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Abstract

In this paper a Galerkin least squares (GLS) finite element method, in which
residuals in least-squares form are added to the standard Galerkin variational
equation, is developed to solve the Helmholtz equation in two-dimensions. An
important feature of GLS methods is the introduction of a local mesh pa-
rameter that may be designed to provide accurate solutions with relatively
coarse meshes. Previous work has accomplished this for the one-dimensional
Helmholtz equation using dispersion analysis. In this paper, the selection of the
GLS mesh parameter for two-dimensions is considered, and leads to elements
that exhibit improved phase accuracy. For any given direction of wave propa-
gation, an optimal GLS mesh parameter is determined using two-dimensional
Fourier analysis. In general problems, the direction of wave propagation will
not be known a priori. In this case, an optimal GLS parameter is found which
reduces phase error for all possible wave vector orientations over elements.
The optimal GLS parameters are derived for both consistent and lumped mass
approximations. Several numerical examples are given and the results com-
pared with those obtained from the Galerkin method. The extension of GLS
to higher-order quadratic interpolations is also presented.
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1 Introduction

Boundary-value problems governed by the Helmholtz equation are important in a
variety of applications involving time-harmonic wave propagation phenomena such
as linear acoustics and electrodynamics. There is also interest in the Helmholtz
equation in an abstract setting because of the potential for a loss of ellipticity (strong
coercivity) with increasing wavenumber. This difficulty is especially important when
solving large-scale problems with iterative solvers where the condition number of the
matrix equations depends on the wavenumber, Bayliss, et. al. [1].
Finite element solutions to the Helmholtz equation in two-dimensions have been

primarily sought using the standard Galerkin method; see for example, Maccamy and
Marin [2], Goldstein [3], Bayliss, Goldstein and Turkel [4]. However, it is well known
that the numerical phase accuracy of standard Galerkin finite element solutions de-
teriorate rapidly as the wavenumber, normalized with the element mesh parameter,
is increased, Belytschko and Mullen [5], Mullen and Belytschko [6]. This resolution
problem arises from the use of piecewise polynomial shape functions to approximate
highly oscillatory wave propagation solutions. To obtain an acceptable level of accu-
racy, more than ten elements per wavelength are required. For large wavenumbers,
refining the mesh to maintain this requirement may become prohibitively expensive.
Global error estimates based on the wavenumber and local element parameter for
the Galerkin finite element method are reported in Bayliss, et.al. [7], Aziz et.al. [8],
Douglas et.al. [9], and Ihlenburg and Babuska [10].
Several approaches designed to improve the numerical phase accuracy of the stan-

dard Galerkin method have been proposed in recent years. Goldstein [11] employed a
version of the weak element method to the Helmholtz equation where the local solu-
tion within each element is approximated by a sum of exponentials. In this approach,
continuity at interelement boundaries is enforced weakly for certain functionals of
the approximate solution. As reported by Goldstein, for general problems in two-
dimensions, the success of this approach has been limited.
Park and Jensen [12] and Alvin and Park [13] used discrete Fourier analysis to

derive wavenumber dependent modifications to the stiffness and mass matrices arising
from standard Galerkin finite element methods. The modified element matrices are
designed to minimize dispersion error over a specified frequency–wavenumber window.
This approach can be viewed as an extension of previous modifications to Galerkin
finite element equations such as diagonal, and higher-order mass approximations,
Goudreau and Taylor [14] and Fried [15], but now tailored over a specified range
of frequencies. A difficulty of such methods, is that they do not possess a firm
mathematical basis for proving stability and convergence. In particular, they do not
inherit the consistency inherent in the Galerkin method, an important ingredient for
obtaining improved convergence rates with higher-order interpolation functions.
Over the last view years, a new class of residual based finite element formulations

has emerged to counteract the stability problems and other numerical pathologies ex-
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hibited by the classical Galerkin method. These methods are developed by append-
ing residuals of the Euler-Lagrange equations to the standard Galerkin variational
equation. The added residual terms preserve the consistency inherent in the par-
ent Galerkin method. Methods of this type were originally developed by Hughes and
Brooks [16], to improve the stability of numerical solutions for the advection-diffusion
equation, and are referred to as ‘streamline-upwind/Petrov-Galerkin’ (SUPG) meth-
ods. For a review of SUPG type methods applied to advective-diffusive systems and
fluid flow equations, see Hughes [17] and Johnson [18].
These ideas have since been extended by Hughes, Franca and Hulbert [19], to the

concept of Galerkin least-squares (GLS) by appending residuals of the Euler-Lagrange
equations in least-squares form to the standard Galerkin formulation. GLS finite
element methods have been successfully employed in a wide variety of applications
where enhanced stability and accuracy properties are needed, including problems
governed by Navier-Stokes and the compressible Euler equations of fluid mechanics,
Shakib and Hughes [20].
Recently, Harari and Hughes [21] have applied Galerkin least-squares technology

to the Helmholtz equation for one-dimensional model problems. An important feature
of GLS methods is the introduction of a local mesh parameter into the variational
equation that may be designed to provide accurate solutions with relatively coarse
meshes. Harari and Hughes accomplished this for one-dimensional problems using
dispersion analysis. In the paper by Harari and Hughes [22], the GLS mesh parameter
derived in one-dimension is used in the DtN finite element method proposed by Keller
and Givoli [23] for solving the exterior Helmholtz problem. Although it was found
that the one-dimensional parameter improved the accuracy of the Galerkin solution in
some two-dimensional example problems, a comprehensive analysis of GLS dispersion
characteristics in two-dimensions was unavailable.
In this paper the selection of the optimal GLS mesh parameter for the two-

dimensional Helmholtz equation is considered, and leads to elements that exhibit
improved phase accuracy. Although for any given direction of wave propagation, it
is shown in this paper that an optimal GLS mesh parameter can be obtained, in
general, the direction of wave propagation will not be known a priori. To remedy this
difficulty, a GLS parameter is found which reduces phase error for all possible wave
vector directions over an element. By performing a two-dimensional Fourier analysis
we have been able to characterize the phase accuracy and directional properties of
the Galerkin least-squares solution over all wave vector magnitudes and directions. A
number of alternative GLS parameters are derived for general numerical integration
rules such as Gaussian and Lobatto quadrature and their dispersion characteristics
analyzed over the full range of wave vector orientations. Results from this analysis
quantify the reduction in phase error achieved using alternative GLS mesh parame-
ters.
Extensions of GLS to higher-order finite element interpolations is also considered.

In particular, optimal GLS parameters designed to reduce dispersion for elements
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with quadratic interpolation functions are derived together with some simple approx-
imations useful for efficient computation. A number of example problems are numer-
ically solved to verify the accuracy of the GLS method and assess the performance of
competing GLS design parameters.
In Section 2 the Helmholtz equation and its characteristic equation relating fre-

quency and wave vector components in two-dimensions is reviewed. In Section 3
the Galerkin least-squares variational equations are stated and difference equations
arising from the assembly of a uniform discretization of bilinear elements derived. In
Section 4 a two-dimensional Fourier analysis of these equations is performed to ob-
tain GLS dispersion relations. Optimal GLS parameters are derived and dispersion
curves compared to the standard Galerkin method in Section 5. In Section 6, numer-
ical examples of both interior and exterior problems are solved. Finally, in Section 7
extensions to higher-order quadratic finite elements are developed.

2 Helmholtz equation in two dimensions

Consider a two-dimensional homogeneous isotropic medium whose wave speed is c.
The wave solution φ(x) corresponding to a harmonic source f vibrating at a given
fixed frequency ω > 0 satisfies the scalar Helmholtz equation:

Lφ ≡ ∇2φ+ k2φ = −f in Ω (1)

where k = ω/c > 0 is the wavenumber with wavelength 2π/k, ∇2 is the Laplacian
differential operator and Ω is the spatial domain of interest. The Helmholtz equation
is sometimes called the reduced wave equation, and plays a fundamental role in many
mathematical models of physical phenomena including acoustics and electromagnetic
wave propagation. For example, in linear acoustics φ might represent a perturbation
in pressure about a reference state.
The Helmholtz equation in R2 admits the plane-wave propagating solution,

φ(x, y) = ei(kxx+kyy) (2)

where ω and the wave vector components kx and ky are linked by the characteristic
equation,

(
ωh

c

)2
= (kxh)

2 + (kyh)
2 (3)

and h is a problem dependent characteristic length. This nondispersive relation is
satisfied by the directional wave vector components kx = k cos θ and ky = k sin θ,
where the normal to the plane wave is oriented at angle θ relative to the x-axis.
Alternatively, the characteristic equation (3) can be obtained by a two-dimensional

Fourier transform from physical space to wave space through the transform operation,

F̃ (kx, ky) :=
1
√
2π

∫ ∞
−∞

∫ ∞
−∞

F (x, y)e−i(kxx+kyy)dxdy (4)
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The discrete counterpart to this continuous transform will be used as a tool for the
design of improved finite element methods for the solution of the two-dimensional
Helmholtz equation.

3 Finite Element Formulations

Consider a partition of Ω into finite elements. Let Ωe be the interior of the eth
element, and Ω̃ =

⋃
eΩe. Let S

h ⊂ H1(Ω) and Vh ⊂ H1(Ω) be finite element spaces
consisting of continuous piecewise polynomials of order p.

3.1 Galerkin

As a point of departure, consider the classical Galerkin method.
Given k = ω/c > 0, find φh ∈ Sh, such that

A(wh, φh) = L(wh) ∀wh ∈ Vh (5)

where

A(wh, φh) ≡ (∇wh,∇φh)Ω − k
2(wh, φh)Ω (6)

L(wh) ≡ (wh, f)Ω (7)

and (·, ·)Ω denotes the L2(Ω) inner product. The Galerkin formulation is consistent
in the sense that φ, the exact solution to the Helmholtz equation, satisfies (5). For
k2 > 0 the operator,

A(wh, wh) = ||∇wh||2 − k2||wh||2 ∀wh ∈ Vh (8)

loses positive-definiteness as the wavenumber increases, and stability may be degraded
for large k.

3.2 Galerkin/least-squares

It is well known that the phase accuracy associated with the Galerkin finite element
solution degrades as the wavenumber k is increased relative to the mesh parameter
h. In order to improve accuracy characteristics of the standard Galerkin method, a
least-squares operator is added to (5). This additional operator is constructed from
a residual of the governing Helmholtz differential equation evaluated within element
interiors.

A(wh, φh) + (τLwh, rh)Ω̃ = L(w
h) (9)

In this expression, rh = Lφh+ f is the residual, and τ is a local mesh parameter with
units of inverse length-squared to be determined from dispersion analysis. If τ = 0,
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the method reverts to Galerkin. Formally, GLS can be stated as follows:
Find φh ∈ Sh, such that

AGLS(w
h, φh) = LGLS(w

h) ∀wh ∈ Vh (10)

where

AGLS(w
h, φh) ≡ A(wh, φh) +

nel∑
e=1

∫
Ωe

τLwh Lφh dΩ (11)

LGLS(w
h) ≡ L(wh)−

nel∑
e=1

∫
Ωe

τLwh f dΩ (12)

As a result of being a weighted residual method, the error e = φh − φ is orthogonal
∀wh ∈ Vh with respect to AGLS.

AGLS(w
h, e) = 0 (13)

This consistency condition is an important ingredient in obtaining improved con-
vergence rates with higher-order interpolation. A Fourier synthesis of AGLS from
physical space to wavenumber space is used as a tool to determine the optimal τ for
two-dimensional applications.

3.3 Finite element discretization

Consider a uniform mesh of bilinear elements,

R
2
h = {(x, y) ∈ R

2 = (mhx, nhy) , (m,n) ∈ Z} (14)

with element sides hx in the x-direction and hy in the y-direction. In order to expose
the directional behavior of the finite element discretization, the approximation of
φh and wh within each element is defined as the tensor product P1 × P1 of one-
dimensional linear interpolants over the biunit square (ξ, η) ∈ (−1, 1)2 :

φh(ξ, η) =
2∑
k=1

2∑
l=1

Lk(ξ)Ll(η)φ
e
kl (15)

wh(ξ, η) =
2∑
i=1

2∑
j=1

Li(ξ)Lj(η)w
e
ij (16)

where Li(ξ) = (1 + ξiξ)/2, ξi = ±1 and φekl = φh(ξk, ηl) are the element nodal
variables. For a uniform mesh of bilinear elements, all derivatives of order higher
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that one vanish within element interiors Ωe, i.e. Lφh = k2φh. When f = 0, the GLS
local element equations defined in tensor product form are,

∑
k

∑
l

(
Seijkl − γk

2M e
ijkl

)
φekl = 0 (17)

The quantity

γ := (1− τk2) (18)

embodies the GLS mesh parameter τ , and the local element stiffness and mass tensors
integrated with a (2× 2) quadrature rule are defined as,

Se = [Seijkl], Seijkl :=
1

h2x
AikBjl +

1

h2y
BikAjl (19)

M e = [M e
ijkl], M e

ijkl := BikBjl/4 (20)

where the discrete L2 inner products are given by,

Aeij =
2∑
q=1

L′i(ξq)L
′
j(ξq)Wq, Beij =

2∑
q=1

Li(ξq)Lj(ξq)Wq (21)

and ξq is the quadrature point and Wq the quadrature weight. In these expres-
sions the prime on the shape functions denotes differentiation. For (2× 2) Gaussian
quadrature, the inner products are exactly integrated. For Lobatto quadrature, Beij
is underintegrated and diagonal, i.e. Beij = δijWj.

(m,n)

(m+1,n-1)

(m,n+1)

(m,n-1)

(m+1,n)

(m-1,n+1)

(m-1,n-1)

(m+1,n+1)

(m-1,n)

Fig. 1: Two-dimensional bilinear finite element mesh with spacing ∆x = hx and ∆y = hy.

Finite element difference relations are obtained by assembling a patch of four bilin-
ear elements as illustrated in Figure 1. The result is the difference stencil associated

Int. J. Numer. Meth. Engng., Vol.38, pp. 371-397 (1995)
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with the interior node φm,n = φ
h(mhx, nhy)|R2h 7→ C.

F (k) = Sφm,n − γk
2Mφm,n = 0 (22)

where S and M are the two-dimensional linear difference operators emanating from
the assembled stiffness (discrete Laplacian) and mass tensors respectively.

S =
1∑

p,q=−1

spqE
p
xE
q
y = Sx + Sy (23)

Sx = −
1

h2x
(1 +

ε

6
δ2y)δ

2
x (24)

Sy = −
1

h2y
(1 +

ε

6
δ2x)δ

2
y (25)

M =
1∑

p,q=−1

mpqE
p
xE
q
y =Mx ×My (26)

Mx = (1 +
ε

6
δ2x) (27)

My = (1 +
ε

6
δ2y) (28)

Expressions for [spq] and [mpq] are given in the Appendix. The directional shift
operators are defined by,

Epxφm,n = φm+p,n and Eqyφm,n = φm,n+q (29)

and the central difference operators are defined by,

δ2xφm,n = φm−1,n − 2φm,n + φm+1,n (30)

δ2yφm,n = φm,n−1 − 2φm,n + φm,n+1 (31)

The ε is a general quadrature parameter equal to 1 for exact Gaussian quadrature
and 0 for Lobatto quadrature. The mass operatorM is referred to as consistent when
ε = 1 and lumped when ε = 0.
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θ

Fig. 2: Direction of plane-wave with angle θ measured relative to mesh lines

4 GLS dispersion relations

The GLS finite element dispersion relations are obtained by substituting into (22) the
plane-wave solution,

φm,n = e
i(khxhxm+k

h
yhyn) (32)

with directional wave vector components khx = kh cos θ and khy = kh sin θ and numer-
ical wavenumber kh. The normal is oriented at angle θ relative to mesh lines, see
Figure 2. The resulting dispersion relation is,

F̃ (k, khx , k
h
y ) = S̃ − γk

2M̃ = 0 (33)

In this relation, S̃ and M̃ denote the discrete Fourier transforms of the linear difference
operators S and M respectively,

S̃(khxhx, k
h
yhy) =

1∑
p,q=−1

spqe
i(khxhxp+k

h
yhyq) = 1yk̄

2
x + 1xk̄

2
y (34)

M̃(khxhx, k
h
yhy) =

1∑
p,q=−1

mpqe
i(khxhxp+k

h
yhyq) = 1x1y (35)

with notation,

k̄2x = 2(1− fx)/h
2
x and k̄2y = 2(1− fy)/h

2
y (36)
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fx = cos(khxhx) = cos(k
hhx cos θ)

fy = cos(khyhy) = cos(k
hhy sin θ)

1x = 1−
ε

6
(k̄xhx)

2 and 1y = 1−
ε

6
(k̄yhy)

2 (37)

For a detailed description of the discrete Fourier transform applied to linear differ-
ence equations, see Vichnevetsky and Bowles [24]. The characteristic equation (33)
describes the nonlinear relationship between the continuous wavenumber k = ω/c
and the finite element discrete wave vector components khx and k

h
y . Written in the

alternate form,
γk2 = Dh(kh, θ), Dh = S̃/M̃ (38)

it is clear that the dispersion relation depends on both the magnitude kh and the
orientation θ.

kh = |kh| =
√
(khx)

2 + (khy )
2 (39)

θ = tan−1(khy/k
h
x) (40)

5 Optimal GLS mesh parameter for bilinear ele-
ments

The optimal least-squares mesh parameter τ is obtained by requiring the phase to be
exact, i.e. k = kh for any choice of wave vector angle θ = θo. This requirement is
met by replacing kh with the exact wavenumber, k = ω/c, in the GLS finite element
dispersion relation (38), restricting hx = hy = h, and solving for γ. With this design
criteria, the optimal τ is defined as,

τk2 := 1−
S̃(kh, θo)

k2M̃(kh, θo)
(41)

where S̃ and M̃ are defined in (34) through (37) with kh replaced with k = ω/c. In
particular, for exact 2× 2 Gaussian integration, the expression for the optimal GLS
mesh parameter is,

τk2 = 1−
6(4− fx − fy − 2fxfy)

(kh)2(2 + fx)(2 + fy)
(42)

Setting θ0 = 0, (41) specializes to,

τk2 := 1−
6(1− cos kh)

(kh)2(3− ε(1− cos kh))
(43)

which yields exact phase for plane-waves directed along uniform mesh lines. When
ε = 1 this definition specializes to the GLS parameter derived by Harari and Hughes
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[21] in one-dimension. For comparison the GLS mesh parameter τ defined in (42),
with ε = 1, designed to give exact phase for plane-waves oriented along θ = 0 (denoted
τ0) and θ = 22.5 (denoted τ22.5) are plotted in Figure 3.

Normalized Wavenumber (kh)=�

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0

0 0.2 0.4 0.6 0.8

�0

�22:5

�
k

2

Fig. 3: Galerkin least squares parameters for two-dimensions designed to give exact phase
for plane waves directed along θ = 0 (denoted τ0), and θ = 22.5 (denoted τ22.5).

In the next section, the performance of alternate GLS mesh parameters, based on
definition (41), with different choices of θo and ε are examined.

5.1 GLS Dispersion results

The accuracy of the numerical solution is assessed in terms of the phase error defined
by,

ep(k
h, θ) =

ch

c
=

k

kh
(44)

Exact phase corresponds to ep = 1. Results are plotted for plane wave solutions
directed along mesh lines θ = 0, and for plane wave solutions directed along mesh
diagonals θ = 45. Results for orientations θ ∈]0, 45[ are bounded by these angles.
Dispersion curves for Galerkin τ = 0 and GLS with τ0, designed to give exact

phase for plane-waves directed along θ = 0 are given in Figure 4. Near the origin,
the relative phase speed converges to unity ep = 1, but as the wavenumber increases,
the phase error also increases. The Galerkin solution exhibits a phase lead ch/c > 1
and the phase error is a minimum for plane-waves directed along mesh diagonals
θ = 45. For a mesh refinement of ten elements per wavelength (khh = .2π), the
maximum phase error max|ep| evaluated over all angles θ is less than 2 percent. As
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Normalized Wavenumber (khh)=�
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Fig. 4: Phase error using exact integration for (top) Galerkin τ = 0, (bottom) GLS τ = τ0,
designed to give exact phase for θ = 0.
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Fig. 5: Surface plot of phase error (ch/c) vs. normalized wave vector components (khxh/π)
and (khyh/π) for bilinear discretization with exact 2 × 2 integration : (a) Galerkin (b)
Galerkin/least-squares
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Fig. 6: Phase error using exact integration for (top) GLS τ = τ22.5, (bottom) GLS τ = τ45
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Fig. 7: Phase error using exact integration at (top) 10 elements per wavelength, (bottom)
4 elements per wavelength.
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the wavenumber is increased relative to the mesh parameter h, the phase accuracy
degrades severely to max|ep| = 10 percent. For GLS with τ0 and exact integration,
the two-dimensional GLS dispersion relation relating the exact wavenumber k = ω/c,
to the discrete wavenumber kh and angle θ is given by,

kh = cos−1
{
4(fx + fy) + 5fxfy − 4

fx + fy − fxfy + 8

}
(45)

By design, for propagation along mesh lines θ = 0 (mod 90), this relation reduces
to the exact phase relationship ep = 1 for kh ∈ (0, π). Referring to Figure 4, the
dispersion curves for θ 6= 0 exhibit a phase lag ch/c < 1 with max|ep| reduced to
approximately 4 percent at four elements per wavelength. These two-dimensional
dispersion results show how the addition of the least-squares operator, with the GLS
mesh parameter τ0 defined in (43), reduces the phase error present in the Galerkin
solution over all wave vector orientations θ. This conclusion is further illustrated in
Figure 5 by an elevated surface of the phase error ch/c = k/kh plotted as a function
of the normalized wavenumber components khxh/π in the x-direction and k

h
yh/π in

the y–direction .
In Figure 6, the dispersion curves for the alternative GLS parameters, τ22.5 de-

signed for exact phase at θ = 22.5, and τ45 designed for exact phase at θ = 45 are
compared. For τ45, the maximum phase error is still approximately 4 percent but
is now reflected about the exact solution ch/c = 1 such that there is a phase lead
ch/c > 1. By choosing the GLS parameter τ22.5, corresponding to exact phase for
θ = 22.5, the envelope of the dispersion curves is centered around the exact result
ch/c = 1. As a result, the GLS solution exhibits a maximum possible error |ep| of only
2 percent at four elements per wavelength as compared to 10 percent for Galerkin.
At ten elements per wavelength, GLS with τ22.5 has a maximum possible error of 0.5
percent, compared to 1.6 percent for Galerkin. See Figure 7 for a summary of these
results.
In conclusion, firstly, it is clear that the least-squares addition with τ defined by

(41) substantially improves the phase accuracy of the finite element solution for any
choice of wave vector orientation θ. Secondly, we find that when the direction of
wave-propagation is not known a priori, or when it is varying over the mesh, as will
generally be the case, then τ22.5 is optimal.
The effectiveness of the Galerkin/least-squares method when using a lumped mass

approximation (Lobotto quadrature) is examined by setting ε = 0 in (43).

τk2 = 1−
2(1− cos kh)

(kh)2
(46)

The two-dimensional GLS dispersion relation in this case is,

kh = cos−1 {(fx + fy + 2fxfy − 1)/3} (47)
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Fig. 8: Phase error using diagonal mass approximation, ε = 0, (top) Galerkin (τ = 0)
(bottom) GLS (τ = τ0), designed for exact phase for θ = 0.
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Figure 8 plots dispersion curves using a lumped mass approximation for Galerkin
and GLS with the τ defined in (46). These results confirm that the least-squares
addition is effective for improving the phase accuracy of Galerkin solutions even when
approximate quadrature rules are used to integrate the mass operator.

6 Numerical Studies

A number of numerical studies are conducted to verify the improved accuracy of the
GLS method and assess the performance of alternate GLS mesh parameters.

6.1 Plane-wave propagation along a waveguide

Consider the problem of finding the solution φ : Ω̄ = {(x, y) : 0 ≤ x ≤ Lx, 0 ≤ y ≤
Ly} → R with an inhomogeneous Dirichlet boundary condition within a waveguide.

(∇2 + k2)φ(x, y) = 0 in Ω (48)

φ(0, y) = g0, φ(Lx, y) = 0 (49)

φ,y (x, 0) = φ,y (x, Ly) = 0 (50)

The analytical solution to this problem is characterized by the standing plane-wave
representation,

φ(x|k) = g0
sin(k(Lx − x))

sin(kLx)
(51)

Let Lx = Ly = L, and discretize the computational domain with a uniform mesh
of nel = 10 × 10 equally spaced bilinear finite elements. It can be verified that the
GLS nodal solution to this problem has the same form as the analytical solution but
with the physical wavenumber k replaced with the numerical wavenumber kh. Since
this problem is an example of a plane-wave solution directed along x-direction mesh
lines, the GLS method can be designed to achieve nodal exactness (superconvergence)
by choosing the GLS parameter τ0, corresponding to θ0 = 0 and k = k

h
x .

The following calculation demonstrates the difficulty Galerkin methods have in
resolving the plane-wave solution as the wavenumber is increased relative to the mesh
size. Let the nondimensional wavenumber be kh = π/6, corresponding to a relatively
refined mesh of twelve elements per wavelength. The profile of this solution plotted
along the x-axis is shown in Figure 9. The Galerkin (τ = 0) solution with either
consistent (ε = 1) or lumped mass (ε = 0) approximation is well-resolved as predicted
from the finite element dispersion results, i.e. ep ∼ 1. Figure 10 illustrates that as the
wavenumber is increased to kh = π/3, corresponding to a coarse mesh of six elements
per wavelength, the accuracy of the Galerkin solution deteriorates significantly, while
GLS remains nodally exact as designed.
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Now consider the rotated mesh shown in Figure 11. This example illustrates that
for problems where the direction of wave propagation is known a priori, in this case
along the x-axis, an optimal GLS parameter τ can be calculated from (41) in order
to improve phase accuracy. For this mesh and loading, optimal accuracy is obtained
by choosing τ such that θo = 45 since the mesh lines are rotated by 45 degrees to the
direction of propagation. The GLS solution to this problem is illustrated in Figure 12.
For comparison, the Galerkin and GLS solutions using τ45; exact for waves directed
along θ = 45 relative to mesh lines and τ22.5; exact for waves directed along θ = 22.5
are also shown in this Figure. The GLS solution with τ45 is very close to the the nodal
interpolate of the exact solution. The solution is not nodally exact for this mesh due
to the presence of linear triangular elements used near the boundaries. Results for
the alternative GLS parameter τ22.5 also exhibit significantly improved phase accuracy
when compared to Galerkin. Further studies on the effects of mesh orientation and
distortion are reported in [25].

6.2 Green’s function for a rectangular domain

Consider the problem of finding the Green’s function φ : Ω̄ → R with homogeneous
Dirichlet boundary conditions within a rectangular domain.

(∇2 + k2)φ(x, y) = −δ(x− x0, y − y0) in Ω (52)

φ(0, y) = φ(Lx, y) = φ(x, 0) = φ(x, Ly) = 0 (53)

The exact solution to this problem can be written as a series of eigenfunctions ψij
with wavenumber dependent amplitudes αij,

φ(x, y) =
∞∑
i=1

∞∑
j=1

αijψij(x, y) (54)

where
ψij(x, y) = sin(iπ/Lx) sin(jπ/Ly) (55)

and

αij =
−4ψij(x0, y0)

LxLy(k2 − (iπ/Lx)2 − (jπ/Ly)2)
(56)

In this problem the solution is composed of a series of reflected waves which give rise
to complicated standing wave patterns.
This problem is numerically solved by the Galerkin least-squares method using a

uniform mesh of 20×20 linear quadrilateral elements. All calculations are performed
with 2 × 2 Gauss integration with kL = 5π/3. The source is located in the upper
right quadrant at the point (x0, y0) = (0.8L, 0.8L). At the top of Figure 13 the
elevated contours of the exact series solution interpolated with the mesh employed
is illustrated. In the figures that accompany this result, the contours of the exact,
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Fig. 9: Dirichlet problem with plane-wave solution directed along x-direction mesh lines
with kh = π/6, twelve elements per wavelength.
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Fig. 10: Dirichlet problem with plane-wave solution directed along x-direction mesh lines
with kh = π/3, six elements per wavelength.
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Fig. 11: Rotated finite element mesh of linear quadrilateral elements and linear triangular
elements.
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Fig. 12: Dirichlet problem with rotated mesh and plane-wave solution directed along x-
axis; kh = π/3, six elements per wavelength.
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Galerkin and GLS (τ22.5) solutions are shown respectively. The solution profile for a
cut located at y = 0.2L is given in Figure 14. The L2 norm of the error evaluated
over all nodal points excluding the source node is computed as,

||e||2 =
∑
m

∑
n

(φhmn − φ(xm, yn))
2 (57)

The computed values of ||e|| for Galerkin and GLS using the mesh parameters τ0 and
τ22.5 are:

Galerkin = 0.691

GLS(τ0) = 0.240

GLS(τ22.5) = 0.148

Results of this numerical example indicate that the additional least-squares opera-
tor with the family of mesh parameters τ defined in (41) improves the accuracy of
the Galerkin solution. However, for problems where waves are directed in arbitrary
directions in R2, use of the GLS parameter τ22.5 is more accurate than the use of
τ0. Moving the source to the center of the computational domain at the point
(x0, y0) = (0.5L, 0.5L) we find that the error measured in the norm ||e|| becomes,

Galerkin = 1.200

GLS(τ0) = 0.156

GLS(τ22.5) = 0.149

The solution profile across the section at y = 0.2L is shown Figures 15. In this
case, the GLS solution dramatically improves the accuracy of the solution com-
pared to Galerkin. These results substantiate the conclusions drawn from the multi-
dimensional dispersion analysis of the previous section: If the predominant direction
θ, is known a priori, then the optimal mesh parameter can be calculated from (41).
However, for general problems where waves are directed in arbitrary directions in R2,
use of the GLS parameter τ22.5 is more accurate than the use of τ0.

6.3 Radiation from an infinite cylinder

Currently there is intense interest in the application of analytical and numerical tech-
niques to model exterior wave propagation problems such as the radiation and scat-
tering of acoustic waves from geometrically complex structures. Consider the problem
of non-uniform radiation from a rigid infinite cylinder of radius a. By increasing the
circumferential harmonic loading on the surface of the cylinder, the response of indi-
vidual wave propagation modes on the performance of the numerical solution is exam-
ined. For this exterior problem, the solution φ : R = {a ≤ r <∞, 0 ≤ θ < 2π} → C,
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Fig. 13: Contours for point source located in upper right quadrant of a uniform mesh of
(20 × 20) bilinear elements, at kL = 5π/3. (Upper left) Elevated contours for exact series
solution. (Upper right) Contours of exact solution, (Bottom left) Galerkin, (Bottom right)
Galerkin/Least-Squares
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Fig. 14: Point source located in upper right quadrant: Solution profile along x–axis for
fixed y/L = 0.2
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is sought such that,

(∇2 + k2)φ(r, θ) = 0 in R (58)

φ(a, θ) = cosnθ (59)

lim
r→∞

√
r(φ,r−ikφ) = 0 (60)

The exact solution to this problem is Hn(kr) cosnθ/Hn(ka) where Hn are Hankel
functions of the first kind of order n.
This problem is solved by the GLS finite element method by truncating the infinite

domain at a finite distance from the cylinder with an artificial boundary. A non-
reflecting boundary condition representing the impedance of the exterior domain is
then prescribed at this artificial boundary. Let the artificial boundary to be a circle
of radius R. The problem defined over the bounded domain Ω is then:
Find φ : Ω = {a ≤ r ≤ R, 0 ≤ θ < 2π} → C, such that

(∇2 + k2)φ(r, θ) = 0 in Ω (61)

φ(a, θ) = cosnθ (62)

φ,r (R, θ) =Mφ(R, θ) (63)

where the last equation is the non-reflecting boundary condition expressed through
the Dirichlet-to-Neumann (DtN) mappingM . Keller and Givoli [23], derived an exact
DtN map M , expressed as the infinite series,

Mφ =
∞∑
n=0

αn

∫ 2π
0

cosn(θ − θ′)φ(R, φ′)dφ′ (64)

where the impedance coefficients are,

αn(kR) =
εnk

π

H ′n(kR)

Hn(kR)
(65)

and εn is equal to 1/2 for n = 0 and 1 otherwise. This DtN nonreflecting boundary
condition is incorporated weakly as a natural boundary condition into the GLS vari-
ational equation. Further details pertaining to implementation of this DtN boundary
condition in a finite element formulation are given by Givoli and Keller [26].
Consider the positioning of the truncation boundary at R = 2a with the resulting

computational domain discretized by 3 × 32 linear quadrilateral elements as shown
in Figure 16. In the following calculations the geometrically non-dimensionalized
wavenumber is set at ka = π (the wavelength is equal to the diameter of the cylinder).
With the finite element mesh employed, this value corresponds to a resolution of six
elements per wavelength in the radial direction. All calculations employ 2×2 Gaussian
integration and 8 terms in the DtN series.
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Fig. 16: Harmonic radiation with mode (n = 1) and ka = π: (Left) Computational domain
for a cylinder with radius a, and truncation boundary R = 2a. (Right) Contours of Exact
solution.
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For the first harmonic n = 0, the exact solution is a simple cylindrical wave which
has the character of a radially decaying plane-wave. For the radially uniform mesh
employed, this problem reduces to a one dimensional problem with radial coordinate
r. Taking h to be the element length in the r-direction, Harari and Hughes [22] have
shown that the GLS parameter τ0 is optimal in this case.
In this paper, the higher-order circumferential harmonics n = 1 through n = 4 are

investigated in order to further validate the accuracy of the GLS method for more
complex non-uniform radiation patterns. In Figure 16 (Right) the contours of the
imaginary part of the exact solution for the loading cos θ, nodally interpolated by the
mesh employed is shown. Figure 17 shows the profile of the solution evaluated on
the DtN boundary r = R for modes n = 1 through n = 3. The GLS solution was
calculated using both τ0 and τ22.5 defined previously.
For mode n = 1, the improvement of the GLS solutions in comparison to the

Galerkin solution is significant. We also observe that in this case, τ0 is superior to
τ22.5. As the circumferential mode is increased to n = 2, the improvement to the
GLS solution is again significant. In this case, the GLS solution using either τ0 or
τ22.5 are nearly identical. The use of τ0 slightly under-estimates the exact solution
while the use of τ22.5 slightly over-estimates the exact solution. For mode n = 3, the
improvement of the GLS solutions in comparison to the Galerkin solution is again
clearly shown. However, in this case the use of τ22.5 gives the most accurate solution
and is barely distinguishable from the exact solution. For the loading cos 4θ, the
accuracy of the GLS solution using either τ0 or τ22.5 is only slightly better than the
Galerkin solution (not shown).
The results of this study indicate that for low modes n = 0, 1, the radiated en-

ergy of the cylindrical waves are best resolved by the GLS parameter τ0, designed
to improve dispersion errors for plane-waves directed along radial rays, while for
higher modes n = 3, 4, the alternative GLS parameter τ22.5 designed for arbitrary
directional wave vectors performs better. In more general settings such as radiation
and/or scattering from geometrically complex structures, the solution will display a
complex radiation pattern that is difficult to predict a-priori. For the general case, it
is expected that τ22.5 would give the best results. Preliminary numerical studies for
complex radiation and scattering problems support this conclusion.

7 Extension of GLS to higher-order elements

While the 4-node bilinear discretizations represent popular element families due to
their computational efficiency, higher-order elements such as biquadratic interpola-
tions offer special advantages when solving the Helmholtz equation in two-dimensions.
Higher-order elements better approximate the geometric curvature of a model descrip-
tion, and for harmonic wave solutions to the Helmholtz equation, increased phase
accuracy may be realized by employing higher-order interpolation fields.
In order to examine the dispersive properties of higher-order elements, consider a
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Fig. 17: Harmonic radiation from a cylinder with ka = π. Solution plotted along the
truncation boundary R = 2a. From top to bottom, mode n = 1 , 2 , 3
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Fig. 18: Two-dimensional biquadratic finite element mesh with corner, edge, and internal
nodes.

uniform mesh of biquadratic (P2 × P2) elements with length h = 2∆x = 2∆y. For
simplicity, consider the Galerkin method where τ = 0. By assembling a patch of 4
elements as shown in Figure 18, we identify four different difference stencils, each
having the form,

∑
p,q

(spq −
(kh)2

10
mpq)E

p
xE
q
yφm,n = 0 (66)

These four stencils are associated with the following nodes where the range on the
sum (p, q) is indicated.

(φm,n) corner nodes (p, q) ∈ {−2, 2} × {−2, 2}
(φm+1,n) x-direction edge nodes (p, q) ∈ {0, 2} × {−2, 2}
(φm,n+1) y-direction edge nodes (p, q) ∈ {−2, 2} × {0, 2}
(φm+1,n+1) interior nodes (p, q) ∈ {0, 2} × {0, 2}

Expressions for the difference coefficients [spq] and [mpq] are given in the Appendix.
In this case, the numerical solutions are allowed to assume four different amplitudes
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corresponding to each of the four different stencils,

φm,n = A1µ
m
x µ
n
y

φm+1,n = A2µ
m+1
x µny

φm,n+1 = A3µ
m
x µ
n+1
y

φm+1,n+1 = A4µ
m+1
x µn+1y

(67)

where
µx = e

ikhx∆x and µy = e
ikhy∆y (68)

The constants A1 and A4 represent amplitudes at the corner and the interior nodes
of the element, while A2 and A3 denote the amplitudes at the edges parallel to the x
and y axis respectively. Substituting the above discrete solutions into each recurrence
stencil yields the characteristic matrix equations,

[S̃ −
(kh)2

10
M̃ ]A = 0 (69)

where S̃ and M̃ are symmetric (4 × 4) characteristic matrices depending on (khxh)
and (khyh), and A ∈ R

4 is the column of amplitudes. The characteristic functions

[S̃ij] and [M̃ij] are given in the Appendix.
The dispersion relation is obtained by setting the determinant of this characteris-

tic equation system to zero. For biquadratic elements, there are two frequency ranges
(branches) where waves are allowed to propagate with pure real wavenumbers. Figure
19 shows surface plots of the relative phase speed ch/c = k/kh as a function of the
normalized wavenumber components 0 < khxh/π < 1 and 0 < khyh/π < 1 correspond-
ing to the lower branch surface. For propagation along mesh lines θ = 0 mod 90, these
two-dimensional dispersion relations reduce to the one-dimensional relations derived
in Thompson and Pinsky [27]. Comparing these results to the dispersion surfaces for
bilinear elements, it is clear that biquadratic discretizations exhibit less phase error
for the same number of nodes per wavelength.

7.1 Optimal GLS parameter for quadratic elements

For a nonzero GLS parameter τ , additional equations are added to the Galerkin equa-
tions as prescribed by (10). The optimal definition of τquad for quadratic p = 2 basis
functions has been determined for plane-waves propagating along mesh lines. With
this assumption, the problem reduces to one-dimension and the Laplacian operator
is interpreted as ∇2φ = φ,xx. Application of the discrete Fourier transform to these
equations, and requiring that the phase be exact in the x-direction, khx = k, leads to
the definition of τquad. Details for its derivation are lengthy and are not presented
here: The precise definition of τquad is given in [25]. In Figure 20 we plot τquad together
with simple approximations based on fractions of the GLS parameter derived earlier
for linear interpolations. A practical estimate, useful for computation is 0.25τlinear.
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Fig. 19: Surface plot of phase error (ch/c) vs. normalized wavevector components (khxh/π)
and (khyh/π) for biquadratic elements with τ = 0: (a) exact integration (b) diagonal mass
matrix
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Fig. 20: Galerkin/least-squares weighting parameter τquad for quadratic interpolation using
Gaussian quadrature compared to estimates based on fractions of the linear τlinear.
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8 Conclusions

In this paper we have presented a Galerkin/least-squares (GLS) finite element method
for two-dimensional wave propagation governed by the Helmholtz equation. The GLS
parameter τ is designed from the criterion that numerical phase error be reduced in
the primary direction of wave propagation. Results from a two-dimensional discrete
Fourier analysis of the GLS method indicate that the additional least-squares opera-
tor improves the accuracy of the Galerkin solution over all wave vector orientations.
Accurate GLS solutions are maintained for as little as six linear elements per wave-
length compared to the limit of ten elements per wavelength required for well resolved
Galerkin solutions.
A number of alternative GLS parameters were derived for general numerical inte-

gration rules such as Gaussian and Lobatto quadrature. Results from the dispersion
analysis indicate that phase accuracy and directional properties associated with GLS
using either exact integration, or diagonal mass approximations, are significantly im-
proved when compared to Galerkin.
Numerical examples of plane waves traveling along a two-dimensional waveguide

with uniform and rotated mesh orientations verify that as the wavenumber, normal-
ized with respect to the element size, is increased, the degradation in phase accuracy
present in the Galerkin solution is reduced and in some cases eliminated by the proper
choice of the GLS parameter τ . GLS solutions for the Green’s function in the interior
of simple rectangular domains demonstrates the improved performance compared to
the standard Galerkin method where multiple reflections are present. These results
validate our conclusion that for problems where waves are directed in arbitrary direc-
tions, use of the GLS parameter τ22.5 defined in (41) with θo = 22.5, is more accurate
than the use of τ0, designed to give exact phase for one-dimensional solutions.
By increasing the circumferential harmonics for a radiating cylindrical model, the

response of individual modes on the performance of the numerical solutions has been
investigated. Results indicate that for low modes, the radiated energy of the cylindri-
cal waves are best resolved by the GLS parameter τ0, designed to improve dispersion
errors for plane-waves directed along the radial rays, while for higher modes, the al-
ternate GLS parameter τ22.5, designed for arbitrary directional wave vectors performs
optimally.
The extension of the GLS method for the Helmholtz equation to higher-order

interpolations has also been investigated. Optimal GLS parameters for elements with
basis functions of high spectral order p can be approximated by simple fractions
of the first order p = 1 case. In particular, for quadratic elements (p = 2), the
value τ = .25τlinear proves to be a useful estimate. Optimal GLS parameters for
the Helmholtz equation in R3 have also been determined: Results are reported in
Thompson and Pinsky [28] and Thompson [25].
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9 Appendix

9.1 Bilinear finite element stencils

Bilinear stiffness and mass stencils [spq] and [mpq] defined for the interior node (m,n)
using consistent mass:

[spq] = −
1

6h2x


 1 −2 14 −8 4
1 −2 1


− 1

6h2y


 1 4 1
−2 −8 −2
1 4 1




[mpq] =
1

36


 1 4 1
4 16 4
1 4 1




9.2 Biquadratic finite element stencils

Biquadratic stiffness and mass stencils [spq] and [mpq] defined in (66) using consistent
mass:

1. Corner Nodes
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[spq] =




1 −2 −8 −2 1
−2 4 16 4 −2
−8 16 64 16 −8
−2 4 16 4 −2
1 −2 −8 −2 1


 ; [mpq] = 2




−1 5 −3 5 −1
5 −16 −18 −16 5
−3 −18 112 −18 −3
5 −16 −18 −16 5
−1 5 −3 5 −1




2. Side Nodes

[spq] =




5 0 5
−16 −48 −16
−18 176 −18
−16 −48 −16
5 0 5


 ; [mpq] =




−1 −8 −1
2 16 2
8 64 8
2 16 2
−1 −8 −1




3. Interior Nodes

[spq] = 8


 −1 −3 −1−3 32 −3
−1 −3 −1


 ; [mpq] =


 1 8 1
8 64 8
1 8 1




Characteristic Matrices [S̃ij] and [M̃ij] for biquadratic element with consistent
mass.

S̃11 = 56− 2f1f2 − 3f1 − 3f2 M̃11 = 16− f1f2 − 4f1 − 4f2
S̃12 = 10g1f2 − 18g1 M̃12 = −2g1f2 + 8g1
S̃13 = 10f1g2 − 18g2 M̃13 = −2f1g2 + 8g2
S̃14 = −32g1g2 M̃14 = 4g1g2
S̃22 = 88 M̃22 = 32− 8f2
S̃23 = −32g1g2 M̃23 = 4g1g2
S̃24 = −48g2 M̃24 = 16g2
S̃33 = 88 M̃33 = 32− 8f1
S̃34 = −48g1 M̃34 = 16g1
S̃44 = 128 M̃44 = 64

where

f1 = cos(k
h
xh) g1 = cos(k

h
xh/2)

f2 = cos(k
h
yh) g2 = cos(k

h
yh/2)
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