boundary conditions. As a consequence of this choice of solution variables, the
coupled space—time variational formulation for the fluid and structure gives rise to a positive norm for
the coupled problem which enables us to prove the unconditional stability of the method.

For additional stability. and to prove convergence, least-squares operators based on local residuals of
the Euler-Lagrange cquations for the coupled system. including the non-reflecting boundary con-
ditions, are included. giving rise to a Galerkin Least-Squares (GLS) space-time formulation. The
least-squares operators are weighted by intrinsic time scale parameters, which may be designed to
improve stability without degrading the accuracy of the underlying time-discontinuous Galerkin
formulation. The GLS weighting parameters depend on element size and interpolation order. For the
one-dimensional example presented. both Galerkin and GLS solutions converge. Additional numerical
results (presented in [27, 33]), indicates that the Galerkin formulation should converge on general
configurations as well, but from our error analysis. only GLS is guaranteed to converge.

Time-discontinuous Galerkin methods typically lcad to systems of coupled equations which are larger
than those emanating from standard semidiscrete methods. To approach economic competiveness with
existing algorithms, the ability of space—time finite clement methods to provide unified and simulta-
neous spatial and temporal adaptivity of the discretization must be exploited. Adaptive solution
strategies are especially useful for applications to transient structural acoustics, in which both spatial
and temporal enhancement can efficiently capture waves propagating along space-time characteristics.
Recently, Johnson {34] and colleagues. have obtaincd some useful a posteriori error estimates based on
the discontinuous Galerkin method for second-order hyperbolic equations. Having laid the foundations
for the space—time finite element formulation for structural acoustics, research efforts are underway in
the design and application of efficient and accurate local error indicators to drive adaptive and
subcycling strategies for the transient structural acoustics problem incorporating high-order accurate
non-reflecting boundaries.

In {27, 28] an extension of the time-discontinuous Galerkin space-time formulation presented in this
paper is given where independent interpolation functions are used for both the acoustic velocity
potential and its time derivative, i.c. the acoustic pressure. Hulbert [31] showed that asymptotic
dissipation at high frequencies can be achieved by a multi-field formulation of this type, without the
need for additional least-squares stabilization terms. An arca of productive research is to compare the
performance of the single-field and multi-field formulations in terms of both accuracy, as measured by
numerical dispersion and high-frequency dissipation, and computational efficiency.

When space—time finite element methods are used to solve the structural acoustics problem in infinite
domains, a fluid truncation boundary is introduced where radiation (non-reflecting) boundary con-
ditions are applied to transmit outgoing waves. If accurate non-reflecting boundary conditions are used,
fewer fluid elements are needed and considerable cost savings will result. Therefore, there is a need for
the development of high-order accurate non-reflecting (absorbing) boundary conditions which eliminate
or minimize reflection of outgoing waves and that also preserv: the data structure of the space—time
finite element method. In this paper, we have indicated how the time-discontinuous space-time finite
element method provides a natural variational setting for the implementation of local in time
non-reflecting boundary conditions. In the second part of this paper [25], a new sequence of high-order
accurate and local in time non-reflecting boundary conditions based on an exact representation of the
acoustic impedance are developed for solutions of the scalar wave equation in three space dimensions.
Several numerical examples are given illustrating the high-order accuracy achieved by the implementa-
tion of these time-dependent absorbing boundary conditions in our space-time finite clement
formulation for the exterior structural acoustic problem.
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