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Abstract 

A space-time finde element method for solution of the exterior structural acoustics problem involving the interaction of 
vibrating elastic structures submerged i, an infinile acoustic quid is formulated. In particttlar, time-discontinuous Galerkin and 
Galerkin Least-Squures (GLS) variational formulations for coupled structural acoustics in unbounded domains are developed and 
analyzed for stability and convergence. The formulation employs a finite computational fluid domain surrounding the structure 
and incorporates time-dependent non-reflecting boundary conditions on the fluid truncation boundary. Energy estimates are 
obtained which allow us to prove the unconditional stability of the method for the eouple~l fluid-structure problem with absorbing 
boundaries. The methods developed are especially useful for the application of adaptive solution strategies for transient acoustics 
in which unstructured space-time meshes are used to track waves propagating along space-time characteristics. An important 
feature of the space-time formulation is the incorporation of temporal jump operators which allow for finite element 
interpolations that are discontinuous m t~me. For additional stability, least-~uares operators based on local residuals of the 
structural acoustics equations including the non-reflecting boundary conditions are incorporated. The energy decay estimates and 
high-or~ler accuracy predicted by our a priori error estimates r, re demons*.rated numerically in a simple canonical example. 

I. Introduction 

In this paper a space-time finite element method based on a new time-discontinuous Galerkin 
variational formulation for the coupled structural acoustics problem in infinite domains is presented. In 
this approach, the concept of space-time slabs is employed which allows for discretizations that are 
discontinuous in time. The order of accuracy of the solution is related to the order of the finite element 
spatial and temporal basis functions, and can be specified to any accuracy and for general unstructured 
discretizations within a space-time slab. The proposed space-time finite element formulation provides 
a powerful framework for simultaneous spatial and temporal discretization for transient structural 
acoustics. This is especially useful in the application of self-adaptive solution strategies, in which both 
spatial and temporal enhancement can be employed to efficiently track transient waves propagating 
along space-time characteristics in complicated fluid-structure interaction applications. In regions 
where the solution is smooth, the mesh can be relatively coarse while a finer mesh can be employed 
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near wave fronts. Thus, an accurate solution may be obtained without resorting to a uniformly refined 
(and computationally expensive) mesh. Furthermore, the use of space-time hp-adaptive discretization 
strategies, where a combination of mesh size refinement/unrefinement (h-adaptivity), and finite 
element basis enrichment (p-adaptivity), can easily be accommodated in both space and time 
dimensions. In addition to these advantages, the resulting space-time algorithm possesses beneficial 
numerical filtcrit~g needed to resolve any steep gradients in the transient response and leads to stable 
higher-order accurate methods. An important property of the proposed time-discontinuous approach 
for structural acoustics in infinite domains is that it allows for the implementation of high-order accurate 
non-reflecting boundary conditions involving high-order temporal derivatives in a simple and straight- 
forward manner. 

Considerable progress has been made in the development of stabilized space-time finite element 
methods based on a time-discontinuous Galerkiu formulation for problems that can be written as a 
system of first-order equations (see e.g. [1-5]). Classical linear acoustics equations can be converted to 
first-order hyperbolic form and these methods are thus immediately applicable. I4owever, in this 
approach, the coupled state vector consists of fluid pressure and velocity components, which is 
computationaily uneconomical. 

A direct approach is to develop space-time finite element methods for structural acoustics based on 
the natural framework of second-order hyperbolic equations for elastodynamics and the acoustic wave 
equation. Recently, Hughes and Hulbert [6] and Hulbert and Hughes [7] have successfully generalized 
time-discontinuous space-time finite element methods developed for first-order systems to the second- 
order hyperbolic equations of elastodynamics. In this paper, the space-time formulation is extended to 
include both the elastic structure and acoustic fluid posed in second-order hyperbolic form together with 
their interaction. Throughout the development, a priori energy estimates for the continuum problem 
are used as a guide for the design of the proposed space-time algorithms. The formulation employs a 
finite computational fluid domain surrounding the structure and incorporates high-order accurate 
radiation (non-reflecting) boundary conditions on the fluid truncation boundary. Non-reflecting 
boundary conditions are incorporated as "natural" boundary conditions in the space-time variational 
equation, i.e. they are enforced weakly in both space and time. For the coupled equations, scalar 
velocity potential ,b is used as the solution variable for the acoustic fluid, while the displacement vector 
u is used as the primary variable for the structure. As a consequence of this choice of variables, the 
coupled variational equations for the fluid and structure gives rise to a positive form, which enables us 
to prove the unconditional stability of the space-time finite element formulation. 

An important ingredient for the success of the proposed space-time finite element method is the 
incorporation of time-discontinuous jump operators that weakly enfor~.e continuity of the solulion 
between space-time slabs. The specific form of these temporal jump operators are designed such that 
unconditional stability can be proved a priori for general unstructured discretizations within a space- 
time slab. An algorithm is termed unconditionally stable if in the absence of forcing terms but for 
arbitrary initial conditions, the computed total structural acoustic energy plus the radiation energy 
absorbed through the artificial boundary is always less than or equal to the initial total energy for the 
system, for arbitrary step sizes. 

For additional stability, and to prove convergence, least-squares operators based on local residuals of 
the Euler-Lagrange equations for tile coupled system, including the non-reflecting boundary con- 
ditions, are incorporated into the space-time formulation. Stabilized methods of this type are referred 
to as Galerkin Least-Squares (GLS) methods. GL$ methods were originally developed to improve the 
stability of numerical solutions for the advection-diffusion equation [8], and the Euler and Navier- 
Stokes equations [3]. These ideas have since been extended to other applications requiring improved 
stability and/or accuracy; e.g. the reduced wave equation for time-harmonic wave propagation in 
[9-12], steady advection-diffusion with production [13], and to second-order hyperbolic equations in 
the context of elastodynamics in [6, 7]. In this paper, we extend the idea of GLS stabilization to the 
coupled fluid-structure interaction problem for transient structural acoustics including the incorporation 
of fluid-structure interaction and non-reflecting boundaries. 

Previous approaches to the transient structural acoustics problem involving the interaction of 
vibrating structures submerged in an infinite acoustic fluid have employed: (i) boundary element 
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methods based on Kirchhoff's retarded potential integral formulation (see e.g. [14-16]), (ii) semi- 
discrete finite element methods which employ finite difference techniques for integrating in time (also 
referred to as the method of lines) (see e.g. [17, 18]), and (iii) Taylor-Galerkin methods (e.g. [191). 
Semi-discrete finite element methods developed within the context of structural dynamics, e.g. [20, 21], 
HHT-a algorithms will generally not adequately capture all the important solution features appearing in 
physically realistic transient structural acoustics applications. Other difficulties include the incorporation 
of high-order accurate absorbing boundary conditions and truly self-adaptive schemes in a semidiscrete 
finite element formulation for transient wave propagation in infinite domains. The difficulties and 
limitations of standard computational methods for structural acoustics have motivated the development 
of the new space-time finite element formulation proposed in this work, 

In Section 2 the coupled system for the exterior structural acoustics problem is described where the 
governing differential equations for the structure, the acoustic fluid and their interaction are summa- 
rized, in Section 3 a number of important a priori energy estimates for the continuum problem are 
established. These results play a central role in the analysis of stability for both the continuum and 
discrete problems and form the basis for the design of the new time-discontinuous Galerkin variational 
formulation proposed in this paper. In Section 4 the space-time finite element method for the coupled 
structural acoustics problem is formulated. Galerkin Least-Squares stabilization is discussed in Section 
5. In Section 7 an analysis of the coupled space-time variational formulation is performed where the 
unconditional stability and convergence of the method is established. Energy estimates and convergence 
rates are demonstrated numerically with a one-dimensional canonical example. Conclusions and 
extensions are given in Section 10, 

2. Governing equations for structural acoustics 

In this work, the exterior structural acoustics problem involving solution of the coupled wave 
equation defined over an infinite domain is transformed to a coupled fluid--structure interaction 
problem defined over a finite co,nputational domain tllrough the introduction of an artificial fluid 
truncation boundary. Radiation boundary conditions are prescribed on the fluid lruncation boundary in 
the form of a linear operator which approximates the asymptotic behavior of the solution at infinity. 

The coupled fluid-structure system is illustrated in Fig. 1, and consists of the artificial truncation 
boundary F~ enclcsing a finite computational domain .O. The finite computational domain is composed 
of the fluid domain .Of, which in turn surrounds the structural domain .O~ such that .O =/]~ U .O~. The 
fluid boundary 0f/f, is divided into the fluid-structore interface boundary r, and the_ artificial boundary 
F~. The structural boundary/JO~, is composed of the shared fluid-structure interface boundary F~ and a 
traction boundary F.  The infinite domain outside the artificial boundary and extending to infinity is 
denoted by .O~. The fluid is assumed to be homogeneous in/2~, but may be inhomogeneous within O~. 

Fig. I. Coupled system for the exterior fluid-structure interaction problem, with artificial boundary F~ enclosing the finite 
computational domain ~ --= ~, U 12,. 
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The domain interior to the elastic body is assumed to be in vacuo, although the inclusion of an interior 
fluid can be accommodated with no special difficulty. The density of the fluid is assumed comparable to 
the inertial and elastic forces in the structure so that significant interaction exists, in the following, the 
equations governing the structure, the acoustic fluid and their interaction are summarized, 

The governing equations for the structure are stated for a linear solid continuum without the explicit 
imposition of kinematic constraints common to structural models such as plates and shells. In this way, 
full generality of the formulation is maintained in order to accommodate a wide class of shell models 
into the formulation. Consider an elastic body occupying the bounded domain .Q~ C I~ 't, where d = t, 2 
or 3 is the number of space dimensions. The structural displacement vector is denoted by u(x, t), where 
x E/2~ and t E I = ]0, T[, is the time interval of interest of length T > 0. The equations of motion for the 
structure are governed by the linear momentum balance, 

V . t r = p j i  in Q~:=.O~ x 10, T[ (l)  

where p, = ,o~(x)> 0 is the structural density, a superposed dot indicates partial differentiation with 
respect to time t, and o" is the symmetric Cauchy stress tensor which is related to the displacements 
throug~, the constitutive equation, 

G, = C:Elu] (2) 

In this expression, the strain tensor is denoted by e[u] = V~u, where V'u is the symmetric gradient of the 
displacement vector. The elastic coefficients C = C(x) are assumed to satisfy the usual positive- 
definiteness (pointwise stability; and major and minor symmetry assumptions for an elastic solid 
continuum. 

With F,, and F~ denoting non-overlapping subregions of b.O~ such that a.O~ =F,, O F,. prescribed 
- 

tractions t, are enforced through the boundary condition, 

o - . n = i  on ~, := r,, x 10. T [ (3) 

The specification of coupling conditions on the structure-fluid interface F~ are discussed la,er in this 
section. Here, we note that two interface conditions are required: (i) a kinematic interface condition, 
and (ii) a traction interface condition. 

The acoustic fluid is modeled under the usual assumptions governing the linearized theory of sound. 
Under the standard acoustic approximation, the motion of an inviscid, irrotational and compressible 
fluid is regarded as a small perturbation from a uniform reference state. Linearizing the conservation 
equations of compressible inviscid flow around a reference state in which the fluid has a uniform density 
p, and is at rest, and with products of small quantities neg!ected, the equations of momentum and of 
continuity for the acoustic fluid take the form (see e.g. [22]): 

O.t~ + 7p = 0 (4) 

p + p.c"V, v = 0 (5) 

where p and v denote perturbations of pressure and velocity from the reference state. The relationship 
between changes in pressure and density are given by the linearized equation of state, 6 = cZtJ, where 
c > 0 is the speed of sound. 

Defining a state vector as 

U = (p. v I, v... v~) T (6) 

where v, arc the velocity components in R ~, these equations can be arranged in standard first-order 
hyperbolic form as 

f~U ~ aU 
a t + , . , A , - ~ x  =0 (7) 

and A , 6 R  ~'~. i=  1 . . . . .  3 are sparse unsymmetric matrices for the system in R 3, Considerable 
progress has been made in the development of stabilized time-discontinuous Gaierkin finite elements 



L.L. Thomp,wm. P.M. Pinskv / Cmnput. Methods Appl. Mech. Engrg. 132 (i996) 195-227 199 

methods for first-order hyperbolic and parabolic systems; see for example [1-3, 23] and references 
therein. These methods are immediately applicable to the classical linear acoustics equations written in 
the first-order form (7). However, in this approach, the state vector consists of both pressure and 
velocity components, requiring a large number of solution variables, which may be computationally 
uneconomical. Another difficulty with this approach is the coupling between the natural second-order 
form of the momentum equations governing the structure, and a first-order form for the system of 
equations describing the acoustic fluid. As a result of the mismatch between the second-order and 
first-order systems for the structure and fluid, respectively, rigorous stability and convergence proofs for 
the coupled fluid-structure system are difficult to obtain, 

A natural approach for the coupled problem is to recast the first.order system of acoustic equations 
given in (7) as a second-order hyperbolic equation in terms of a single scalar variable. The most 
common choice is to eliminate the velocity in terms of the scalar pressure variable. Taking the 
divergence of (4) and the time derivative of (5), and after eliminating the velocity in terms of pressure 
the second-order scalar wave equation is obtained, 

V2p = .-'p (8) 

where a = c J > 0 is the slowness and V: = Div(Grad) is the Laplacian operator. Traditional variational 
(weak) formulations for the coupled structural acoustics problem are based on this second-order 
hyperbolic wave equation in terms of the scalar acoustic pressure p, togetb,r with the equations of 
elastodynamics in terms of the structural displacement u, see e.g. [24] for this approach in the context 
of the semidiscrete finite element method. While this approach reduces the number of solution variables 
in the formulation, the use of {u, p} variables leads to an unsymmetric coupled system of equations for 
the fluid-structure problem. As a result of this lack of symmetry, stability and energy estimates for both 
the continuum and discrete structural-acoustic problems are difficult to obtain a priori. 

To elimilmte this difficulty for the coupled problem, the scalar velocity potential ~b is chosen as the 
solution variable for the acoustic fluid, in conjunction with the displacement vector u, for the structure. 
In the following discussions it will be shown that as a consequence of this choice of variables, the 
coupled variational equations associated with the fluid-structure interaction problem gives rise to a 
positive form. The positive form is essential for the proof of stability and convergence of the space-time 
finite element method. 

The use of the velocity potential follows directly from the assumption of an irrotational acoustic fluid. 
For an irrotational fluid the acoustic velocity o can be written as the gradient of the velocity potential ~: 

v =V6 (9) 

Substituting (9) into (4) and (5) and eliminating the pressure in terms of the velocity potential ~b(x, t), 
results in the second-order hyperbolic wave equation. 

V:6 = a2~ in Qf := g/, × ]0, T[ (10) 

The unique solution to the coupled problem requires two interface conditions between the structure 
n~ , - I  lel . , ;A.  / ' ; i  ' k . . . .  ,4 . . . . . . .  ,41.i  . . . .  ,4 / ' ; ;~  ,~ l r ; t a a ~ , ~ f ; e  r, a m n c ~ t ' ~ h ; l l t l t  c o n d i t i n n  T h e  t r ~ : C t i O . ~  

boundary condition represents the acoustic fluid pressure acting on the structure and is given by 

o . .  n = -pn  on Y~ := F, × ]0, T[ (11) 

where the acoustic .pressure is related to the velocity potential through the equation of momentum for 
the fluid, p =-p~,& and n is the unit outward normal to .0~ and inward normal to ,Of, on F i. The 
kinematic boundary condition provides for the compatibility of the normal velocity across the fluid- 
structure interface and is given by 

v ' n = f l ' n  on Yi:= r, × 10, T[ (12) 

where v = V6. 
Non-reflecting boundary conditions are imposed on the artificial boundary F~ in the form of a linear 

operator .%,,,, relating the velocity potential to the normal veioci:y on F~: 
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V "n = -~m~ on Y~ := F= x ]0, T[ (13) 

This boundary condition approximates the asympletic behavior of the solution at infinity as described 
by the Summerfeld condition, i.e. 

r,~_,,~2( O +1 O) 
!ira \ ~ r  c ~  & = 0  r+ct=constant (14) 

where r is the radial distance from the source and d is the number of spatial dimensions. This condition 
asserts that at infinity all waves are outgoing. The non-reflecting boundary condition (13) can take 
several different forms depending on the local (differential) or non-local (integral) operators appearing 
in §,,. An example is given here for the first-order accurate boundary condition, 

I l a  
v .n  . . . .  ~,4~. where ~l : = R + c ~ "  (15) 

and r = R is a fixed radius for a spherical truncation boundary F~. This radiation boundary condition is 
exact only for axially symmetric waves in R 3. A number of high-order accurate non-reflecting boundary 
conditions which take the form of (13) are available, e.g. [25]. Here, we note that the index m, is 
related to the order of temporal derivatives appearing in the operator. 

The strong form 
Alter collecting the governing equations defined in the preceding sections, the strong (local) form of 

the fluid-structure initial/boundary-value problem may be stated as: 
Given a prescribed traction/': F,, x !,---, ~ d and a source f:.Of x l ~ ,  
Find u:.O~ x l,-.., R d and 4,:/If x 1 ~ ,  such that 

V.er=pf i  i n Q ~ : = ~ , × l  (16) 

o ' = C : W u  i n Q ~ : = l ] , x l  (17) 

V"6 - a2~ = f  in Q,:= 0, x I (18) 

o'-n =/" on 1~ , :=~  x ! (19) 

,,'n=oo,i,n on y : = r , x /  (20) 

'¢~k'n=fi-n on Yi:=F~xl  (21) 

V~b. n = - § . , 6  on Y~ := F~ x I (22) 

with initial conditions. 

u(x, O) = uo(x) for x E .O, (23) 

ti(x,O)=ilo(x ) for x E 12, (24) 

~b(x, 0) = ~0(x) for x E 12, (25) 

d(x,0) = ~0(x) for xE  12f (26) 

Eqs. (16)-(22) together with the initial conditions define a linear coupled system of second-order 
hyperbolic type. 

3. Energy estimates for the continuum problem 

In this section we establish some a priori estimates for the continuum problem in terms of the energy 
for the hyperbolic structure-fluid coupled system using structural displacement u and acoustic velocity 
potential ~ variables. The study of these important mathematical properties provides a general 
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framework for the design and stability analysis of the proposed space-time finite element formulation. 
Let the solution vector be defined in abstract form as 

X:= {u.~} (27) 

Then define the total energy for the coupled domain t'2 = 1"2, U .Q, by the expression, 

E(X): = ~,(u) + ~',(~) (28) 

where the total structural energy in terms of the structural displacements is 

1 
f, lp, t i .a  + e(u):C'e(u)ldY2 (29) ~,(u):: ~ :, 

and the acoustic energy or 'wave energy' in terms of the velocity potential is 

I + v] 
:= f.. ,..[ v. dl~ 

1 
f, p,,[a2((b) " + V~.V(/,IdO (30) 

The first and second terms in (29) are the kinetic and strain ep.ergy for the elastic structure, 
respectively. The form of lhe acoustic energy written in terms of velocity potential is in reverse order: 
the first term (time derivative squared) and second term (gradient squared) in (30) are the potential 
and kinetic energies, respectively. The total energy [or the coupled system ~(X) defines a natura" energy 

I /  d norm on the space ~ = [H ~[/~)] × H'(,q~), i.e. E(X):= llxll;- 
The acoustic intensity for sound waves is defined as the vector ! : = pv, where p and v are the acoustic 

pressure and velocity, respe~,tive|y (see e.g. [26]). In terms of the velocity potential the acoustic 
intensity vector takes the form, 

/ :  -p,,4;v,~ (31) 

whose component 1. n is the rate per unit area at which energy is transmitted in the direction of the unit 
normal n. For the exterior problem the rate of energy (power), 5L absorbed through the artificial 
boundary F~ is then, 

f pofbVcb n dF (32) ~(~):= - . 

In terms of the absorbing boundary conditions defined through the linear map 5,, given in (13), 

~('/') = It, p,.d,5,~6 d r  (33) 

With these definitions in place, the following energy estimate for the coupled structural acoustics 
problem m exterior domains can be proved. 

LEMMA 3.1 (Energy estimate). Under the conditions of zero sources f = 0 in Of, and homogeneous 
traction boundary conditions i= 0 on Fo, then the time rate of  change of  structural acoustic energy in 
[2 = f2, LJ Dr is equal to the total rate of  transport through the artificial boundary F~, i.e. 

d 
d-~-E(X) = - ~ ( 6 ) ,  Vt~O (34) 

where X = {u, ¢b }. 

PROOF. The proof of this important result employs integration by parts and provides the key 
motivation for the space-time finite element formulation proposed in this paper, Computing the time 
derivative we have, 
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~',(u) = f, lp, a- ~ + ,(ti) c:  e(u)] dn dt i, 

= f [u . (V.a)  + ~(i~):C:e(u)ldn 
- 'J  1~ 

= f p,,6ti.ndr (35) 
d l  

Similarly, 

d £ ~... 
d-7 ~(~) = o,,[a¢~ + v6.v~l  dn 

If 

=f, 0,,i6V"4, + v$.V4,ldn 
Ii 

i ? 

Combining (35) and (36) gives the desired energy estimate (34). [] 

REMARK. It is important to note that by choosing the velocity potential 4~ for the acoustic variable 
and enforcing the compatibility of normal velocity (12) across ~, then the coupling integrals defined on 
the fluid-structure interface boundary ~, cancel when (35) and (36) are added together to form (34). 
This is the key property associated with the choice of X variables and plays an important role in the 
stability (energy) estimates for the space-time formulation. 

THEOREM 3. I (Energy identity). At any given time t > 0, the energy in/2 = ,O S U Of plus the energy 
absorbed through t~,e artificial boundary F~ is equal to the initial energy in the coupled system, i.e. 

~,(u(t)) + Sr(,b(t)) + ~(4,(t))= ~g~(u,,) + ~t(4'o), V t ~>0 (37) 

where 

I: ~(~(t)):= , e(~b(r))dr (38) 

is the radiation energy. 

PROOF. Integrating (34) over time, 

I' E(:t)l~, + ~(~(~-))d~--o (39) 
I 

and using definitions (29), (30) and (38) gives, 

~,(u(t)) + g'f(6(t)) + ~(4~(t)) = g,(u(0)) + ~f(6(0)), V t >~ 0 (40) 

Using the initial conditions (23)-(26) gives the desired energy identity (37). 0 

This result provides a natural measure of stability for the exterior structural acoustics problem, and 
will be used to guide the design of the space-time finite element formulation described in the next 
section. As a specific example for the energy estimates given in (34) and (37L consider the first-order 
non-reflecting boundary condition defined in (15). in this ease the rate of energy absorbed through the 
artificial boundary F, is given by the surface integral (33) with the normal derivative replaced with 

1 1 
-,~,q~ = - ~.~b - c  ~ (41) 



L.L. Thompson. P.M. Pinsky / Comput, MeOmds Appl, Mech. Engrg, 132 (1996) 195-227 2(}3 

Defining the following weighted L. norms on F. as 

II~ll~, ::- f, P,,(~)= dr (42) 

I' 
li~[l:,, :-- II~l[ff, d,  (43) 

I 

then with the linear operator ~ defined in (15), the rate of energy transport through the artificial 
boundary specializes to 

l + l  

1 d 
-- 7 c,, 77 It~ I'~ff-. + c, 114,11~. (44) 

where c, = 1/R and c t = 1 [c are positive constants. An energy identity of the form (37) is obtained by 
integrating (44) over time with the result, 

1 
~,(u) + ~-,(~,) + ~c,,ll~ll;, + c,11611]., = ~,(u,,) + ~',(6,,) (45) 

In the above, we have used the fact that ~, = ~. = 0 on F~. This is the stability (energy) estimate for the 
continuum problem with §t ,  It states that the total energy for the structure ~'~ and the fluid ~'f plus the 
radiation energy absorbed through the artificial boundary F, is equal to the initial energy in the system. 
An analogous result will be derived for the proposed space-time finite element formulation incorporat- 
ing ~t,  see Theorem 7.1. Eq. (45) can also be used to prove uniqueness of the coupled structural 
acoustic problems with X variables and radiation boundaries (see [27]). 

4. Discontinuous Galerkin formulation 

The development of the space-time finite element method follows the procedure outlined in [6], by 
considering an ordered partition of the open time interval, / = ]0, T[, of the form: 0 = t o < t~ < . . .  < 
t N = T, with variable time step At. = t .+~-  t.. Then, the time interval of interest can be written as 

N - I  = {U.= o I.} U {q,t,. . . . . .  tN_~}, where the nth open time interval is defined by 

!. := lt.,t.÷,[ (46) 

Using this notation nth space-time slabs for the structure and fluid are defined respectively as 

Q~, = a~ x 1., Qf. = Of x !. (47) 

with boundaries Y~, = 0D. x I. and Yr. = oaf x 1.. For the nth space-time slab (n.~)~, and (n~l)f. denote 
s f the number of space-time finite elements in the subdomains Q~ and Q,,, respectively. With these 

• . se  . . . . .  
defimtlons, Q.  c Q~, denotes the mtenor of the eth element m the structural domain wtth boundaff 

se  . . f e  f . . . . . .  [ 
Y~,. Slmdarly, Q. c Q. denotes the ,ntenor of the eth element ,n the fired domain, with boundary Y. .  

Fig. 2 shows an illustration of two consecutive space-time g l ~ l b . q  Q n - . l  and Q. for the fluid where the 
superscript is omitted for clarity. Within each space-time element, the trial solution and weighting 
function are approximated by pth order polynomials in x and t. These functions are assumed C°(Q.) 
continuous throughout each space-time slab, but are allowed to be discontinuous across the interfaces 
of the slabs. Assuming the function w(x, t) to be discontinuous at time t., suppressing the argument x, 
the temporal jump operator is defined by 

~w(t.)] := w(t~ ) - w(t~, ) (48) 

where 

w(t~) =.~9_- wCt. + ~) 
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Fig.  2. I l l u s t r a t i o n  o f  t w o  c o n s e c u t i v e  s p a c e - t i m e  s l a b s  w i t h  u n s t r u c t u r e d  f i n i t e  e l e m e n t  m e s h e s  w i t h i n  a s l a b .  

This discontinuity of the finite element functions across space-time slab interfaces, allows for the 
general use of high-order elements and spectral-type interpolations in both space and time, and 
provides freedom of changing the discretization from one time step to another. The discontinuity is also 
essential for the unconditional stability of the space-time method proposed in this paper. For 
simplicity, the collections of finite element shape functions are stated for equal-order interpolation in 
space-time; however it should be noted that unequal orders are allowed. 

Trial structural displacements 

yh ~1 h 
tl=l) 

Trial fluid potential 

et=O 

y ~  t ~u (x, t) lu" E o ,~ d h = ( C  ( ~  .))  , u IQ,'  E ( ~ k ( Q ~ ' ) ) d }  

6T h d,, = {q)h(x. t)l~b h ~ C"(Qf.) ,  

In the above, .~k and ~P denote the space of kth order and pth order interpolation polynomials 
within a space-time element for the structure and fluid, respectively. Inclusion of essential boundary 
conditions is straightforward with the usual restrictions placed on the trial and weighting function 
spaces. 

Before stating the space-time variational equations, it g~ useful to introduce the following notation. 

( n ¢ l } .  

0 .  = !.3 Q~, (element interiors) (49) 
e - I  

(rl¢l) a 

Y,, = U Y,~ - Y. (interior mesh boundaries) (50) 
e - I  
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Sp_ace-time element boundaries which coincide with the artificial boundary (Y.),, := F~ x I,, are denoted 
(Y~)~ = Y~ rq 0~),,, where the overbar indicates the closure, Using this notation, the interiors of the 
element boundaries restricted to the artificial boundary are defined as 

( t l  ¢l lrp 

(£),,-- U (£)',; (5~) 
e ~ I 

The strain-energy inner product for the structure is denoted by 

a(w, u). = f~ Vw. tr(Vu) dl2 (52) 

Standard L. inner products are defined as 

(w, u),~ = ~ w' u d.O (53) 

and equipped with norm IIwll,,-: (w, w) ~-" Inner products for the fluid are weighted by the fluid 
reference density p.. Integration over element interior,; is defined as 

= whcb h dQ (54) (wh '~h)Q"  e-1 en 

4.1. Variational equations 

The space-time variational formulation for the coupled structural acoustics problem is obtained from 
a weighted residual of the governing equations (16)-(22) within a space-time slab and incorporates 
time-discontinuous jump terms across slab interfaces. The specific form of this variational equation is 
designed such that a priori stability and energy estimates analogous to those described in Theorem 3.1 
for the continuum problem are obtained for the discrete problem. 

Within each space-time slab. n = 0, 1 . . . . .  N - !, the objective is to find ,! ,h := {u h, ~b h } E b°. h x ff~. 
such that V ql h := {w h, w h } E ~.h x 1~'~, the following coupled variational equations are satisfied, 

with 

and 

B.(w h, X h)~ = L,(wh)~ 

Bf(w h, Xh). = Lf(wJ')., 

the following definitions, 

B,(w". X~)~ :--- E~(w ~, uh)~ - A(w", ~ ~)~ 

Bf(w", X h)~ :-: E f (w ~r, ~ h ) ,  + A(uh wh) ,  + E,(w h, df'). 

(55) 

(56) 

(57) 

(58) 

E~(wh,uh)~:=(ffh, p.ji~)Q,. . + a(~i'h,u )q~ +~w ~,~),p,u (t~))l~+a(w (t.),Uh(t~.))~h (59) 

Ef(W h, h , .-h . h + 6 ). :--- ( ' * ,  a'd, )e'. + (~Twh, Vd~t')e'. + (w (t.) .  a2~"(t~ ))'h + (Vwh(t~)' V~b*(t,,* ))a, (60) 

A ( w  h, 6h)n . =  ( W h  po~phn)(y,b, (61) 

• h + • h - If -- L,(wh)~ "= ( i'h /')o:,,. + (w (t ,) .  )),,, + Ps u (t n h + . a(w (t,~), u (t~ )),,,. (62) 

" h r + ~W h . + x Lf(wh). -_ (~h. f)e~ " + (~b (t.). a:~h(t~ )),,, + ( (t. j. v~bh(t~ )),~, (63) 

The operator E,(w;',,bP')., incorporates the time-dependent non-reflecting boundary operators 5m as 
natural boundary conditions, i,e. they are enforced weakly through integration over both the artificial 
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boundary F~ and the time interval I,,. The formal definition of this boundary operator with details for 
the implementation of the non-reflecting boundary conditions are given in the next section. 

In order to guarantee a stable space-time finite element algorithm, the coupled variational equations 
(55) and (56) are constructed in a form which is consistent with the energy (stability) estimates given in 
Lemma 3.1 and Theorem 3.1 for the continuum problem. The design criteria then is to construct a 
coupled variational equation suet" that the natural energy norm emanating from this variational 
equation satisfies a stability (energy) identity analogous to that obtained for the continuum problem. A 
key feature is the use of the time derivative (time rate of change) of ~k h, i.e. ~b* := {~,h, w,}. as the 
weighting function in the terms evaluated over Q,, in (59) and (60). With this choice of weighting 
function, the form of these terms are consistent with the time rate of change of structura~ acoustic 
energy defined in (34)-(36). In the operator E~(., .)~, the terms evaluated over Q~,, act to weakly 
enforce the momentum balance in the structure and are identical to Eq. (105) in [6]. In El(., .),,, the 
terms evaluated over Qf,,, act to weakly enforce the scalar wave equation in the fluid within the interior 
of the nth space-time slab. 

The terms evaluated over the structural domain O, in (59) and (62), together with the terms 
evaluated over the fluid domain .Of in (60) and (63) act to weakly enforce continuity across space-time 
interfaces. Weak enforcement of the velocity v h = 17d,* and pressure ph = _ p , $ ,  for the acoustic fluid is 
prefer!be0 through the temporal jump operators associated with (60) and (63), i.e. 

(,,"i~+),a 2 [6"(tn) ] )~, + (Vwh(t,~), [V~"(t,,)] )~, ~tn 

prc~,~t, Tt~ jump velocity jump 

Similar temporal jump operators associated with (59) and (62) defined over .os act to weakly enforce 
structural velocities and stresses across time steps. The specific form of these jump operators are 
designed such that continuity is weakly enforced via a kinetic and strain enelgy inner product for the 
structure and similarly a kinetic and potential energy inner product for the acoustic fluid. These jump 
conditions are the mechanism by which information is advanced from one space-time slab to the next. 
Physically, they add a consistent numerical dissipation into the algorithm which helps control any 
oscillations that may occur in the vicinity of discontinuities or sharp gradients in the solution [7]. 

Fluid-structure interaction is accomplished through the coupling operators A(., .), integrated over 
the fluid-structure interface (Y,), = F, × I,,. Tt:.ese coupling terms appearing in (57) and (58) weakly 
enforce the acoustic pressure interface condition (11) and continuity of normal velocity condition (12), 
respectively. The fact that the coupling operators in both (57) and (58) are of the same form; namely 
(61), follows directly from the choice of X* := ( uh, ~b h} for the structure-fluid solution variables and 
the consistent weighting ~* := (~,*, ~bh}. This global symmetry property of the coupled space-time 
variational equations facilitates the establishment of stability and convergence proofs for the coupled 
finite element formulation in a manner similar to that obtained for the continuum problem. 

R E M A R K  1, The method is applied in one space-time slab at a time; data from the end of the 
previous slab are employed as initial conditions for the current slab. Because the solution is weakly 
enforced across slab interfaces, the finite element mesh may change from one slab to the next and it is 
not required that the meshes match across the discrete time levels. This is especially useful for adaptive 
schemes where the finite element discretization can be refined/unrefined within space-time slabs to 
track wave fronts as they propagate ~!,,ng space-time characteristics. 

REMARK 2. In [6] an extension of the time-discontinuous Galerkin space-time formulation is given 
where independent interpolation functions are used for the solution and its time derivative, e.g. for 
elastodynamics, independent interpolations are used for the displacements and velocities. In [27, 28] an 
extension of the formulation presented in this paper is developed as a multi-field formulation 
incorporating second-order non-reflecting boundary ~ouditions wiih independent velocity potential and 
pressure variables for the fluid. This multi-field formulation allows for a variety of combinations of 
high-order interpolations, including equal-order for ffh and ph. 
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4.2. Non-reflecting boundary conditions 

The linear mapping 5,,,¢ defined previously in (13) is assumed to take the following abstract form, 

5,,,,b = ~ C,l_--~-t~ j on t \  "=/7., x I,, (64) 
i= | J  

in this expression, the index rn reflects the order of the temporal derivatives appearing in the operator, 
and C,, j = 0, i . . . . .  rn, are spatial operators that may be local differential operators that couple only 
adjacent points on the artificial boundary, or non-local integral operators that couple all points on the 
artificial boundary F=. Specific examples of time-dependent non-reflecting boundary conditions which 
can be expressed in this general form are discussed in detail in [251. Here, we note that the first.order 
operator (m = 1) defined previously in (15) conform to this representation with the spatial operators C,, 
j = 0, 1 reducing to 1/R and 1/c. 

in general• boundary conditions of the form (64) provide increasing accuracy with the order m; 
however, as the order increases, they become increasingly difficult to implement in a standard 
semidiscrete finite element setting due to the occurrence of high-order time derivatives on the 
truncation boundary Y,~. Semidiscrete meth,..ds for second-order hyperbolic wave equations, which 
discretize the spatial domain with linite elements, lead to a second-order system of ordinary differential 
equations in time. The~e ordinary d',fferentiat equations are then integrated using standard finite 
difference algorithms such as the Newmark family of time integrators. Since standard semidiscrete 
algorithms are restricted to integrating up to second-order time derivatives, their application to (64) are 
limited to orders m <~ 2 only. 

Space-time finite element methods, in which the solution is allowed to be discontinuous across 
space-time slabs places no restriction on the order m of time derivative appearing in the operator ~,,,. 
Since continuity is enforced weakly between time steps, standard C" continuous interpolation functions 
in the time coordinate can be used up to the order dictated by the operator .$,,. An advantage of the 
space-time formulation is that the order of the temporal interpolation can be increased near the 
non-reflecting boundary so that temporal accuracy is increased locally to a level required by the 
boundary condition. It is this special property of the discontinuous Galerkin formulation that provides 
for the potential to directly implement (64) up to any order desired. It is noted however, that 
high-order non-reflecting boundary conditions bcyord second-order may involve high-order spatial 
derivatives appearing in C,. that require increased continuity in the spatial coordinate. In this case 
special local boundary elements which incorporate high-order continuous spatial basis functions would 
be needed (see e.g. [29]). In the discussion to follow, we describe how the time-discontinuous Galerkin 
space-time method provides a natural variational setting for the incorporation of non-reflecting 
boundary conditions of the form (64). and how under certain conditions on the boundary operators 
stability and convergence can be proved a priori. 

For boundary operators up to second-order m = 1, 2, the bilinear form E,(.,.),, appearing in the 
space-time variational equation (58), is defi,lcd as: 

For m -  1. 

h + E,(w", ,b "),, := (~" 5,4a")a.~, + d,(w (t,, ). [I4/'(t,,)l]),. (65) 

For m = 2, 

• h I i  Er(w", 6")°:= (,," 5 4,"~ +d.(., (t,~).114,'%)II),. + d,,(.,"(t.*), II,/, (t.)D,. (66) • 2 J(l~) n . 

The term evaluated over (Y.), := F~ x I,, acts to weakly enforce the non-reflecting boundary condition 
(64) over the time interval It,,, t,,.~[ and F~. The form of this boundary operator is guided by the 
definition of the acoustic intensity given in (33). Replacing the trial solution with w", we have 

h f ' " '  §,,w )a=~. = j, ~(w") dt (67) 
tn 
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indicating that this term represents an acoustic radiation inner product integrated over the time interval 
1,,. As a specific example, consider the first-order, (m = !), non-reflecting boundary condition defined 
previously in (15) and repeated here as 

5,,~ = c.~, + c , d  I68) 

where the spatial operators reduce to the positive values C~ = I[R and C 2 = l/c. For this case, the 
acoustic radiation operator takes the form 

(wh, §~bh)l~o :=d.(ffh6h)~v~ ~. + dt(wh. ~'h )~.~. (69) 

where the index on the bilinear operators d, and d t reflects the order of the time derivative appearing 
on the trial solution For this simple case, the bilinear operators reduce to 

, poCvht~ hdF dt (70) 

d,(r//, •h),r.). 1 i f " '  f, . , , .h =--- p.W e, dF dt (71) 
C t, ,  "~ ' 

Similarly, extending the sequence (64) to second-order (m = 2). 

5 , ~  = C,,$ + Ci6 * C.,d (72) 

the radiation operator reduces to 

(~(J J', ~.~h)iv. ..'~ :- d,(Ib h , tb h )CY~ ~. +dl  (~'h' ~J')~ ~>,, + d2( ~h , 4~"h)l~-~. (73) 

The form of the bilinear operators dj depends on the local or non-local character of the spatial 
operators C i appearing in (72). The index for the operators d r j = 0, 1.2. reflects the order of the time 
derivative on the trial solution appearing in the operator. Specific examples for 5 2 are given in [25]. 

The terms evaluated over the space-time slab interface at the boundary F~ in (65) and (66) act to 
weakly enforce continuity of the trial solution across space-time slab interfaces. The specific form of 
these operators are designed such that continuity of the artificial boundary F~ is weakly enforced in a 
form which is consistent with the radiation boundary term evaluated over (Y~),. Thus, for m = 2. the 
form of the consistent temporal jump operators [[~bh(t,,)D and [~h(t.)B embedded in the last two terms of 
(66) depend on the form of the spatial derivatives appearing in the bilinear operators d.(., ")o..~. and 
d.~(., .)~r.~. given in (73). These consistent temporal jump operators are required in order to ensure that 
the discontinuous Galerkin solution is unconditionally stable and are the crucial element that enable 
generalization of the space-time finite element method to handle exterior domains. Note that no jump 
operator is needed for the term corresponding to dt(w h, ~h)o.~" in (73). The reason for this becomes 
clear from the stability analysis described in the next section where it is shown that this term naturally 
leads to a well-defined norm, requiring no additional stabilization. 

For m = 1, since the first-order non-reflecting boundary condition defined in (15) involves only 
first-order temporal derivatives, the only consistent jump operator needed is d,(., .)r~. The form of this 
jump operator follows from (70), i.e. 

h + 1I i  S, + = p.w (t,,), [I4,~(t,,)ll dr  (74) d,,(., (t.).~,t,"(t.)l),. k • 

To facilitate the stability and convergence proofs incorporating non-reflecting boundary conditions, 
boundary opcrators are assumed to be spatially non-negative, i.e. 

di(wh, wh)r >~0, j = l } , l , 2  Vw~'E~W h (75) 

Examining the boundary operators defined in (70) and (71) for 5j ,  it is clear that these operators satisfy 
condition (75) explicitly, i.e. 
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d,,(w ". .,"),. = c,,liw"ll~. ~ 0  (76) 

d l ( W " ,  wh) r ,  = C I liw"ll~. ~ o ( 7 7 )  

where C,, = I / R  and C~ = 1/c are positive constants, and [[w"[]~. is the weighted L, norm restricted to 
the boundary F~. 

5. Galerkin least-squares stabilization 

In order to enhance the stability of the basic time-discontinuous Galerkin space-time formulation, 
and to prove that the method converges for arbitrary space-time discretizations, local residuals of the 
governing differential equations in the form of lea.~t-squarcs operators are added to the variational 
equations (55) and (56). Stabilized methods of this type are referred to as Galerkin Least-Squares 
(GLS) methods [81. The time-discontinuous GLS formulation for coupled structural acoustics is stated 
formally as: 

. . . . .  oTh Within each space-time slab. n = 0. 1 N - 1: Find ,,h : = j .h 6h} E 9 ~h × .. ,,, such that V ~h := 
/! h -n  -h A 't - -  • n 

{ w , w } E ~ t , x ' ~ ,  , 

B~;es(W". X").  = L ~,Ls(W"),, (78) 

Bf(;Ls( wh, X"),, = Lf(;Ls(W"),, (79) 

where 

s It h h 
B,;Ls(W • X"),, = B,(w , B;s(W". " • X ),, + x ),, (80) 

L' , h, t, t, (;Ls~W ~, = L,(w ). + Li.s(W ),, (81) 

similarly. 

B',;Ls(w". ~") ,  ~- B,0,'". ~")° + #Ls(,/ ' .  X"), (82) 

L I twh~  . f  , h c, Ls, , .  = Ldw") .  + Lt.stW ). (83) 

The least-squares addition to the Galerkin variational equation for the structure is an extension of Eqs. 
(101) and (102) in [6] and is defined as: 

• " (~0 h - I r ,~ h ~. BL,(w". x*).  "= t ~ . w .  o, ~-~.u Jo:, + (~°'(Vw~)(x)]I" n. p, ]&(Vu")(x)].n)~.. 
+ (o'(Vw").n. p,- '~a(Vu"), n),~;.,° + (Y, 0" .  O.'sY~xh)o;,. (84) 

L , ,  h ,  t.s~w j. := (o-(V#') .n,  p~'st)~:,,.  (85) 

where ti,.e residual for the structure is given by the equations of motion ~ ,u  h := Oji h - V .  ¢(Vu h) and 
LP~X h := o'(Vu h) . n -  poc~hn is the residual for the traction interface boundary condition. 

Similarly for the fluid domain, the least-square addition takes the form, 
f h , h 2 C h ~- h 8Ls(w,  x") .  : :  ( ~ w .  c ~-~,~ )0'. + (~ ,w ,  -" " c s ~ . 6  ), ~. ,. 

h 2 h 2. (t~ h, + (~w°(x)]. ~, ( $ , 0 " c  ~.~,.x J,~;,° c s[~d~.,,(x)]) + , (86) 

L f t . s ( W h ) .  : =  (~.~,W". C2rf)¢)1 (87) 

where the norm ~1 derivative is denoted ~b~.',, =Vd/" "n and 

-~,6" := a:$  ~ - V%" (88) 
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Z,t," ::  ,t,l',, + ~,,,6" (89) 

~ ~ . =  ti h ~ '  .._, .n - .,, (90) 

The GLS weighting parameter r has dimensions of time and can be interpreted as an intrinsic 
time-scale, while the parameter s has dimensions of inverse speed and is a slowness scale. For ',he 
structural domain, the intrinsic time scale r and slowness scale s are matrices of size d x d. These GLS 
weighting parameters are functions that are dependent on element size and interpolation order, and 
may be designed to improve stability without degrading the accuracy of the underlying time-discontinu- 
ous Galerkin formulation. When these GLS parameters are set to zero, the formulation specializes to 
the discontinuous Galerkin method. 

From a Fourier analysis of the time-discontinuous method for first-order hyperbolic equations, 
Shakib and Hughes [30] have shown that GLS parameters can be optimized to achieve higher-order 
accuracy and minimize undesirable high frequency response without introducing excessive algorithmic 
damping in the low frequency regime. Fourier analysis has also been used to design optimal GLS 
parameters to enhance the stability and accuracy of solutions to the related reduced wave equation 
(Helmholtz equation) governing time-harmonic acoustics in the frequency domain (see [9-12]). 

For second-order hyperbolic systems, a practical value for 1" and s as suggested by Hughes and 
Hulbert [6] is 

l a x  
r = Ax s = --}----~! (91) 

where ! is the d x d identity matrix, ct. is the dilitational wave speed and Ax is interpreted as a local 
element size in the space dimension. Similar expressions can be defined for z and s, e.g. r = Ax s = 
&r/2c ,  or r = At /2 .  In Hulbert [32], the intrinsic time-scale used for a uniform quadratic interpolation 
was taken as 

At 
r - - -  (92) 

4~1 + C 4 

where C is the Courant number. While the definitions of these parameters are crucial to GLS 
performance, for the purposes of proving convergence, it is sufficient that they be dimensionally 
consistent. Both slowness and time scale parameters are needed in the convergence proof. However, 
from an algorithmic point of view, the implementation of the terms involving the slowness parameters 
involve unconventional and expensive calculations. As indicated by Hulbert [31] and the results from 
our numerical experience in Section 7, optimal convergence rates are achieved with the omission of the 
slowness parameters, and therefore in practice, it is suggested that these parameters be set to zero, i.e. 
s = 0  and s =0. 

For numerical solutions exhibiting sharp gradients or discontinuities due to shocks, non-linear 
discontinuity capturing operators are available to help further control oscillations that may occur in the 
solution [32]. However, for linear structural acoustics problems, the added ~.xpense resulting from a 
non-linear solve as required from the use of these discontinuity capturing operators is not justified. 

6. Euler-Lagrange equations 

Weak enforcement of the governing Euler-Lagrange equations for the structure is exposed by 
integrating (78) by parts to yield the following weighted residual expression, 

l )  = cil.stW , X ),, - L<a.slW I~, 

= (~h .~_ # ~ Ir~,wJ,• r,)(2,+h (lb t' +p~lso ' ( vwh)  . n ,o ' (Vu  ~' ) .n  - [)n,., ,  

+ (if" + O~ 's~(r(~Twh)(x)] ' n, ~o'(Vuh)(x)] , n)l f.,),, + (w" + p~ ' sLt. t ~, r'~)n. ,,, 

+ ~w ~t,, ), ~fih(t,)]),:, + a(w (t,,), Iluh(t,)l[),~, (93) 
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where 
h ceJ h 

r~ ==~u (equation of motion) (94) 

r~ = .Tj,I/' (coupling boundary condition) 

The second line in (93) describes the weak enforcement of thc momentum balance residual r~, for the 
structure within a space-time slab; the third line acts to weakly enforce the prescribed traction at the 
boundary C,; while the terms in line four define the weak enforcement of the traction continuity across 
element boundaries. This term arises from integration-by-parts over the spatial domain. Line five 
describes the weak enforcement of the traction coupling boundary condition /~, at the interface 
between the structure and the fluid. The last tw, o lines in {93) show how continuity between space-time 
slab interfaces is weakly enforced via a total structural energy inner product. 

Similarly for the fluid domain, integrating (79) by parts yields. 

0 B ~ {w h h , I  , h, (;t.S~ ,X ) , , -  = Lc;n stW I,, 
2.z, t, t, +(~,h , ij 

= . + St'-IW ,,(X)L II~!~(X)]), V,° (v~ h + rc2Lf~w ~' r~)o ,  " + (a ,"  + sc j w , r ,  )l i .  r,, 

+ (,i/' + sc:~',.6, r~),,.,o + (~,"(t,~). a'~U~"(t,)n),,, + (Vw"(~,~), ~v6"(t~)ll),,, 
• l: t h * + dz(~bh(t, .  ). ~6 ff,,)~)t'. + d , , (w ( t , , ) .  [[6"(t,)~)r, (95) 

where 
h rf = 5f~b h - f  (wave equation) 

r~ = ~6~'  (radiation boundary condition) (96) 

r~ = ~.,X ~' (coupling boundary condition) 

The second line in (95) describes the weak enforcement of the wave equation r~, over the space-time 
slab; the third line acts to weakly enforce the non-reflecting boundary conditions r~, at the artificial 
boundary; while the terms in line four define the weak enforcement of the gradient continuity in space. 
This term arises from integration-by-parts over the space-time domain. The notation [tbh~(x)] = 
~ h  ~ + h - • ,,tx , t) - d'.,(x , t) is defined as the spatial jump in the gradient across element boundaries. Line five 
describes the weak enforcement of the kinematic coupling boundary condition r~ at the interface 
between the fluid and the structure. 

The last four lines in (95) show how continuity of the solution is weakly enforced across space-time 
slabs through the temporal jump operators. Within the domain 12t, continuity is weakly enforced via a 
total acoustic energy inner product. At the artificial boundary F~, continuity is weakly enforced via the 
radiation boundary operators d,(', "jr and d,(., "jr.. These additional operators are needed in order to 
unsafe ~,,,b,m:r a,,u arc th,. cr,~,.,.., ¢,cm~:r,;. ihat enable generalization of the time-discontinuous 
space-time finite element method to handle non-reflecting boundary conditions. 

Examining the Euler-Lagrange equations, it is clear that as a result of being a residual based 
method, the space-time finite element formulation is consistent, in the sense that the error in the finite 
element solution is orthogonai with respecl to 

B~ tw h E) , ,=0  (97) 
G L S t  

B' tw h t'~ =0  (98) 
G L S  ~, s ~ / n  

where E = X h - ~, is the error; in components E = {d' - u, 4/' - ,b}. Clearly, the time-discontinuous 
Galerkir formulalion with ('r = 0, s = 0) and/or 0" = 0, s = 0) also satisfies a consistency condition. 

7. Stabili | .y and  c o n v e r g e n c e  analys is  

In this section we prove that the space-time variational formulation inherits a stability estimate of the 
form giveo by Theorem 3.1 for the continuum problem. Using this estimate we conclude that the 
proposed space-time method for the coupled structural acoustics problem with the direct implementa- 
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tion of radiation boundary conditions is unconditionally stable and converges at an optimal rate. The 
'algorithm is termed unconditionally stable if, in the absence of forcing terms and for arbitrary initial 
conditions, the computed total energy for the system plus the radiation energy absorbed through the 
artificial boundary is always less than or equal to the initial energy in the system for arbitrary step-sizes. 

In the following analysis a series of Lemmas are proved which give the strong coercivity (positive- 
definite) conditions for the coupled variational equations. Using these results, we then establish an 
energy decay inequality (stability condition) for the coupled space-time algorithm which is the discrete 
counterpart to the energy estimate obtained for the continuum problem. As a prelude to the more 
complicated fluid-structure interaction problem, a priori error estimates are obtained for the uncoupled 
acoustics problem with non-reflecting boundary conditions. We then return to the coupled problem, 
where error estimates are given for the coupled fluid-structure system. 

7.1. Preliminaries 

Summing (79) over the time slabs and after rearranging terms we have 
A / - I  

B I  , h GLs~W , /](h) = EI(Wh 6tr) + A(lth Wh) + Er(w h, ¢~1,) + ~ aLs( W I  n, X*)n 
n : o  

N - I  

f h t r h "~ ' 
LGLS( W ) = Z 1( l~t', f)0~ + LLs(W )n} + (6'1'( 0"~ ), a" 6,,)a, + (V'v"( 0÷ ). W~,,)a, 

n : 0  

where the global operators are defined as 

Ef(w h, 6"):= E.( .?.  6") + Eo(w*. .b h ) 

Er(W", 6"): = O2(w*, 6 h) + O,(w*, 6") + O,,(w*, 6") 
N-I 

A(u h, w") := ~ (u h, p,,~,*n)o-,b ° 
q = 0  

and 

Ez(wh,6h)= 

E, , (wh6 ') = 

O,(~,~, 6 ") = 

N - I  N - i  
• - h  " " h  2 (~'".a'6)o'. + ~ (fib(t2). a'16 (/.)]),,, + (~b"(O").a"~"lO÷))a, 

n = 0  r / -  l 

N - I  N - I  

Y~ (Vwh.V~J')o, + ~ (Vw"(t2).lV6"(t.l])a,+(Vw"(O*), V6"(0"))a, 
n = l l  n - 0  

N - I  N - I  

E d..(w".~").., + E d_~(w"(tl).l~O,)]),: + d:(w"(O'). ~"(0")),. 
n = 0 .*1 - 0 

N - I  N - ~  

e,,(,~".,~),. ,. + ~ a,(.,~(t~).16"(t.)ll),. + e,,(./'(o ~ ). ~"(o+)),. 
n = 0  n = (I 

N - I  

D,(w h, 6 n) = ~ d~(ge*. ~b*)o.," 

such that 
f h xh)  , h 

=/.GLs(W 

Similarly for the structure, summing (78) over the time slabs, we obtain: 

s h s wh BGLS(W .51 't') = LGLS( ) 

where 

(99) 

(1oo) 

(lOt) 

(I02) 

(103) 

( 1 0 4 )  

(105) 

(1o6) 

(107) 

(1o8) 

(1o9) 

(llO) 
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and 

N- I  

B" " " sl'") = 6") " <~,.~tw, E.(w". u*) - Aiw". + Y- SlT.4w", X )° 
tl ~ ( I  

t.{~L4w") = ~ {(,i,", i),,:.,o + t.L4w").,} + (¢'( l l  + ), p.a,,),,. -+ a(w"(o+), .,~)~. 
tl - i t  

A ' -  1 ,V-.- i 

E,(w h.uh) : ~ (W",O,//h)e:, + ~ (W"(t,~ ), p,[d"(t,,)]),,. + (W"(O+), Pfih(O+))~,, 
t / - I I  rl IF 

,'<,; - I ,%' 1 

h + ]~ .( , i , " . .  k,:, + .5__] " " a(w (t,,). Ilu"(l,,)}~)~,. + a(w"(O + ), d' (0  +))~, 
tl - ( I  n - l i  

(111) 

i l l2 )  

(113) 

From (97) and (98) it follows that for a sufficiently smooth exact solution X, the global consistency 
conditions for (109) and (110) are, respectively, 

Bf tw ~ h ol.s, ,X -Jr)  =0 

B"c,t.s( wh, ,!~ j' - X) = 0 

(114) 

(1~5) 

7.2. Energy estimates 

L E M M A  Z I (Total acoustic energy). 

E, iw". w ~) = l l l¢ll l7 

where 

N - 1  

II1,,,"111~ := ~,iw"lo + ))-,- Y~ ~,(lIw~it.,)~) + ~:,(,,,"(T-)) 
n -~ l  

and for linear acoustics, the total energy within the domain l~ is defined as in (30): 

1 1 
~t(w) = ~ Ila,i' I1~,, + ~ IlVwlt~,, 

This is the coercivity condition for the fluid. 

(116) 

(117) 

(118) 

PROOF. 

zv-i .~,'~i ~,,,.~ 1 d 
Y~ i, i ,".w ) o ' :  j, 7T,  Ila'i'~ll~,, dt 

( i ' l l  ~ I ttr 

1 , l ,, ! , ~ l  
- 2 1 1 a . / ' ( r - ) l l ; , - - ~ l l a ¢ ( O + ) l l h , + g  o~,(lla,~h(t;)ll2.-II.*"It2)ll~,,) i1~9) 

Therefore, 

1 1 
E:(w". w") = ~-Ilaw"iT-)ll ~,, + ~ llaw"(0 + )ll ~,, 

N- I  1 ., 
a'w it. )),,, + Ila*"i'/, )1t,,,) + ~  ~ (l la¢'(t, ;) l lh,- 2( ,i/' (t,; ) . ' '  ~ 

t i l l  

1 1 1 N - t  

2 Ila¢'(T-)ll~', + ~ Ila'~"(0+)li~', + ~ ~] " ' = -  114w (t.)BII,,, (120) 
r t = ' l  

Similarly, 



214 L.L, Thompson, P.M. Pinsky / Comput. Methods Appl. Mech, Engrg, 132 (1996) 195-227 

Et)(wh ' Wh ) 1 1 , 1 N-, --~ IlVw~(T-)llff,, +-~ [IVw"(0+)llT,, + ~ ~ IIFw%)llll~,, 

Combining (120) and (121) and using (101) completes the proof. [] 

(121) 

LEMMA 7.2 (Radiation energy). For the exterior problem, assuming the non-reflecting boundary 
conditions satisfy condition (75), then 

E,(w h, w ~) --IIIw~lll~ (122) 

where 
N-I N-I  

• h lllw"tll~ := Y__., d.(w',  w ),-,.),. + ~',(w"(o")) + Y_. ~,.(Kw"(t,.)J) + ~',.(w"(T-)) (123) 
n=O n=0 

and the operator ~r(" ) is defined as 

l 1 
~',(w) : = ~-d2(ff, )i,)t; + 2  d°(w' w)l; (124) 

Eq. (123) represents a norm that is stronger than ~he radiation energy absorbed through the truncation 
boundary F~. For boundary operators up to second-order (m = 2): 

~(w):= for ft. o,,w~,~wdr dt 
= ~, (w)  + d , ( w ,  )0)) .  (125)  

PROOF. Proceeding as in Lemma 7.1, 
N-I  • .h l l d:,()i 'h, w )(.). ),, = -~d2(wh(T-), )i'h(T-))ik --~ d2(')i,'h(O+),, fi, h(O+))r, ' 
n =0 

1 N - I  

+ ~ ~ ,  {d2(wh(t~. ), C~(t~))t. - d2(wh(t~), wh(t~))r.} (126) 

Therefore, 

1 n - 1 n + :~'-I 
)=~d2(w ( r ) ,  wh(r-))t; +~d2(~/, ( 0 ) ,  wh(O'))r~ + 1  ~o d2([6'h(t~)]'~wh(t")])t; D2(wh, w 

(127) 

Similarly, 

! 1 ~ l  
D.( wh" Wh) = ~ d,(w~( T-) '  wh(T-))r~ + "~ do(wh( O+ ), wh( O÷ ))r~ + 1 do([wh(t.)~, [wh(t.)~)r ~ 

n=l 

Combining (127), (128) and (102) completes the proof. [] 

LEMMA 7.3 (Total structural energy). 

E~(wh h ~ 2 w )= lllw iiI, 
where 

N-!  

lll,,/'lll~ = ~,(w"(o~)) + ~ ~s(b,"(t,,)B) + ~,(~, iT )) 
n=l 

and for elastodynamics, the total energy within the domain ~, is defined as in (29): 

(128) 

(129) 

(13o) 
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| 1 
~(w) = ~ ( w, 0, ¢~ ),,, + ~ a(w, % ,  0 3 0  

This is the coercivity condition for the structure. 

The proof of Lemma 7.3 follows the same steps taken to prove Lemma 7.1 and so is omitted (see also 
161) 

-. ,c norm associated with the coupled fluid-structure system (109) and (110) is defined by: 

N - I  
q¢ w h lllg,"lll := IIi,¢111~ + Iliwhtll~ + illwhltl~ + Z {(~.w h, p . . : ~ . .  ,0~ 

n~ l }  

+ ( l l~(W")(x)n • n, p : ' s l I~ tv¢) (x ) l l ,  n)~ ~,}o + ( ~ ( w " )  • n, p f  :s~(vw")-  n)cy~ 
I/2c h 2 

+ Ilcs'~:gw~.(x)BIl~,,o + (~.g,~. c:sf3.~).,,o } (132) 

LEMMA 7.4 (Stability condition for the coupled system), 

= BOLS( w , g ' * )  ' ~'ot.s, ,4' h) (133) 

PROOF. The proof follows directly from the superposition of (109) and (110), 

a~rs(W h, ~*) + B~Ls(Wh, ~h) -~ e~(w h, w*) - A(w*, w a) 

+ Ef(w ~, w") + A(w ~, w ~) + E,(w ~, w ~) 
N-I 

+ E IRS (Wh R' (W h 
t, U G L S  ', ' I~/)n + ~'OLS' , ~).) ( 1 3 4 )  

Using the definitions in Lemmas 7. I, 7.2 and 7.3, and cancelling the coupling terms A(.,-) completes 
the proof. The discontinuous Galerkin method O" =O,s =-0) and/or ( r=O,s  =0),  also satisfies a 
coercivity condition. [] 

REMARK. By the choice of displacement/velocity potential variables 1"*, weighting ~h, and weakly 
enforcing the traction and kinematic interface boundary conditions across F~ x 1., then the coupling 
terms A(-, -), cancel when the structure and the fluid variational equations are combined. Recall that an 
analogous result occurred in the construction of Lemma 3.1 for the continuum problem. This is the key 
result which ailow~ for the establishment of a well-defined norm (132) for the coupled problem. 

In the following, we establish the discrete counterpart to the energy identity obtained in Theorem 3.1 
for the continuum problem. 

THEOREM 7.1 (Energy estimate). In the absence of external loading, i.e. f =  0 and i= O, and assuming 
the radiation boundary operators satisfy (75), then at the end of a time interval the total structural energy, 
i.e. [(Xh(t2)), within the computational domain ,O=O~U~Q t, plus the radiation energy absorbed 
through the artificial boundary F,~, i,e. ~(¢b *(t 2 )),/s bounded above by the initial energy in the system, 
i.e. ~(~o). 

PROOF. With f = 0 and i =  0, 

, , L f ¢~,% LGLs(U ) + GLSW , = (tih( 0* ), P, itO),, + a(u*(O* ), u0)a, + (~'(0+), a2dpo)a, + (V4~*(0 +), Vq}o)a, 

-< [(,~"(0 +), p,,io),,, + a(2(0 +), uo)n, 

+ (~,~(o + ), a'  ~o)n, + (v~ ~(o +), v4,o),,,I 
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1 1 1 h ÷ 
~< "~" (dh(0"), p, ah(O+))O, + "~ (ii,, pJio)f~ ' + "~ a(u ( 0 ) ,  UJ'(0" ))n, 

1 1 " h 0 +  2 1 . , lla¢ ()11,,,+ II44',,11~,, + ~ a(uo. u,,).. + 7 
1 , 1 , 

+ i IIv,¢,~(o +)117,, + ~ live,oil;,, 

= gs(uh(0+)) + ~'s(Uo) + g',(~bh(0÷)) + g,(O,,) (135) 

where g~(Uo) and g'f(t~o) denote the initial total energy in the domains ,0~ and Dr, respectively. Adding 
(109) and (110), and using Lemma 7.4 and the definition of lllq,~lll z results in the energy estimate, 

~(uh(r -)) + ~,(ckh(r-)) + .~(4~h(T-)) ~< g~(u,,) + g"f(¢o) (136) 

Since T is arbitrary, 

~.(xh(t2 )) + ~(4Jh(t2 )) ~< IF(X0 ) , n = 0, 1,2 . . . . .  N - 1 (137) 

where 

E(Xh(t2 )):= ~(uh(t2 )) + ~,(6h(t,7)) (138) 

E(X0) := ~'s(u0) + ~'f($0) (139) 

and ~(~bh(t~, )) is defined as in (125). Eq. (137) also holds for the time-discontinuous Galerkin method 
where (r = 0, s = 0) and/or 0" = s = 0). [] 

This result is the algorithmic counterpart to the energy identity derived for the continuum problem 
and stated in Theorem 3.1. The energy decay inequality in (137) states that the total energy in the 
fluid-structure system, plus the energy absorbed through the radiation boundary, is always less than, or 
equal to the initial energy in the system, which implies that the space-time formulation is unconditional- 
ly stable. 

COROLLARY 7.1 (Energy decay inequality .for acoustics). For the uncoupled problem of linear 
acoustics, with zero sources, f = 0, and 'rigid' boundary conditions, i.e. li h = 0, then (I37) reduces to 

~f($h(t~)) + ~(ckhtt2)) -< g'f($o), n =0, 1,2 . . . . .  N -  1 (140) 

As a specific example of the energy estimate (137), consider the first-order S~, non-reflecting 
boundary condition defined in (15). In this case the radiation energy (125) reduces to 

1 h ,h  "h 

[ s , 
=~coll,f, Ili~ + c,114'~11"~.= (141) 

where c o = 1/R and c I -- 1/c are positive eonszants and (137) specializes to 

_1 c ,/h 2 r(x~(t2))+ 2 " r~ +c,llr~ll~Y.~E(xo) (142) 

This result is the discrete counterpart to (45). 

REMARK. The approach taken here for ,he coupling between the fluid and structure is applicable for 
either the interior or exterior problem, For the interior problem, no radiation boundaries are present 
and we have the energy estimate. 

COROLLARY 7.2 (Energy decay inequality for the interior problem). For the interior (bounded) 
problem, (137) reduces to 
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h - E(X ( t , , ) )  < [E(X.) ,  n = 0, I .  2 . . . . .  N - I (143) 

This result establishes the unconditional stability of the formulation for the interior problem. 

7.3. A priori error estimates for acoustics 

Before slating the convergence talcs for the coupled fluid-structure system, a priori error estimates 
for the simplified uncoupled problem of linear acoustics with 'rigid' boundary conditions are derived. 
To further simplify the analysis, non-reflecting boundary operators are restricted to the first-order ~i  
condition defined in (15). In this case, second-order time-derivatives do not appear in the radiation 
boundary condition and the boundary term d2(-, .) is omitted. The proof of convergence follows along 
the ~;ame lines as in [61, with the additional complication of including the non-reflecting boundary 
operators for the exterior problem. 

For the acoustics problem with 'rigid' boundary conditions. (i.e. l ih 'n  =0 on F~), the coupling 
operator A(u h. w h) vanishes and the norm associated with (109) reduces to 

N - I  
I ,' 2 CD 17 2 lllw"lll := lllw"lll~ + lllw"lll ~, + ~ ~,llc~-":~e,w"ll~:,, + cs r~.w t,;-~,o 

n = [i 

+ [ics~,,. ,, 2 1,2 ,, ,,2 qw.o(x)]ll,~,,o÷ - w o,.,,ol (144) 

The coercivity condition for the uncoupled acoustics problem is then 

I l lw"l l l"  f = Bm.s(W . w ~') (145) 

where the right-hand side is defined by (109) with A(., .) = 0. The consistency condition in this case is 

f ~ (146) BGLS(W , e) = 0 

where e = ~b h - d,. 
Let ~h ~ ~-h denote an interpolant of $, and let r/= ~h _ ~b denote the interpolation error. Then the 

solution error, e = ~ - ~, can be split into the sum 

e = e h +7/ (147) 

where 

e" =~h  _ Sh ~ ~.h (148) 

is the difference between the finite element solution and the interpolant. An appropriate space-time 
mesh parameter is given by 

h = max{c at, ax} (149) 

where c is the acoustic wave speed and Ax and At are maximum element diameters in space and time, 
respectively. 

T H E O R E M  7.2 (Error estimates). Assume ¢ and s satisfy 

clh <~ ~" <~ c,h (150) 

c.~ ~<s <~ c., (151) 

where c z , c2, c3 and c~ are positive constants (c z > c t, c ~ > %). Assuming the exact solution tk to the local 
acoustics problem with $],  is smooth in the sense that, ¢b E H r +t(Qf) and assuming the interpolation 
error, ~!. satisfies the following estimates: 

N - I  

dl(// ' / /)o' ,) ,  ~ c(¢k)h2e-' (152) 
n=O 
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N - I  

liar "~1[~,:, ~ c(4,)h"P-' (153) 
t,J {I 

N " !  

lic~-' :~,,711~, <-c(~)h'"' (154) 
tl = [I 

N - I  

E ][as-t'"it . Ir~. <~ e(~b) h2p-' (155) 
n -~1 

N - I  

2 Ilcs""~,nll~,.~°<-c(~)h :'-' (156) 
n [| 

N - |  

- t '~  . .,s as - r  I ;~uo,)a~c(~)h2p-I-..: (157) 
n =1) 

N - I  

E { iics''b.(~)~ll }. + Ilcs'%.,, I1,,..,. } -< :(6)h >-' (158) 
n - 0 

N - I  

~,(,l(r-)) + gf(,l(o')) + Y~ I~,(n(t~)) + vf(n(t2))) ~c(,t,)h '"-~ (159) 
n = l  

e,,(n(r-), n(r-)) , .  + d.,(n(o*), n(o*)),, 
N - I  

+ ~ {d.Ol(t-),71(t~))t; + do(71(t+),,l(t+))r~} ~<c(~b)h 2P-I (160) 

where c( ~ ) is independent of the mesh parameter h, then 

lllell[: <~ c(~)h :"-' (161) 

The following Lemmas aid in the proof of Theorem 7.2. 

LEMMA 7.5. 
N I N - I 

E2(e". "0) = - ~ (O h. a" it )e'. - ~. ([O*(t.)~. a" it(t2 )),,, + (e*(T-). a" it(T-)),,, (162) 
n = ( I  n = l  

N - I  N - I  

E,,(e h, r/) = - ~] (re a, Vit)c,~ ~ n - - (~I V, (t,,)], Vr/(t. ))a, + (7eh(r-) . Vr/(r-))a, (163) 
n = l )  n = l  

N - I  N - I  

D,,(e". rl)= - ~ d,,(e", i i )o-o.-  ~, do(~e"(t.)]]. "q(t.))& + do(eh(T-), rl(T-)),~ (164) 
n = l l  n = I 

Results (162)-(164) follow directly using definitions (104), (105) and (107), and from integration-by- 
parts in time. [] 

LEMMA 7.6. 

(/;h a..it)e ~ + (re h, Vit)o~ " + do(e h, it),v.~. + d,(d*, it)lv~t° 

= (:el eh" it)o'. + (~, eh, '~)o~. + (bh.(x)~. ,~)f, + (eh., 'i)o.,,. 

PROOF. By integration-by-parts and the divergence theorem 

(re". v~ )~,, = - (V"e", ~ )o~ + (eh.. ,~ )o~° + (~e~.(x)~, ~)v. + (e.~,, ~ )~r,~° 

Thus 

(165) 

(166) 
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..,, . ,, ,, + d,(dt', r))t~.l,, (e .a'iT)e,,+ (Ve . Vi~)c,~,+ d,,(e i7),~.,., 

= 0 2fl' " " " ,fl' + (Hfl.',,(x)n, ~ ), ,, + (fl,',,, ~ )o',,,, (167) - v ' e  ,ip)O,,,+(e.,,+~ ,;I)~.~,, ", 

where use is made of (69)-(71) with the first-order m = 1, non-reflecting boundary operator defined as 
in (15), i.e. 

1 er , 1 .~, 
.~,e I' = ~  +-ec  (168) 

Employing the definitions (88) and (89) completes the proof. [] 

The following two inequalities are also needed. 
N - I 

{ -  (]#"(t,,)~. a" i~(t-. ))., - (~Ve"(t.)D. 7rl(t;, )).,} + (~;"(T).  a'- i~(T-))n ' + (Ve"(T~), Vr/(T-))uf 
n=  I 

' ] 
<~ -~ {~,(Ie"(t,,)~) + 4g,(rl(t; ))} + ~,(e"(T )1 + 4~,(n(T -)) (169) 

L . = l  

Similarly, 
N - I 

- ~ d,(~e"(z,,)~. 17(t,~ ))r. + d,,(e"(T ), ~7(T-))r. 
n= I 

, ] + "~ do(e"(T-), eh( T -))r. + 2d,(rt(T").-0(r- )),. (170) 

Results (169) and (170) follow directly from repeated use of the inequality 

l(.,u)l~ ~11.11:+.11o112 , v , > o  (171) 

The proof of Theorem 7.2 proceeds as follows 

B f , h e")  tile"Ill -'= otste , (by the coercivity condition. (145)) 
= B  I , i, GL.Sle , e - r/) (by (147)) 

n f " e  h ,. = -no t . s t  .r// (by the consistency condition. (146)) 
B f h -< I ~,.~(e .n)l 

h h h = [E..(e .~) + E~,(e .r~) + D,(e ,'q) + D,,(eh.z?) 
N.-I 

+ ~ {(~,e",c"r~frl)O, + (.T,e",c"sLeyl),f.. 
n=l l  

h 2 + h 2 f + (~e.(x)], c s~..(x)])¢~ ( e . , c  sr/..)o.~,}l (by definition of Bt~LS, ( 1 0 1 ) - ( 1 0 8 ) )  

lY = ,,=o 1- (~'eh' il)O~ + (Sffe"'c2r~dT)Ot. 

h 2 - (Lee",/1)~~1. + (~,e , c sL#yt)lr.). + 2dl(~", i7)ly.,. 

- (I]e!.(x)]].//)$-,. - (eh.. il )o',,. + (~e!.(x)]. c"s~rl..(x)])¢f + (el', cZsn..),,.,,.} 
N-I 

+ ~J~ { -  ([['kh(t.)]] , a2il(t. ))n,-  (~Ve"(t.}~. Vrl(t ~ )).,} 
Pl = I 

+ (et'(T-). a2(?IT-)).,. + (VeI'(T-). ~7.o(T ~)),, ̀  

N-I I - ~, d.(~e~(t,)g.n(t2))r. + d.(e~(T-) .n(T-))~.  (by Lemmas 7.5 and 7.6) 
n = l  
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N-I  
<-X 

n = 0  

1 

1 
+g 

1 

1 

1 +g 

Ttmmpson, PM. Pinsky ! Comput. MeOwds Appl. Met'h. Engrg, 132 (1996) 195-227 

! 1 : 2  • h 2 1 / 2  • 2 2 

IIc~" :e,e II0,. + liar wllo~, + ¼ 11o'":~/'11~, + Ilcr":.~fnll01, 4 
1 

llcs": :r,e" tl ~, . ,o + Ilas - " : ~ II~,.,,, + -~ t l c s "  X,e" ll ~, . ,. + Ilcs":~,,71l~,.,,. 
1 

" """ + Ilcs';:KeTAx)]ll}, + Ilas-"",~ll}, d,(E ,e h, . , .+2d, (~ ,¢ / )o . ,o  ~ 

- I , ' 2  • t 2 J'~ 
llcs"Ze';,]]~,,,o + []as w/l,,.,. + ¼ ~,: h 2 Ilcs le.,,(x)DII v + llcs "~n.,,(x)~llv,, 

1 N~l 
, ~/. , { ~,(Keh(t.)~) + 4~f(rl(12 ))} Ilcsa':e",llz,.,.. + lies '7.. ll z,-, ,,, + ~" -, 

~,(e"(T-)) + 2~,(~(r-)) + l N~_i {do(~e"(t.)].~eh(t.)]),. + 4d.(*l(t~ )" *l(t: )),; 

1 
+ ~ a,,(e"(r-), e"(T-)),. + 4d,,(n(T-), n(T-))r~ 

(by (171) and results (169) and (170)) 

The terms involving e h may be subsumed by the left-hand side. The interpolation estimates 
(152)-(160) then yield 

[IV'Ill: ~c(*)h ~p-' (172) 
Likewise, 

Illnlll" ~ c(,)n-'"-' (173) 

By the triangle inequality, 

ltlelll" ~ 21lie"Ill-" + 211lntll" ~< c(¢)t~~'-' (174) 

which completes the proof. [] 

This result indicates that the errer as measured in the natural norm (145) for the discontinuous GLS 
solution to tile exterior acoustics problem converges at the rate ( 2 p -  1)/2. 

8. A simple model problem 

To demonstrate the convergence and energy properties of the space-time finite element formulation, 
the response of a one-dimensional model problem in the semi-infinite interval 0 <- x < ~ was calculated 
by introducing a truncation boundary F. = L, and imposing an exact non-reflecting boundary condition. 
Consider the following initial/boundary-value problem, 

~=c'-¢b ..... f o r x E O ,  t>o  

d,(O. t) = O. 6.,(L. t) = - (I /c)6(L,  t) 

4, (x ,O)=~, , (x ) ,  d(x,O) = o 

(175) 

(176) 

(177) 

where/~ = ]0, L/and the condition at x = L in (176) is the exact 'plane-wave' non-reflecting boundary 
condition for this one-dimension problem. The initial pulse, 

! (1 2,r 6,(x) -- ~- - cos T (x - x,,)) 2 (178) 

is positioned at the distance x,, = 2.4 from the fixed end, with h = 0.8, and the computational domain is 
taken as ,12 = ]0, 4[, i.¢. L = 4. The domain O is discretized uniformly with standard biquadratic 
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interpolations, Q2, in space-time, with 3 × 3 Gaussian quadrature used throughout. Quadratic 
interpolation in time is used to resolve the second-order teL:poral derivatives appearing in (60). 

The exact solution is given by D'Alembert. Half of the initial pulse propagates with velocity c = 1, in 
each direction, i.e. 

1 
~b(x, t) = -~- [6.(~, ) + ~o(,L )] (179) 

for 0 <~ ~:÷ ~ ~ and 0 <~ t~_ ~< a where C = x - x .  - ct and ~_ = x - x .  + ct. At time t = 0.8, the wave 
propagating to the right, d',,(C), reaches the truncation boundary F~ = L, and at t = 1.6, this wave 
leaves ,0 entirely. At time t = 2.4 the wave propagating to the left, ~,~(~_), reachvs the fixed end and is 
reflected back. At time t = 7.2, the reflected wave leaves ,0, resulting in a quiescent solution. The form 
of % i~'.~ chosen such that the solution ¢(x, t) has sufficient smoothness (continuity) for the interpolation 
estimates given in ( 152)-(160) to be valid. For ~k, defined in (178), and quadratic space-time elements 
p = 2, the exact solution satisfies the requirc.ment ¢ E H ~. 

Fig. 3 shows the numerical solution using the time-discontinuous Galerkin Least-Squares algorithm at 
three representative times. Each space-time slab was discretized with a uniform mesh of 160 Q2 
elements. The intrinsic time scale used for all computations is 

At 
r--- 8V'i + C - - - - - - - -~  (180) 

where C = c A t / A x  is the Courant number. The effect of the slowness parameter s, has little 
consequence on the solution to this problem, and as pointed out by Hulbert and Hughes [71, due to the 
complications involved with its assembly, this term is omitted in all the computations. 

The energy properties of the exact solution are summarized in the following. The total energy with!n 
/~ is the sum of the kinetic and potential energies, i.e. 

l . , 1 , 

~(~¢t)) = ~ Ila~ll~, + ~ 11~117, (181) 

where 

Ila~ltg = (a~x,  t)) ~ ax 

f 
= $ " For the initial condition $o given in (]78), ]la6lt~ 11 .,11~.~ for t ~> a/2c. In addition to the energy in ,O, 

the power flow, or rate of transfer of energy past the truncation boundary F~ = L, is 

! (,/~L, t)) ~ ~ 0 (182) 
c 

and it can be shown 'hat the total energy in O, plus the energy entering the exterior domain x > L, is 
conserved, i.e. 

~(~(t)) + ~(4,(t)) = ~(6o) 083)  

where the radiation energy defined in (125) is specialized in one dimension to 

ill ~(&) = c  (d(L'r/))2 dr/ (184) 

Fig. 4 shows the energy calculations for the time-discontinuous Galerkin Least-Squares formulation, 
with the Courant number set at C = 1. At t = 0, all the energy is potential, and as the initial pulse begins 
to propagate, energy is transformed from potential to kinetic. For t >>-2t [ 2 c  = 0.4, the initial pulse has 
completely separated into a lift and right wave, and the space-time finite element solution preserves the 
equality of the potential and kinetic energies, i.e. Ila4,*ll~ --I1'~11~, - A t / - -0 .8 ,  the right going wave 
reaches F~ = L, and the loss in total energy g(tk") within .q, is absorbed by the non-reflecting boundary 
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Fig. 3. One-dimension semi-infinite problem: Numerical solution using time-discontinuous GLS algorithm with 160 Q2 elements 
and a Courant number of C = 1. At time t = 0.6 two waves travel in opposite directions. At t = 1.2 the wave propagating to the 
right is absorbed by the non-reflecting boundary located at x -~ 4. At t = 1.8 only the left-going wave remains. 

condition as measured by the radiation energy 8t(Oh). Results confirm that the (3alerkin Least-Squares 
method is indeed dissipative, and matches the energy-decay inequality given in Theorem 7.1, i.e. the 
total energy plus the radiation energy is bounded above by the initial energy in the computational 
domain,  i.e. 

(185) 

To study the numerical convergence, the response was calculated for the time interval 0 ~< t ~< T =  1.8. 
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Fig, 5. Convergence of the numerical error for different formulations employing the Q2 element and C = 1; h is the length of the 
element. Results confirm the convergence rate (2p-  I) = 3 for p = 2. 
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The convergence rates for the time-discontinuous Galerkin and Galerkin Least-Squares formulations 
are shown in Fig. 5. Errors were measured in two different norms: II1 III, denotes the norm (144), with 
s--0,  and II1" ii1,, deootes the Galerkin norm, with r = 0 ,  s=0 .  Note that the convergence rates are 
identical for all formulations measured in both norms, and are the same as those predicted by Theorem 
7.2. Results for lhis example show that the Galerkin formulation converges at the same rate as the GLS 
formulation. ~ith slightly larger errors. 

9. A priori error estimates for the coupled problem 

in this section, error estimates are given for the coupled structural acoustics formulation. The 
convergence proof for the coupled fluid-structure problem follows the same basic steps as the 
uncoupled acoustics problem given in Section 7.3; further details are given in [27]. The results are 
stated for the 51 boundary condition only. Let ¶X/' ~ h  x ~--h denote an interpolant of X := {u, d~}. 
Then the error g = X h - X ,  can be written as: 

g = E  h + H  (186) 

where 

E t' = (X h - ¶X h) ~ T h x 74 ;h (187) 

H = ¶X h - X (interpolation error) (188) 

In components, E={e , e } ,  Eh={fl ' ,eh},  and /'/={~1,'0) where e = u h - u  and e=~bh-cb. An 
appropriate space-time mesh parameter for the structural domain ,O r is given by h~ = max{ct. At, Ax} 
where c~. is the dilatational wave speed and Ax and At are maximum element diameters in space and 
time, respectively. For the fluid domain Of, h~ = max{c At, Ax} where c is the acoustic wave speed. 

Assuming r and s satisfy the conditions given previously in (150) and (151). Similarly, assuming r 
and s satisfy, 

c,h,~ IMI ~c:t,, (189) 

where c~, c,.. c~ and c4 are positive constants (c,>c~,c4>c3), and assuming x E(Hk*~(Q~))d× 
H e" ~(O~). together with standard interpolation estimates for H. then it can be shown that the following 
estimate holds: 

IIIEIII" ~< c(u)h~ '~t + c(6)h~ p-' (191) 

where c(u) and c(th) are values that are independent of the mesh parameters, k and p are the order of 
the finite element interpolations for the structure and fluid, respectively, and II1" Ill is the natural norm 
for the coupled system defined in (132). The proof of this a priori estimate follows the same basic steps 
as Theorem 7.2; details are given in [27]. This result indicates that the error for the coupled system is 
controlled by the convergence rates in both the structure and the fluid. In other words, for an accurate 
solution to the coupled fluid-structure problem, discretizations for both the structural domain and the 
fluid domain must be adequately resolved. 

I0. Closure 

In this paper, a new space-time finite element formulation for transient structural acoustics involving 
the interaction of elastic structures vibrating in an unbounded acoustical fluid domain has been 
presented. The formulation is based on the time-discontinuous Galerkin method ft, r second-order 
hyperbolic systems originally developed in the context of elastodynamics by Hughes and Hulbert [6] 
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and Hulbert and Hughes [7], extended here to time-dependent structural acoustics in exterior domains, 
A new space-time variational equation for the coupled problem is written in terms of structural 
displacement and acoustic velocity potential variables and includes the incorporation of high-order 
accurate non-reflecting boundary conditions. As a consequence of this choice of solution variables, the 
coupled space-time variational formulation for the fluid and structure gives rise to a positive norm for 
the coupled problem which enables us to prove the unconditional stability of the method. 

For additional stability, and to prove convergence, least-squares operators based on local residuals of 
the Euler-Lagrange equations for the coupled system, including the non-reflecting boundary con- 
ditions, are included, giving rise to a Galerkin Least-Squares (GLS) space-time formulation. The 
least-squares operators are weighted by intrinsic time scale parameters, which may be designed to 
improve stability without degrading the accuracy of the underlying time-discontinuous Galerkin 
formulation. The GLS weighting parameters depend on element size and interpolation order. For the 
one-dimensional example presented, both Galerkin and GLS solutions converge. Additional numerical 
results (presented in [27, 33]), indicates that the Galcrkin formulation should converge on general 
configurations as well, but from our error analysis, only GLS is guaranteed to converge. 

Time-discontinuous Galerkin methods typically lead to systems of coupled equations which are larger 
than those emanating from standard semidiscrete methods. To approach economic competiveness with 
existing algorithms, the ability of space-time finite element methods to provide unified and simulta- 
neous spatial and temporal adaptivity of the discretization must be exploited. Adaptive solution 
strategies are especially useful for applications to transient structural acoustics, in which both spatial 
and temporal enhancement can efficiently capture waves propagating along space-time characteristics. 
Recently, Johnson [34] and colleagues, have obtained some useful a posteriori error estimates based on 
the discontinuous Galerkin method for second-order hyperbolic equations. Having laid the foundations 
for the space-time finite element formulation for structural acoustics, research efforts are underway in 
the design and application of efficient and accurate local error indicators to drive adaptive and 
subcycling strategies for the transient structural acoustics problem incorporating high-order accurate 
non-reflecting boundaries. 

In [27, 28] an extension of the time-discontinuous Galerkin space-time formulation presented in this 
paper is given where independent il~terpolation functions are used for both the acoustic velocity 
potential and its time derivative, i.e. the acoustic pressure. Hulbert [31] showed that asymptotic 
dissipation at high frequencies can be achieved by a multi-field formulation of this type, without the 
need for additional least-squares stabilization terms. An area of productive research is to compare the 
performance of the single-field and multi-field formulations in terms of both accuracy, as measured by 
numerical dispersion and high-frequency dissipation, and computational efficiency. 

When space-time finite element methods are used to solve the structural acoustics problem in infinite 
domains, a fluid truncation boundary is introduced where radiation (non-reflecting) boundary con- 
ditions are applied to transmit outgoing waves, if accurate non-reflecting boundary conditions are used, 
fewer fluid elements are needed and considerable cost savings will result. Therefore, there is a need for 
the development of high-order accurate non-reflecting (absorbing) boundary conditions which eliminate 
or minimize reflection of outgoing waves and that aIso preserv.- the data structure of the space-time 
finite element method. In this paper, we have indicated how the time.discontinuous space-time finite 
element method provides a natural variational setting for the implementation of local in time 
non-reflecting boundary conditions. In the second part of this paper [25], a new sequence of high-order 
accurate and local in time non-reflecting boundary conditions based on an exact representation of the 
acoustic impedance are developed for solutions of the scalar wave equation in three space dimensions. 
Several numerical examples are given illustrating the high-order accuracy achieved by the implementa- 
tion of the~e time-dependent absorbing boundary conditions in our space-time finite element 
formulation for the exterior structural acoustic problem. 
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