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Abstract 

In Part 1. a new space-time finite element method for transient structural acoustics in exterior domains was given. The 
formulation employs a finite computational fluid domain surrounding the structure and incorporates local time-dependent 
non-reflecting boundary conditions on the fluid truncation boundary. In this paper, new exact time-dependent non-reflecting 
boundary conditions are developed for solutions of the scalar wave equation in three space dimensions. These high-order accurate 
absorbing boundary conditions are based on the exact impedance relation for the acoustic fluid through the Dirichlet-to-Neumann 
(DtN) map in the frequency domain and are exact for solutions consisting of the first N spherical wave harmonics. Time- 
dependent boundary conditions are ot~tained through an inverse Fourier transform procedure. Two alternative sequences of 
boundary conditions are derived; the first involves both temporal and spatial derivatives {local in time and Local in space version), 
and the second involves temporal derivatives and a spatial integral (local in time and non-local in space version). These 
non-reflectln~, boundary conditions are incorporated as 'natural" boundary conditions in the space-time variational equation, i.e. 
they are enforced weakly in both space and time. Several numerical examples involving transient radiation are presented to 
illustrate the high-order accuracy and efficiency achieved by the new space-time finite element formulation for transient structural 
acoustics with non-reflecting boundaries. 

1. Introduction 

When domain-based computational methods such as the space-time finite element method are used 
to model the coupled structural acoustics problem in infinite domains, accurate non-reflecting boundary 
conditions are required on an artificial truncation boundary F, that surrounds the structure. If the form 
of the non-reflecting botmdary condition is over-simplified, spurious reflected waves can be generated at 
the artificial boundary, which can substantially degrade the accuracy of the numerical solution. For 
example, the simple 'plane-wave" (PW)-damper defined in [11: 

~'~--- (x. t) = - .%,6(x. t) x ~ F~, t > 0 
On 
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with the local differential operator 

.~,,:=-;~ 

where 061an is the normal derivative to F~, 6 is the solution variable for the second-order hyperbolic 
wave equation, and c is the wave speed for the acoustic medium; while exact in one dimension, 
deteriorates significantly in multi-dimensions as the position of the truncation boundary approaches the 
source of radiation, especially in the low-frequency (long wavelength) limit. In order to minimize the 
effect of spurious reflections, the computational region can be enlarged so that the artificial boundary is 
far from the radiator/scatterer, however, this will require an increase in the number of solution 
variables, with a subsequent increase in the matrix size and computational expense. It is thus preferable 
to use on the truncation boundary F~, a non-reflecting boundary condition that is sufficiently accurate 
even when F~ is positioned near the radiating structure. 

For time-harmonic steady-state analysis it is possible to obtain an exact non-reflecting boundary 
condition on a separable truncation boundary through the Dirichlet-to-Neumann (DtN) map [2]. in the 
frequency domain. The DtN map is a non-local (integral) operator composed of a series of wave 
harmonics relating Dirichlet-to-Neumann data on the artificial boundary. Although the DtN map is a 
non-local operator coupling all points on the artificial boundary, it is easily implemented in the finite 
element method as a 'natural' boundary condition using standard C continuous interpolation functions 
in the frequency domain. The advantage of the non-local DtN boundary condition over local 
(differential) boundary conditions based on high-frequency or power series approximations, is that 
high-order accuracy can be achieved simply by taking more terms in the DtN series, without having to 
compute high-order differential operators, in addition, the physical interpretation of the DtN map as an 
exact representation of the exterior acoustic impedance restricted to/'~ in terms of wave harmonics 
assures the stability of the solution and validity of the non-reflecting boundary condition ouer the entire 
frequency spectrum. 

Motivated by the good st,:b~ii~y and accuracy properties of the DtN map in the frequency domain, it 
is natural to attempt to e>:tend these ideas to the time-domain. A direct time-dependent counterpart to 
the DtN map can be obtained through a convolution integral in time, resulting in a boundary condition 
that is non-local in both space and time dimensions. Unfortunately. while this condition is stable and 
exact for solutions consisting of the first N wave harmonics by design, the implementation requires 
storage of all previous solutions up to the current time step, and is not feasible for large-scale 
computations over long time intervals. 

Because of the limitations and difficulties associated with the time convoluted DtN map, we were 
motivated to find a time-dependent counterpart to the DtN map which retains the property of being 
exact for the first N wave harmonics on the tru~lcation boundary, while replacing the temporal 
convolution integral with local temporal derivatives, in this way the boundary conditions at time t will 
involve only the values of the solution and its derivatives at time t, and not values at previous times, 
resulting in an efficient yet accurate solution. In this paper, two new sequences of time-dependent 
non-reflecting boundary operators are derived starting from the DtN map in the frequency domain; the 
first involves both time and spatial derivatives (local in time and local in space version), and the second 
involves time derivatives yet retains a spatial integral (local in time and non-local in space version). 
Another boundary condition for time-dependent acoustic problems that is also based on the DtN 
method has been proposed in [3]. 

The development of our local in time and local in space boundary conditions begins with the exact 
localization of the non-local DtN map in the frequency domain [4. 5]. Afte~ recognizing a special 
property of the impedance coefficients of the local DtN map, time-dependent boundary conditions are 
then obtained through direct application of an inverse Fourier transform. Since these new time- 
dependent boundary conditions follow directly from the exact impedance expressed through the DtN 
map, they are exact in both time and space for solutions consisting of the first N wave harmonics on the 
artificial boundary. 

As the order of these local non-reflecting bour, dary conditions increases, they become increasingly 
difficult to implement in standard semidiscrete finite element formulations due to the occurrence of 



L.L. Ttzompson. P.M. Pins~y ! Comput. Method~" Appl. Mech. Engrg. 132 (1996) 229-258 231 

high-order time derivatives on the fluid truncation boundary. In this paper we demonstrate that the 
time-discontinuous Galerkin Least-Squares space-time finite element formulation developed in [6-8], 
provides a natural variational setting for the incorporation of these local in time boundary conditions. 
Crucial to the stability and convergence of the method is the introduction of consistent temporal jump 
operators across space-time slabs restricted to the artificial boundary. The specific form of these 
operators is designed such that continuity of the solution across slabs is weakly enforced in a form 
consistent with the non-reflecting boundary conditions. However, for boundary conditions extending 
beyond second-order, high-order continuity in the space dimension on F~ is required due the 
appearance of high-order tangential derivatives. To address this issue we show that a local in time 
inverse Fourier transform exists for the non-local in space and frequency dependent Dirichlet-to- 
Neumann (DtN) map [21, allowing for boundary conditions that are non-local in space while retaining 
the important property of locality in time. This new sequence has the advantage that when implemented 
in the time-discontinuous finite element formulation, standard C" interpolation functions may be used 
for both the space and time dimensions. 

As a result of starting from the exact DtN map in the frequency domain, the time-dependent 
non-reflecting boundary conditions proposed in this paper exactly represent the transient solution as a 
series of outgoing wave harmonics. This property plays an important role in the understanding of how 
individual wave harmonics contribute to the accuracy and stability of the solution as effected by the 
radial distance of the artificial boundary from the .~'~urce, the geometric complexity of the wave pattern 
and the frequency content of the transient waves. In contrast, a physical understanding of the harmonic 
contribution to the accuracy and stability of absorbing boundary conditions based on high-frequency 
approxima:ions, such as the sequence derived by Engquist and Majda [9, 10], or boundary operators 
based on r~;dial power series (multipole) expansions, such as the popular sequence derived by Bayliss 
and Turkel 111, 12], is currently lacking. 

2. Dirichlet-to-Neumann map in the frequency domain 

In order to obtain a sequence of time-dependent non-reflecting boundary conditions which are exact 
for the filst N spherical wave harmonics on the truncation boundary/'~,, we start with the Dirichlet-to- 
Neumann (DtN) map in the frequency domain. The DtN map represents the exact impedance for the 
infinite acoustic fluid restricted to an artificial boundary of separable geometry, e.g. a sphere of radius 
r = R in ~3  see Fig. 1. Using the Fourier transform d~(x, ~o) of the solution ~(x, t) defined as 

Fig. i. Illustration of a finite computational domain enclosed by a spherical artificial boundary of radius R. 
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1 
d~(x, oo) := ~ f? eb(x, t) ei" dt (2) 

where to is the temporal transform parameter (circular frequency) and i = X/-L--1, the exact DtN 
boundary condition can be expressed in terms of an infinite series of spherical wave harmonics as, see 
e.g. [2]: 

(3) 

where the DtN kernels s., n = 0, 1.2 . . . .  are given by 

~ n 

s. = a,,jP{,(cos¢)PJ.(cos~')cos j(O-0') (4) 
j = l )  

(2n + 1)(n - j ) !  (5) 
~,,i - 2~rR2(n + j ) !  

with impedance coefficients, 

kh'(kR) 
z.(kR)- h~(kR) (6) 

In the above, k = oJ/c is the acoustic wavenumber, 0 ~< 0 < 2-~ is the circumferential angle and 0<~ ~ < 
is the polar angle for a spherical truncation boundary of radius r = R. The differential surface area is 
dF = R 2 sin ~o dO d¢, P~ are associated Legendre functions of the first kind. and h, are spherical Hankel 
functions of the first kind of order n. The prime on h, indicates differentiation with respect to its 
argument, and the prime after the sum indicates that a factor of 1/2 multiplies the term with j = 0. The 
boundary condition (3) can be written in operator form as 

-~- (x ,~)=-  ~(k)~(x,k), xer~ (7) 

relating Dirichlet data, ~, to Neumann data, O~[On, through the linear mapping 5 ( k ) : ~  a~/an. 
This operator represents the exact impedance of the exterior domain restricted to F~. The DtN map 5, 
is an integral operator resulting in a non-local boundary condition coupling all points on the artificial 
boundary F=~. 

Local time-harmonic boundary conditions were derived by Givoli and Keller [4], where a spatially 
local counterpart to the non-local DtN map $(k) was obtained for the two-dimensional Helmholtz 
equation. The extension to three dimensions was given by Harari [5]. The derivation of local 
time-harmonic boundary conditions in the frequency domain starts by truncating the DtN map (3), so 
that the sum over n extends over the finite range n = 0, 1 . . . . .  N - 1. The first N terms in the DtN map 
can be expressed as a finite series of spherical wave harmonics: 

o~ ~ Y~l  

-gh-n (e,o,~) = ~ z.(ke)Y.(O,~) (8) 
el ~ l) 

where 

Y.(O, ~o) = ~ '  PJ.(cos ~o)(A.j cos j0 + B.i sin jO) 
j=0 

(9) 
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are spherical surface harmonics of order n, with coefficients 

= ( g(R, 0, ¢)e~(cos 9) cos jO dr A,,j anJ al'~ (lO) 

B.j = % f~ g(R, 0, ¢)PJ.(cos ¢) sin jO dF (11) 

The goal is to replace the non-local spatial integrals embedded in the coefficients A~j and B,j with local 
spatial derivatives. This can be accomplished by recognizing that the spherical harmomcs Y, can be 
interpreted as eigenfunctions of the Laplace-Behrami operator 

Ar : -  sin q~ aq~ sin q~ + ~ - -  
1 c~ z 

sin:~ a0 2 
(12) 

with eigenvalues A = - n ( n  + 1), i .e.  

ArY . = -n(n + 1)Y,, (13) 

so that 

In(,, + I )FL = (-~r)~L (14) 

This property of the spherical harmonics suggests writing the impedance coefficients as a series of 
powers of n(n + 1): 

N - |  

%(kR) = ~ [n(n + 1)]m/3m(kR), n =0, 1 . . . . .  N -  1 (15) 
m=O 

This is a system of N linear equations for the N unknown values tim, m - 0, 1 , . . . ,  N. Using, (15) to 
replace z n in (8) gives 

N - I  N - !  

ad(R ,0 ,¢ )=  ~ ~ ~(kR)[n(n+ 1)]mYn(0,¢) (16) On n=O m=O 

Now using (14) to replace [n(n + 1)]mYn with the high-order tangential derivatives (-Ar)myn results in 

N - I  N - I  

~n (R,O,q~)= ~'. ~, fl,,(kR)(-Ar)"Y,(O,¢) (17) 
rl--0 m = 0  

After rearranging sums and using the assumption that the solution 4~ on F® contains only the first N 
spherical harmonics, i.e. 

N - I  

~(R, O, ~p) = ~ Y.(O, ~p) (18) 
n=O 

the following sequence of local radiation boundary conditions is obtained, 

N - I  

O~ ~, ~Sm(kR)(-Ar)m~ on F~ (19) 
0a m~0 

In (19), the values of ~m(kR) are obtained by solving the N x N linear algebraic system (15). Since this 
sequence follows directly from the truncated DtN map, these radiation boundary operators are exact 
for waves consisting of the first N spherical harmonics. In this case, the non-local spatial integrals have 
been replaced by a linear map expressed in terms of the differential operator (At) m. 
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3. New exact time-dependent boundary conditions 

A direct inverse transform of 5(k) from the frequency domain to the time domain results in a time 
convolution of the form, 

~ ( x , t ) =  f; §(t-r)cb(r)dr xEF~ (20) 

This boundary condition is non-local in both x and t. In order to circumvent the difficulty of having to 
implement a temporal convolution integral, time-dependent boundary conditions are derived which 
replace the temporal integral with local temporal derivatives. In this way, the boundary conditions at 
time t will involve only the values of the solution and its derivatives at time t, apd not values at previous 
times. Two alternative sequences are derived; the first involves time derivatives yet retains the spatial 
integral of the btN map (local in time and non-local in space version), and the second involves both 
time and spatial derivatives (local in time and local in space version). Throughout the development, we 
use the special property of spherical Hankei functions h, which have the unique feature of being exactly 
represented by a finite and convergent series up to order n (see e.g. [13]) 

h , ( k R ) = h o ( k R ) [ ( _ i ) , ~  (n+j) ,  ( - 1 ) ' ]  j~,j!(n-j)! ~ , n = 0 , 1 , 2  . . . .  (21) 

As this series involves only the zero-order term h o =eikU/(ikR) multiplied by a sum over inverse 
powers of the non-dimensional wavenumber (ikR), an inverse Fourier transform can be found which 
yields a local in time counterpart to the DtN map. 

A finite series representation for the cylindrical Hankel functions H, appearing in the two- 
dimensional DtN map is not available, in this case an alternative approach based on an asymptotic 
expansion is necessary for the development of boundary conditions that are local in time t (see [14]). 

3.1. Local in time and non.local in space version 

In order to obtain non-reflecting boundary conditions which possess the important property of 
locality in time, without the requirement of high-order tangential continuity in the Laplace-Beltrami 
operator (Ar)~, a local in time counterpart to the spatially non-local DtN map (3) is derived which 
exactly represents tt'~ first N spherical wave harmonics. This new sequence of boundary conditions 
retains the non-local spatial integral, while replacing the temporal integral of the time-convoluted DtN 
map with higher-order local time derivatives. This new sequence of time-dependent boundary 
conditions has the advantage that when implemented in the time-discontinuous finite element 
formulation, standard C°(F~ x 1,) interpolation functions may be used for both the space and time 
dimensions. 

First-order boundary condition 
For clarity, set h, := h,(kR), and consider the first term in the truncated DtN series with N = 1, then 

(3) reduces to 

iJ~ f~ &.  dF' (22) 

~nere s, = 1/(4'rrR 2) and z,, = kh~/ho. Using h,'~ = -h  I and (21) and clearing the denominator h, gives 
the alternate form. 

On ik 1 4~s. dF' (23) 
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The time-dependent counterpart to (23) is obtained by direct application of the inverse Fourier 
transform: 

¢ ~ ( x , t ) ' : ~  . ~(x, w) c ..... dw (24) 

in effect, replacing every occurrence of the operator (- ik) '"  by ( 1/c O/Ot)" with the result, 

at~b :=-~n + c ~ + ~ , b ) . % d F '  =0  (25) ., 

This operator is local in time and non-local in space and is perfectly absorbing for axially symmetric 
spherical waves (outgoing wave harmonic n = 0). 

Second-order boundary condition 
For N = 2, the first two terms in Ihe truncated DtN series (3) take the form, 

f, f, o--h- = z,, ~s,, d r '  + z, 4~s, d r '  (26) 
" ',. 

Using the definition for z . ( kR) ,  the recurrence relation. 

{ n +  1 \  
h , : = h , , _ , - k ~ ) h , , ,  n =  l , 2  . . . .  (27) 

in conjunction with (21), and clearing the common denominator h.ht  we obtain the alternative form, 

( l _ i k )  ~ ( k 2 + 2 i k  1 2 i k - 2 ~ ' ~ f , . , ~ s .  dF '  (28, 

Direct application of the inverse Fourier transform gives 

&b R 0q~ 
+ 2 1 4,).s,, d r '  ~b d r '  0 

where s. and s~ are defined in (4). This condition is perfectly absorbing for the first two spherical wave 
harmonics of order n = 0 and n = 1. 

Third-order boundary condition 
Following the same procedure, for N = 3, the first three terms in the truncated DtN series (3) are 

an - z.  q~s, dF '  + z I ~bs t dF '  + z_. Os_, dF '  (30) 

Using the definition for z,., the relations (21), (27) and clearing the common denominator hoh~h: we 
obtain the alternative form, 

%"~-~n = 3;~ . fbs, d l "  + % , _ 

where 

% = 1 - 2ikR - 4(kR)" /3  + i(kR)3/3 

3'1 = - 1 /R  + 3ik + lOk:R/3  - 5ik3R2/3 - k4R3/3 

"Y2 = - 2 / R  + 4ik + l l k 2 R / 3 -  5ik3R2/3 -- k4R3 /3 

73 = - 3 / R  + 6ik + 13k"R/3 - 5ik3R2 /3  - k 'R3 /3 
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Taking the inverse Fourier transform gives the time-dependent counterpart: 

2R 4R 2 R 3 

B.,~ : =- ~.,, + T ~,,, +-L-r., ~ .... + T ?  a.,,,,, 

fl ( R3 5R" 

5R" 

+ 3-j~ ,t, .... + - -  ~,,, 
. , 3c 3 

10R 3 1 \ 
+ -~c, ~,, + c ~, , + -~ ~, )s,, dr '  

I1R 4 2 '~ 
+ "-~;-c., ~b.,, + c 6 ,  + ~ 6 ] s, dr '  

13R + 6 3 
+-~c., 6 .  c , / , . , + ~ - ~ } s . d r ' = 0  

(32) 

(33) 

where s,, n = 0, 1.2 are defined in (4). This condition is perfectly absorbing for the first three spherical 
wave harmonics of order n = 0, 1, 2. Local in time counterparts for the higher terms, N i> 4, in the 
truncated DtN series are obtained following the same procedure outlined for N = 1, 2, 3. These are 
non-local operators that involve a spatial integral yet retain the important property of locality in time. 
In general, the boundary operators in the sequence will have higher-order time derivatives up to 
2 ( N -  1). 

When implemented in the discontinuous space-time element formulation, [7], with time step interval 
!,, = It,,, t,+ k[, standard C"(F,~ x !,) continuous interpolations may be used on the radiation boundary in 
both the space and time dimensions. For example, for the third-order operator •3 defined in (33), 
standard C°(l,) quartic basis functions in the time dimension and C°(F~) linear basis functions in the 
spatial dimension may be used to interpolate the fourth-order temporal and first-order spatial 
derivatives appearing in the boundary operator. This feature circumvents the need for high-order 
continuous tangential interpolation functions. 

3.2. Local in time and local in space version 

To derive a sequence of non-reflecting boundary eonditiens which are local in both time t and space 
x, yet retains the desirable property of being exact for the first N outgoing spherical wave harmonics, 
we replace the space-time convolution integral in (20) with local temporal and spatial derivatives. The 
development proceeds by deriving an exact time-dependent counterpart to the local time-harmonic DtN 
given in (19), through use of an inverse Fourier transform and the finite series expansion (21) for the 
spherical Hankel functions embedded in the coefficients/3,.. 

First-order boundary condition 
For the first operator in the sequence corresponding to N = 1, the system (15) reduces to the simple 

result zo(kR ) = [3o(kR ), so that the local DtN conditioin (19) specializes to 

0~ _ kh,'~(kR) ~ (34) 
~n h,(kR) 

Using the relation h;~ = -h i  and (21) with n = 1, i.e. 

we obtain a simplified expression for (34): 

(35) 

( ')- 
0--h - =  i k - ~ -  6 (36) 
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Taking the inverse Fourier transform we obtain the local in time and space operator, 

g , ~ b ' = T n + ~ - , ~ + - ~ , c  =0 (37) 

This condition is perfectly absorbing for only axially symmetric spherical waves (outgoing wave 
harmonic n = 0). 

Second-order boundary condition 
To obtain a high-order accurate boundary condition, take N = 2. so that the system (15) yields. 

/3,, = z. and ~l--(z l --z , , ) /2 .  and (19) becomes 

~--E = z,,¢, + ~ (z.  - z, )a,+$ (38) 

Clearing the common denominator ht~h I we obtain 

h"hl ~n = (kh~J+,)~ + ~-(h~,h; - h'~h,,)Ar~ (39) 

Using the recurrence relation (27). in conjunction with (21) and after some algebraic manipulation, we 
obtain the simptified form. 

1 

Since this expression involves only terms in powers of (ik)'". the inverse Fourier transform is readily 
obtained with the desired result. 

1 
++ R0+ + - - ° 7  a2~ : = ~ .  +-C--~-n + c-'; 

(41)  

This higher-order accurate local boundary condition is perfectly absorbing for the first two spherical 
wave harmonics of orders n = 0 and n = 1. 

Third-order boundary condition 
Proceeding in the same fashion with N = 3, (19) becomes 

--~-n = ,8,,& - ,_a, ¢..1,.,b - a .  - :  ,,-.,. A ~-~.~.,. (42 )  

and the system (15) yields the three coefficients, 

~o = Zo 

/3~ =- (18z  t - 16% - 2 z 2 ) / 2 4  

/32 = ( 2 %  + z~ - 3z t ) / '24  

Using the recurrence relation (27) in conjunction with (21), or equivalently 

(2n + 1) 
h . ÷ ~ -  kR h , , - h . _ ~ ,  n = 1 , 2  . . . .  (43) 

we obtain the simplified form, 
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where the frequency-dependent coefficients are 

y, = 1 - 2 ikR - 4(kR)'~/3 + i ( kR)~ /3  

Yl = - 1 / R  + 3ik + lOk"R /3  - 5ik3R ~'/3 - k4R~ /3  

y_, = 7/(t2R) - i k / 2  - k ' -R /6  

V3 = 1/(24R) 

Direct application of the inverse transform gives 

4R 2 R 3 1 3 10R 5R: R ~ 

~,6:=6,+. 6.,,, + yCrc~. ~.~,, ÷ ~ ~.~,,, + -~ 6 + -i 6 , ÷ T 6.,, +-~c., ~,,, + ~ ~ 

7 1 R 1 
12R A t 6  - ~c At.6., - ~ a t6 . "  - ~ (A t ) "6  = 0 (45) 

In this expression a comma denotes differentiation. This higher-order accurate local boundary condition 
is perfectly absorbing for the first three spherical wave harmonics of orders n = 0, 1 and n = 2. 
Expressions for the exact time-dependent local boundary conditions for higher-order harmonics N = 
4, 5 . . . . .  will involve higher-order temporal and tangential derivatives, and are obtained using the 
same procedure as indicated for N = 1, 2, 3. 

This new sequence of local time-dependent boundary conditions provide increasing accuracy with 
order N which, however, is also a measure of the difficulty of implementation. In general, the 
Nth-order condition contains all the even tangential and temporal derivatives up to order 2 (N-  1). 
Because the time-discontinuous formulation allows for the use of C"(I,) interpolations in time to 
represent the high-order time derivatives, in principle it is possible to implement this sequence of 
time-dependent absorbing boundary conditions up to the order dictated by the time-derivatives 
appearing in the boundary operator. 

The implementation of B t and B: are straightforward. For example, for the operator B 2 defined in 
(41), the second-order time derivative may be approximated in the time-discontinuous method by 
C°(in) quadratic interpolations in time, while the high-order C~(/'~) continuity implied by the second- 
order tangential deri,,atives embedded in the Laplace-Beltrami operator % ,:an be relaxed to C"(F~) 
through integration by parts in the spatial dimension over the closed surface F:~. 

However, for high-order operators in the sequence extending beyond N ~> 3, the lowest possible 
order of spatial continuity on the artificial boundary that can be achieved after integration by parts is 
C N-:. For these high-order operators a layer of boundary elements adjacent to F~, possessing 
high-order tangential continuity on/"~ are needed. For example, for the B 3 operator defined in (45), 
CL(F~) continuous interpolation functions, e.g. Hermite polynomials, are needed to represent the 
second-order tangential derivatives appearing in the weak enforcement of B3. 

An interesting observation is that the first-order operator B i coincides with the well known spherical 
damper and is equivalent to the first local boundary condition in the sequence derived by Bayliss and 
Turkel [11] and Engquist and Majda [91. in addition, we observe that the local boundary condition B2 
defined in (41), which is exact for the first two spherical wave harmonics, coincides with the 
second-order boundary condition derived by Bayliss and Turkel [11], after the higher-order radial 
derivatives in the Bayliss and Turkel sequence are eliminated in favor of high-order tangential 
derivatives through use of the wave equation in three dimensions. While the boundary conditions 
derived by Bayliss and Turkel were obtained by annihilating radial terms in a muitipole expansion, it is 
~een, that in fact, the first two boundary conditions in the sequence share the property of the localized 
DtN, in that they match the first two spherical harmonics for outgoing waves on a spherical boundary 
F~. The equivalence oi" this second-order operator holds in both the time-dependent and time-harmonic 
cases. However, for higher-order boundary conditions in the sequence beyond N >~ 3, the form of the 
proposed non-reflecting boundary conditions are different than those of Baytiss and Turkel. 
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4.  S p a c e - t i m e  finite element implementation 

A direct approach in which to implement the exact time-dependent boundary condition is to define a 
linear operator ~,,, as 

a6 
B,,,(~b) : = -~tT + 5,.(6) (46) 

which implies 

a,/, 
,~n - - . .5,,~ on  I;  (47)  

In this way, the boundary conditions are expressed in a form relating Dirichlet-to-Neumann data• For 
example, the first three local in space and time operators ~,,. for m equal to 1, 2 and 3 are: 

I 1 
5 ,6- -~6  +T,b, (48) 

1 1 /  / ~ \  R 
§ ' r k = - ~  ( 2 - a r ) r k + - -  c ~, 2 + R ~-~r) ~ ' + -~ 0 " .  . (49) 

1 1 / i J '  
t 6 -  a, + 4R 5~6 --- 2 - ~  (24 - 14at -(,lr)~-)6 + 

+V 2°-a' +~ng)~'"+V 5+R~)*"'+V4'- .... (50) 

In general, the linear mapping N,,,d, takes the form 

_ra,4,1 = c , [ - g / ,  ] on tt  : :  r, x 1,, (5]) 
/ - 0  

where Cj, ] = 0. I . . . . .  m. represent spatial operators that may be local differential operators that 
couple only adjacent points on the artificial boundary, or non-local integral operators that couple all 
points on the artificial boundary F~. This sequence of boundary operators can be incorporated into the 
space-time finite element formulation as natural boundary conditions, where they are weakly enforced 
in both time and space as described in Part 1 [7]. Here, we recall the time-discontinuous Galerkin 
variational equation for acoustics; for simplicity only the variational equation for the aceustie fluid with 
the radiation boundary operator on the artificial truncation boundary F~ is stated. 

For the acoustic problem, within each space-time slab. n = 0, 1 . . . . .  N - !, the objective is to find 
o7" h W h - h ~" E .~ ,,, such that V E ~1t. ,., the following equation is satisfied, 

El( wt*, 6"),. + g,(w", 4~"),. = Lt(w "),, (52) 

In this space-time variational equation. 4,* ~ '  E .u ,, ~ the space-time finite element trial solution with 
. . . .  h /. I~ corresponding woghtmg function w C ~t,,,. We recall from Part 1 that for the time-discontinuous 

. O'Th C 1| method, the space of trial soluuons J ,. are continuous polynomials defined over the space-time 
domain Q,f, = fir × I,, and radiation boundary Y~ = I',~ × 1,,, with time step interval I,, = It,,, t,,+~[. 

The operator 

• h 2 "" h. , . h ,  + 2 " Ir + , ~ W  h .  ,~, h + Er(w" ,6") , , :=(w ,a ch )~.,, +(V~i'h, wPh)e~+tW (t, ,) ,a da (t,,))~h+w, (t,,),V,b (t,,))rh (53) 

with notation for inner products, 

h - - h ,  J" w , • Is~, = _l p"wh~b" d,O (54) 

( Vw h ,, = V4~ )f~, J~ p.Vw" "V4/' drt (55) 
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--- ~' )n, dt (56) 
n 

acts to weakly enforce the second-order hyperbolic wave equation within a space-time slab Qf,, and 
together with the forcing operator ~' Lf(w ),, acts to weakly enforce the continuity of the solution across 
time slabs. 

Non-reflect!ng boundary conditions are weakly enforced through the radiation boundary operator 
E,,l'w*, -,-a'*~,,,. For absorbing boundary conditions up to second-order (m -- 2), the variational equation 
for the radiation boundary can be written in abstract form as 

E.(w h, ~h). := (~J.. , • h . h + ~,,dp )o.),  + d2(w (t, ). ~c~h(t,)]),. + d,;(w (t, ), I]'d)h(t,)]),. (57) 

for m = ": or m = 2 where we have used the notation for the weighted L: products on F~ as 

(w~.,, (b)r=h ft'. p,)w*dfl' dF (58) 

yt In ÷ i (w" 6')o~ ,~ (w ~, , = d) )1; dt ( 5 9 )  
n 

The term evaluated over (Y~),, := f',, x/,, acts to weakly enforce the non-reflecting boundary condition 
(47) over the time interval ]t,,,t,÷~[ and Fx. As a specific example, consider the second-order g, ,  
non-reflecting boundary condition defined previously in (49): In this case. the acoustic radiation 
operator takes the form 

()0", §..$"),v.,. := do(w*, Sh)m,o + d,(w", 6*)n.). + d2(w", 6")o~.  (60) 

where 

• h , 1 (l~h , ¢ ,  1 ~. $ , ~  1 .h 
d,,(w ,~, )(,.),,=~ )o.~, +T~(w.,, .,,~)., +T~(w.o, csc-'(~)4/.'~)~y~,o (6t) 

d,()i,,,61,~ 2 w, ,6h)  + R ( w h  "h = ~b , , )o , )~  ( 6 2 )  ")")~ c ( ,o,)~ c ' 

d,(w", "'* R ()i,h, ..h = - -  ¢ )I), ),, (63) 
C" 

In (61), tangential continuity is relaxed on the boundary F,. through integration by parts: 

( w, a,.6 )r. = - (w ,,  % )r. - (w,, csc-'(~)%)r. (64) 

For this boundary condition, C continuous interpolations are sufficient in both space and time. Since 
these boundary op:.rators are local in space and time, when implemented with standard finite element 
interpolations with compact support, the boundary integrals couple only degrees-of-freedom in adjacent 
elements, and the banded sparse data structure of the finite element arrays are preserved. The locality 
in time enables the use of updates from one time step t, to the next t,,+ ~ without storage of data from 
any previous time t,,_ ,, t,,_, . . . . .  t.. Thus. local in time boundary conditions of this type have a distinct 
advantage in computational storage when compared to competing approaches, e.g. the use of Kirchoffs 
retarded potential or the direct convolution of the DtN map (20), which involves a temporal integral 
over all past time and leads to numerical formulations that can be extremely memory-intensive, 
typically requiring storage of a large pool of historical data. 

The operators d2(-, .)~; and d0(., ")r~ evaluated over the space-time slab interface at the boundary F.~ 
in (57) act to weakly enforce continuity of the trial solution across space-time slab interfaces, and are 
designed to be consistent with the radiation boundary operator (60) evaluated over (Y~),,. Thus, the 
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form of the consistent temporal jump operators 1[4~"(t,,)D and IIth"(t,,)] embedded in the last two terms of 
(57) depend on the form of the spatial derivatives appearing in the bilinear operators d~(., ")lr~)~ and 
d,.(., .)~.~,, defined in (61) and (63). For example, for the local boundary condition (49), the consistent 
jump terms specialize to 

1 1 " ~ J' t a,,(w"(t,; ). fl6"~g,)llr. = ~ (w"(C), [~6"(I,,)~)r. + ~ (w;.(t,,), [I~,~( ,,)ll)r~ 

] h 4- 3 It + ~ (~ ,,(t,, ), esc-(~,)ll6 ,,(t,,)]),, (65) 

.,, . .,, R (w"(t,',),lI6 (t,,)]),, (66) d,(w (t,,), i6  (t,,)]),.. c2 

As discussed in Part 1, these consistent temporal jump operators are required for the unconditional 
stability of the formulation. A numerical example demonstrating the importance of this stability 
requirement will given in Section 5.4. 

REMARK I. An alternate implement~.tion of the exact time-dependent non-reflecting boundary 
conditions which avoids approximation of the radial derivative on F~, is possible. This alternative 
implementation is based on the procedure used by Kallivokas et al. [15] for the symmetrization of a 
second-order absorbing boundary condition in a standard semidiscrete finite element method. Multiply- 
ing the boundary operator (41) by a = c/R and recognizing the hierarchical structure inherent in B z, 
we can express (41) in the alternative form 

13/ 
,~,~.,, + ~., = - a S , d ,  - ~,,b +--~A,,~ (67) 

where ~ is the first-order boundary operator defined in (48). By introducing an auxiliary variable ~ on 
F~, the boundary condition (67) can be split into the following equivalent system of two equations: 

1 
~.  = - g , 6  + ~-~ 3,4,  

(68) 
1 1 

2---R" Ard~ = 2" § larch 

After implementing (68) in the time-discontinuous Galerkin variational equation (52), the resulting 
expression for the radiation operator E,(',.),, involves only spatially symmetric terms, thus avoiding the 
spatially non-symmetric operator of (62) appearing in the direct implementation of B2; albeit at the 
extra expense of having to solve for an additional auxiliary variable on F~. 

REMARK 2. An alternative form of our boundary conditions B,,,, m = 1, 2 . . . .  for both the local in 
space and non-local in space versions can be obtained by replacing the high-order temporal derivatives 
appearing in the operator with high-order radial and tangential derivatives through repeated use of the 
wave equation written in separable coordinates, e.g. for a sphere in three dimensions, 

~gt 2 - \ r /  L'~r (r: '~r~) + a ' ' $ ]  (69) 

evaluated at r = R. However, in this approach the implementation of high-order radial derivatives is not 
natural to the standard finite element method, and is not recommended. 

5 .  N u m e r i c a l  e x a m p l e s  

In this section a number of numerical examples are described to demonstrate the effectiveness of the 
time-discontinuous Galerkin space-time finite element method to accurately model transient acoustic 
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radiation. Only results for the local in time and local in space version of our exact non.reflecting 
boundary conditions defined in Section 3.2 are presented in this paper. The results of the new 
formulation are compared using the simple PW-damper §,, defined in (1), and the first-order 5j ,  and 
second-order §2, local boundary conditions defined in (48) and (49), respectively. For all the numerical 
results presented, the GLS mesh paranteters are set to zero and standard C" quadratic finite element 
shape functions are used in both the time and space dimensions. 

To our knowledge, this is the first implementation of the time-discontinuous Galerkin space-time 
finite element method for second-order hyperbolic equations in multidimensions. Numerical results for 
one-dimensional problems (without non-reflecting boundaries) are reported in [16, 17]. In ger, eral, 
space-time methods give rise to a larger system of equations than those produced by typical 
semidiscrete methods. For the relatively small canonical examples presented, solutions were obtained 
using a direct Crout elimination solver with profile storage and dynamic memory allocation. Profile 
reduction based on a modified version of the reverse CuthilI-Mckee algorithm was used to minimize 
storage (see Algorithm 582 in ACM-Trans. Matt,. Software, Vol. 8, No. 2). For larger problems, more 
efficient solution strategies are needed. 

5.1. Spherical harmonic radiation 

In order to assess the accuracy of the local non-reflecting boundary conditions, a series of numerical 
,:xperiments are performed. These examples are designed to test the ability of the local boundary 
conditions to transmit outgoing spherical wave harmonics on the artificial boundary F~. By driving the 
transient solution to steady-state, we are able to isolate the effect of each frequency on the accuracy of 
the absorbing boundary conditions. 

Consider the time-harmonic radiation from a sphere of radius r = a, with a surface excitation driven 
by a spherical harmonic distribution of the form, 

&(a, ¢,, t) = P,,(co': ¢) sin ~ot, for 0 ~ ~ < 7 ,  t > 0 (70) 

with homogeneous initial conditions. After the solution ts driven to steady-state, the exact solution to 
this problem is 

f h.('(r) } 
¢ b ( r , ~ o , t ) = - l m a g ~ P . ( c o s ~ ) e  -~"' for r~>a (7]) 

where P,, are Legendre polynomials cf the first kind and h, are spherical Hankel functions of the first 
kind of order n. When using a finite element method incorporating approximate absorbing boundary 
conditions on a spherical artificial boundary as illustrated in Fig. 2, this problem becomes increasingly 
difficult to solve as the wave harmonic n increases. Recall that the spherically symmetric damper .~ 
defined in (48) is exact for the breathing mode, which corresponds to n = 0 in (70). However, for higher 
mudes, n = 1, 2 . . . .  this low-order boundary condition is only approximate. An improved approxi- 
mation is obtained by using the secor~d-order operator 5 ,  derived in (49). This time-dependent 
boundary condition is exact for the first two spherical harmonics, n = 0, 1. 

A series of transient space-time finite element solutions were obtained for the loading in (70) with 
harmonics ranging from n = 0 through n = 5. The system starts from rest and is driven towards the 
steady-state solution with time, with a time-increment of At = 0.1 s. Due to the axisymmetric nature of 
the problem, the computational domain is taken as f~ = {a < r < R , 0 ~  < ~ <'r r}, and the radiation 
boundary is set at R = 2a. The resulting bounded domain l'] is discretized with 400 axisymmetric 
acoustic elements: l0 elements in the radial direction, and 40 elements in the polar direction as 
indicated in Fig. 3. For this axisymmetric problem, there is no circumferential dependence on the 
solution and all terms which depend on the coordinate 0 are neglected in the definition of the 
non-reflecting boundary conditions. In particular, for the local boundary operator 5 ,  defined in (49), 
the third term in (61) and (65) involving derivatives with respect to O are not used. 
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• ~.~::'. ~z~.~..:.~: ~ ~J:.~+ 

~ ' ~ ~ ~  ;'~'-:::$z5.:':::5 :'' ~:~':~':" , ,.~, 

Fig. 2. Sphere of radius r ~ ~," encle~scd by ~ ~phcrical ~lrtilicial b~undary of radius R = 2a, 

Fig. 3. Axisymmctric mesh with 4{~ quadralic elements. 

Results for two different frequencies, ka = 1 and ka = 3, normalized with respect to the wave speed c 
and radius a are presented. The solution profile on the radiation boundary r = 2a together with a plot 
along a radial line at the axis of symmetry are presented to obtain a quantitative estimate of the 
accuracy of the non-reflecting boundary operators. The tithe-history at a representative point on the 
absorbing boundary is also used as a quantitative measure of the error of the approximation. Finally, 
contour plots of the velocity potential are presented to study the global character of the solution. 

Numerical solutions for the radiation loading Pc~(cos q~)sin ~ot, confirmed that both the operators S~, 
and ,~  are exact for the first "breathing" mode n =- 0. To verify that the second-order boundary operator 
.~, is exact for the second wave harmonic, n =- 1+ numerical solutions are obtained for the loading 
Pl{cos ~,) sin cot and a non-dimensional frequency coa/c = !. Fig. 4 shows the solution profile around the 
artificial boundary, together with the solution plotted along a radial line located at the polar angle 

= 0, both plotted at time t = 20. This samplc time is sufficient in length so that ;~he solution has 
reached steady-state, and is such that many spurious reflections between the artificial boundary • = R, 
and the radiating surface at r = a+ could have occurred. The time-dependent solution at a point on the 
artificial boundary at position (r, ~) = (R, 0) is given in Fig. 9 (top). These results confirm that the local 
eperator ,~,, when implemented in the space-time formulation gives nearly exact solutions for waves 
composed of spherical harmonics up to order n --- !+ In contrast, the numerical solution using 5 i is 
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Fig. 4. Spherical wave harmonic n = I, Results at t = 20, comparing the "plane-wave" .~,,. first-order §, and second-order ~. 
boundary conditions. (qbp): Solution profile on the artificial boundary r = R. (Bottom): Solution plotted along radial line at 
¢ = 0  

somewhat out-of-phase with lhe exact steady-state solution while the simple 'plane-wave' damper 5 , ,  
shows significant errors in both phase and amplitude. Contour plots illustrating the global character of 
the solution for n = 1 are given in Fig. 1 i. 

To investigate the ability of the local non-reflecting boundary conditions to transmit higher-order 
spherical harmonics, the radiation loading in (70) was increased to n = 2. Fig. 5 shows a comparison of 
the space-time solution at time t = 15, using the local boundary operators ~j. j -- 0, 1, 2. The numerical 
results using the low-order operators §1, and St show a significant error in the solution, while the 
solution using §,  remains relatively accurate with only a small error in amplitude, see the time history 
in Fig. 9. 

Numerical solutions for harmonic loading with n = 3, with a driving frequency of ka = 1 begin to 
deteriorate in accuracy for all three local boundary operators tested; although the solution using ~, in 
comparison to the low-order operators still gave the most accurate solution. When the non-dimensional 
wavenumber is increased to ka = 3, i.e. by setting the driving frequency to ~ = 1 with a wave speed 
c = 1/3, the solution using ~2 is remarkably accurate; with the numerical and analytical solutions 
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Fig. 5.  S , n h e r i c a l  wave harmonic n = 2 .  Re ,~ut t s  comparing the "plane-wave' E,,,. fi[st-order "~1 and ~econd-order ~ . ,  boundary 
conditions. (Top): Solution profile o n  the artificial boundary r = R .  ( B o t t o m i :  Solution plotted along radial line at ~ = 0 .  

almost indistinguishable, see Figs. 6, 10 and 12. Results using .~,, and ~I for a frequency ka = 3 show 
significant errors in the solution, although less error than for ka = 1. This example demonstrates an 
important property of the approximate local boundary conditions: As the frequency, normalized with 
respect to the characteristic dimension of the problem increases, the accuracy of the local boundary 
conditions increases. 

Figs. 7 and 10 (bottom) show the solution for the spherical harmonic n = 4 with a no=i-dimensional 
wavenamber ka = 3 at time t = 15. For this radiation loading, the §2 local operator is still able to 
maintain an accurate solution, while the solution using the low-order operators ,~. and 5t have 
deteriorated significantly. When the radiation loading is raised to harmonic n = 5, tee accuracy of .~: 
has finally begun to deteriorate as shown in Fig. 8. In this case, the solutions obtained using §o and §1 
display a dramatic loss of accuracy, indicating that their ability to transmit outgoing waves without 
reflection has been greatly diminished. In order to obtain accurate solutions for this harmonic and 
frequency, the boundary aperator must be increased beyond second order, or the artificial boundary 
must be moved further away from the radiating sphere, requiring a larger computational domain, and a 
subsequent increase in computational expense. 
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Fig. 6. Spherical wave harmonic n = 3. Resulls at t=  21). comparing the "plane-wave' .~,,, first-order §, and second-order ~. 
boundary conditions. (Top). Solution profile on the artificial boundaq,' r = R. (Bottom): Solution plotted along radial line at 

=(I. 

5.2. Non,concentric spherical radiator 

in this examp!e, the performance of the absorbing boundary conditions when implemented in the 
space-time formulation is evaluated for a transient radiation problem involving the propagation of a 
finite-duration pulse. Consider a sphere of radius r = a, pulsating with a uniform sine pulse, $(a, t) = 
sintot and ~o=~r, during the short time interval tE[0,  1]. The tra~fc.":~ or tb.i~ time signal is 
characterized by an infinite band of frequencies centered about the dominant frequency of the 
excitation. Initial conditions are set to zero and the wave speed is c = 1. The exact solution to this 
problem is an outgoing spherical wave of short duration with a 1/r amplitude decay: 

d~(r,t)= ( a )  sinto(t- #/c) (72) 

where F = r - a is the radial distance from the spherical radiator and (t - #/c) ~ [0, 1]. 
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Fig. 7. Spherical wave harmonic n = 4. Results comparing the "plane-wave" $ , .  first-order $1 and second-order 5 ,  boundary 
conditions. (Top): Solution profile on the artificial boundary r -  R. (BtJttt)m): S,,]u!;,~ plotted along radial li:le at ~,----(}. 

if the radiating sphere is placed concentric with a spherical artificial boundary, as was done in the 
previous example, then for the radiation field given in (72), the problem is trivial in that the first-order 
5 t, and our higher-order local non-reflecting boundary conditions are all exact by design. In order to 
obtain a challenging problem, the radiating sphere is shifted from the center of the spherical artificial 
boundary F~, to a non-concentric po~iiion, la i.hi~ example, the radiating sphere is offset by a distance 
a, with the radius of F~ set at R = 3a, see Fig. 13. With this positioning, wave fronts traveling outward 
along radial lines will strike the artificial boundary at oblique angles. The closer the radiating sphere 
gets to the edge of F~, the more acute this angle becomes, making it increasingly difficult for the 
approximate local boundary conditions to transmit outgoing waves without spurious reflection. 

Fig. 14 shows the computational domain discretized with 1518 axisymmetric elements using quadratic 
interpolation. Fig. 15 shows the elevated contot s of the time-discontinuous Galerkin solution using the 
second-order local boundary operator $2 appl: . ~o F~. in the upper left corner of Fig. 15, the solution 
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Fig. 8. Spherical wave harmonic n = 5. Results comparing the 'plane-wave" .~,,, first-order ~, and second-order 5. boundary 
conditions. Solution profile on the artificial boundary • = R. 

is shown at the end of the initial sine pulse at time t = 1. As time progresses, the initial pulse propagates 
outward from the sphere as a uniform spherical wave pulse of decreasing amplitude. The scales used in 
the illustrations are normalized at each time step to enhance the visibility of the solution features. After 
t-- 1, the spherical pulse begins to pass through the artificial boundary F~ with negligiblc reflection. 
These results illustrate the remarkable performance of our second-order operator §2 to transmit waves 
striking the artificial boundary at rather severe angles. At time t = 3.5, as the pulse is just leaving the 
computational domain, it is noted that the numerical solution displays insignificant traces of low 
amplitude reflected waves behind the outgoing wave front. These low amplitude reflected waves are 
barely visible in the figure and their amplitude is several orders of magnitude smaller than the 
amplitude of the physical wave, indicating an accurate solution. For time steps beyond t = 4 (not 
shown), the small amplitude residual waves are quickly damped out by the numerical dissipation 
inherent in the time-discontinuous Galerkin method. 

For comparison, this same problem was solved with the low-order boundary operator §t- Fig. 16 
shows a snapshot of the elevated contours at time t = 2.5, comparing the solution using either 5,  or 5: .  
Results for §t exhibi: significant reflections as the outgoing pulse passes through F~, as indicated by the 
elevated contours on the right.hand side of the sphere. In comparison, the solution using 52 shows no 
observable reflections from/'~, This conclusion is summarized in Fig. 17 with a time-history of the 
solution on the artificial boundary F~ at the axis of symmetry, ,p = 0. The solution using 52 shows the 
correct amplitude and phase for the outgoing pulse and shows no observable reflections behind the 
wave front. In contrast, the solution using 5, shows an increase in the maximum amplitude of the 
outgoing pulse as well as significant reflections, as manifested by the non-zero amplitudes appearing for 
times t > 2. 

5,3. Radiation from a circular piston on a sphere 

To study a problem involving an infinite number of spherical wave harmonics, consider the radiation 
from a circular piston subtending a polar angle 0 ~< ~ ~<% = 13.5 ° on a submerged sphere of radius 
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Fig. 9. Time-dependent solution at a point on the artificial boundary, i.e. r = R and ~ = 0. Results show the transient solution as 
it is driven to steady-state fm (top) n = I, and (bottom) n = 2. 

F i g .  10. T i m e - d e p e n d e n t  so lu t ion  at a po int  on  the artificial b o u n d a r y ,  i . e .  r = R a n d  ~0 = 0.  Resu l t s  s h o w  the trans ient  s o l u t i o n  as  

it is dr iven  to  s teady-s tate  for  ( t o p )  n = 3 .  and ( b o t t o m )  n = 4.  

r = a; see Fig. 18. The piston has a constant inhomogeneous value $(a,  t) = sin o~t for t > 0, Elsewhere 
on the wet surface, the solution vanishes• The steady-state analytical solution for the velocity potential 
is 

1 [ & h.(kr) } 
tb(r, ~, t) = - 3- lmag~ 2., ~ [P. _l(cos %)  - P. +1(cos %)]P.(cos q~) e -i'°' 

t n = O  "*n%'*~l  

(73) 

This problem gives rise to the interesting feature that as the wave generated at the piston pole ~o = 0 °, 
travels along longitudes, it is attenuated by a geometrical spreading loss. As the diameter of  the sphere 
increases when compared to a wavelength, the wave field departs more and more from a point source 
pattern, and in the region opposite the piston pole ~o = 180 °, the amplitude is significantly lower. 
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Fig. i 1. Radiation from a sphere with polar harmonic n =- i and normalized frequency ka = 1. Contours of space-time solution at 
t = 20 using focal boundary conditions, (Top): "plane-wave" 5,,, (Middle): first-order 5 I. (Bottom): second-order 5, .  Dotted 
contours denote analytical solution. Scale: (Max 0.650. Min -0.650). 

Fig. t2. Radiation from sphere with polar harmonic n = 3 and normalized frequency ka = 3. Contours of space-time solution at 
t = 2(1 using local boundary conditic.ns, (Top): 'plane-wave' §,,. (Middle): first-order ~1- (Bottom): second-order 5~. Dotted 
contours denote analytical solution. Scale: (Max 11.913, Min -0.9t3). 

In this example, the properties and discretization are unchanged from the spherical harmonic 
radiation problem in the first example. Fig. 19 (top) shows the contours of the analytical series solution, 
nodally interpolated with the mesh employed. The low-amplitude oscillations in the vicinity of the wet 
surface are a product of the difficulty the series solution has in resolving the discontinuity in tbc loading 
condition at q~p = 13.5 °, and are not relevant to the validation of the numerical results. The steady-state 
solution obtained by the time-discontinuous solution is shown in Fig. 19 (middle) and (bottom), for the 
5~ and §, operators, respectively. Results for the space-time solution show a significaltt :'nprovement 
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Fig. 13. Illustration of a spherical radiator of radius a, offset from the center of a spherical artificial boundary of radius 3a. 

Fig, 14. Computational domain for a sphere shifted from the center of a spherical non-reflecting boundary. Spatial discretization: 
Upper half modeled with 1518 axisymmetric elements using quadratic interpolation. 

in the solution using 5 z, in comparison to the solution using ~l '  Near the piston pole, both solutions 
accurately capture the physics of the problem, but as the wave pattern spreads to the backside, the 
solution using 5 t deteriorates significantly wbile 5,  maintains an accurate solution throughout the 
entire computational domain. 

5.4. !llustration o f  stability 

In this example we illustrate the need for the temporal jump terms on the absorbing boundary I : .  
Fig. 20 shows the time history at a point on F, for the transient radiation from a circular cylinder that is 
driven to steady-state. The solid line in Fig. 20 is the exact time-harmonic solution for this problem. For 
this two-dimensional problem, we use the sequence of high-order approximate local boundary 
conditions described in [i8, 19], which are based on the radial asymptotic solution to the wave equation 
in two dimensions. In particular, the following second-order local time-dependent boundary operator is 
used for this problem, 

1 ( ~2) 3 R d ( b  R .. 
§2~=~--~ • 3 / 4 - - ' ~  ~b+~-~+c--~-+--4~c2 (74) 

Details for the implementation of this two-dimensional boundary operator in the time-discontinuous 
finite element method are given in [14]. Results from this example demonstrate that when the consistent 
jump terms defilmd in (57) are included on the boundary F~, then the solution using the local boundary 
condition 52 displays the correct transient solution for short time (time less than 6 s), and then quickly 
assumes the exact steady-state solution. However, when the temporal jump terms are omitted, i.e. 
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Fig, 15, Radiation from a non-concentric sphere. Elevated solution cont~mrs sh~wn at the end of the initial pulse al t = 1 and 
later times t = 1.5 through t = 3,5 in increments o1 At = (|.5. 
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Fig. 16. Radiation from a non-concentric sphere. Elevated contours shown at t = 2.5. Space-time solution using (top) ,~t local 
boundary condition. (bottom) ~, local boundary condition. 

a,(w"(t~ ), ~6"(r,,)~),. = o 

t~ + h d,,(w (t. ). ~d, (t,,)l),. = 0 

then the solution quickly becomes unstable, generating large spurious oscillations, eventually leading to 
overflow. This example demonstrates how these additional operators are needed to ensure a stable 
solution, and are the key element that enable generalization of the time discontinuous Galerkin method 
to handle non-reflecting boundary conditions. 
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Fig. 17. Radiation from a non-concentric sphere: Solution on the artificial boundary !',, at the axis of symmetry ~ = O. (left) §a 
local boundary condition. (right) ~, Ioc'tt boundary condition. 

Fig. 18. Illustration of a circular piston subtending a polar angle % in a spherical baffle of radius a. 

6. Conclusions 

In Part 1 [7], a new space- t ime finite e lement  me thod  for structural acoustics was given. The  
formulat ion employs a finite computat ional  fluid domain  surrounding the structure and incorporates  
local t ime-dependent  non-reflecting boundary  condit ions on the fluid t runcat ion boundary.  Non- 
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Fig. i9. Solution contours for radiating piston on a sphere. (Top): Analytic series solution at time t = 30 and ka = 3, (Middle): 
Space-time solution with 5~. (Bottom): Space-time solution with S,. Dotted contours denote exact solution. Scale: (Max 0.048, 
Min -0,988). 

reflecting boundary conditions are incorporated as 'natural" boundary conditions in the space-time 
variational equation, i.e. they are enforced weakly in both space and time. 

In this paper, new local time-dependent non-reflecting boundary conditions which are exact for the 
first N spherical wave harmonics have been developed for the scalar wave equation in three space 
dimensions. The development of these boundary conditions began with the truncated Dirichlet-to- 
Neumann (DIN) map in the frequency domain. Time-dependent boundary conditions that are local in 
both time and space were obtained by an inverse Fourier transform. The time-discontinuous Galerkin 
space-time formulation provides a natural variational setting for the incorporation of these local in time 
boundary conditions, where standard C ° continuous interpolations in the time dimension may be used 
up to the order required by the boundary operator. Crucial to the stability and convergence of our 
time-discontinuous Galerkin method for structural acoustics in infinite domains is the introduction of 
consistent temporal jump operators across space-time slabs restricted to the radiation boundary. The 
specific form of these operators were designed such that continuity of the solution across slabs is weakly 
enforced in a form consistent with the exact non-reflecting boundary conditions. However, for 
boundary conditions beyond second-order, high-order continuity in the space dimension on the 
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Fig. 21. Illustration of stability. Radiating circular cylinder with loading cos 30 sin ~0t. Results at the artificial boundary F., 
demonstrate that temporal jump terms arc needed on I'. for stability. 

boundal y is required due to the high-order tangential derivatives appearing in the operators. To address 
this issue, we derived an exact local in time counterpart for the spatially non-local and frequency 
dependent DiN non-reflecting boundary condition. This resulted in a new sequence of exact boundary 
conditions that retain their locality in time yet require a non-local spatial integral. The advantage of 
these new local in time and non-local in space non-reflec6,~ boundary conditions is that they allow for 
the use of C" interpolations in both the time and space dimensions. 

Because the time-dependent boundary conditions were derived from the exact impedance for the 
exterior fluid outside the artificial boundary F~. and do not depend on the form of governing equations 
within the interior computational region ~,  they are applicable to both radiation and scattering from 
rigid or elastic structures~ and for any number of inhomogeneities or non-linearities within the bounded 
computational domain. 

A feature inherited by the non-reflecting boundary conditions proposed in this paper is that they 
exactly represent the solution as a series of out~oing spherical wave harmonics. This property plays an 
important role in the understanding of how individual wave harmonics contribute to the accuracy and 
stability of the solution as effected by the radial distance of the artificial boundary from the source, the 
geometric complexity of the wave pattern and the frequency content of the outgoing waves. In contrast, 
a physical understanding of the harmonic contribution to the accuracy and stability of boundary 
operators based on approximate power series (muitipole) expansions, such as the popular Bayliss and 
Turkel sequence of boundary operators is lacking. 

Numerical solutions for some representative transient acoustic radiation problems demonstrated the 
improved accuracy and efficiency that results from the use of the high-order non-reflecting boundary 
conditions within our space-time finite element formulation. In particular, the effects of increasing 
spherical harmonics r~, frequer~c~, oJ = kc,  and the position of the truncation boundary ~, on the 
accuracy of the space-time finite element solution using the new local non-reflecting boundary 
operators was investigated. Results from this study are summarized in the following: 

(l)  The local boundary operators provide increasing accuracy with the order N used in the truncated 
DtN series, allowing for the use of smaller fluid meshes with a subsequent gain in efficiency. 
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(2) When the ~olution on the artificial boundary consists of only the first N wave harmonics, then the 
boundary conditions are exact in ho~h time and space 

(3) The accuracy for highcr wave harmonics depends strongly on the normalized freq'tency ka, in 
that the local operators can accurately capture increased wave harmonics as the frequency 
(wavcnumber) is increased relative to the dimension of the radiator/scatterer, 

(4) The operators are incrcasingly accuratc for highcr wave harmonics as the position R of the 
artificial boundary is mo:,cd further away from the radiator/scatterer. 

Results from these studies, together with the numerical results obtained from a vibrating piston on a 
spherical baffle, and the transient radiation from a non-concentric sphere, support the conclusion that 
the second-order absorbing boundary condition ~ ,  whcn implemented in the time-discontinuous 
Galerkin fl~rmulation, exhibits superior accuracy (for the same position) when compared to the 
low-order plane-wave damper ~,, or spherical damper $~. rcsulting in a drastic reduction in the 
computational domain needed, with a corresponding reduction in computational cost and storage. 
Additional numerical examples are reported in 16. 81. These results suggest that the new high-order 
non-reflecting boundary conditions provide an economical means to achieve accurate solutions to the 
transient structural acoustics problctn in infinite domains. 

While the numerical implementation presented in this paper have been limited to boundary 
conditions up to second order, the time-discontinuous space-time finite clement formulation is 
applicable to third and higher-order boundary conditions; research efforts are under way to address the 
implemcntational issues of the high-order boundary conditions. Third and higher-order boundary 
conditions involve fourth and higher-order time derivatives, which ca, be implemented efficiently by 
employing space-time elements with fourth and higher-order temporal interpolation on the face 
adjacent to the radiation boundary U, and low-order temporal interpolation on the other faces. It 
remains to be seen what (if any) additional advantage in terms of accuracy and economy can be 
achieved by the implementation of the high-order operators beyond second order. The implementation 
and numerical analysis of local time-dependent absorbing boundary conditions in two spatial dimen- 
sions are reported in [8, 14]. 

in the numerical examples given in this paper, a very regular mesh was used. A refinement• 
unrefinement strategy for transient structural acoustics that truly adapts to the character of the solution 
simultaneously in both time and space dimensions would lower the solution costs significantly. A 
successful adaptive scheme would track the propagation of waves as they propagate along space-time 
characteristics, The space-time finite element approach advocated in this work provides a powerful 
framework for unified and simultaneous spatial and temporal adaptivity of the discretization. We are 
actively pursuing the development of efficient and accurate local error indicators to drive the 
implementation of adaptive strategies for the space-time finite element solution of the exterior 
structural acoustics problem incorporating our exact lime-dependent non-reflecting boundary con- 
ditions. 
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