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Abstract

A time-discontinuous Galerkin space-time finite element method is formu-
lated for the exterior structural acoustics problem in two space dimensions.
The problem is posed over a bounded computational domain with local time-
dependent radiation (absorbing) boundary conditions applied to the fluid trun-
cation boundary. Aborbing boundary conditions are incorporated as ‘natural’
boundary conditions in the space-time variational equation, i.e. they are en-
forced weakly in both space and time. Following Bayliss and Turkel, time-
dependent radiation boundary conditions for the two-dimensional wave equa-
tion are developed from an asymptotic approximation to the exact solution
in the frequency domain expressed in negative powers of a nondimensional
wavenumber. In this paper we undertake a brief development of the time-
dependent radiation boundary conditions, establishing their relationship to
the exact impedance (DtN map) for the acoustic fluid, and characterize their
accuracy when implemented in our space-time finite element formulation for
transient structural acoustics. Stability estimates are reported together with
an analysis of the positive form of the matrix problem emanating from the
space-time variational equations for the coupled fluid-structure system. Sev-
eral numerical simulations of transient radiation and scattering in two space
dimensions are presented to demonstrate the effectiveness of the space-time
method.
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1 Introduction

A space-time finite element formulation is presented for solution of the exterior struc-
tural acoustics problem in two space dimensions involving the interaction of vibrating
structures submerged in an infinite acoustic fluid and requiring solution of the coupled
wave equation subject to a far-field radiation condition. The formulation is based on
the time-discontinuous Galerkin finite element method developed by Hughes and
Hulbert [1] for second-order hyperbolic equations. In this work, a space-time vari-
ational equation is presented for both the elastic structure and the acoustic fluid,
together with their interaction. The method is especially useful for application of
adaptive strategies for transient acoustics in which unstructured space-time meshes
are used to track waves propagating along space-time characteristics. For exterior
problems involving an infinite fluid domain, the formulation employs a finite com-
putational fluid domain surrounding the structure and incorporates time-dependent
non-reflecting (radiation) boundary conditions on the fluid truncation boundary as
‘natural’ boundary conditions in the space-time variational equation, i.e. they are
enforced weakly in both space and time. For large-scale simulations the use of high-
order accurate radiation boundary conditions is essential to allow the fluid truncation
boundary to be placed close to the structure and thereby minimizing the mesh and
matrix problem size.
High-order accurate radiation boundary conditions have been proposed by several

authors; complete surveys prior to 1991 can be found in Givoli [2] and Abboud [3].
In the work presented in [4, 5, 6] a general framework has been established for the
incorporation of high-order accurate boundary conditions in the time-discontinuous
Galerkin space-time finite element method. In Thompson and Pinsky [6, 7] details
for the development and implementation of high-order accurate non-reflecting bound-
ary conditions for solutions of the scalar wave equation in three space dimensions are
given. In particular, a new sequence of exact radiation boundary conditions which
are in the form of local (differential) operators in time were derived and incorporated
into the time-discontinuous Galerkin variational equations. These high-order accu-
rate non-reflecting boundary conditions are based on the exact impedance relation for
the acoustic fluid expressed through the Dirichlet-to-Neumann (DtN) map in the fre-
quency domain [8], and are exact for solutions consisting of the first N spherical wave
harmonics in three dimensions. The development of these boundary conditions makes
use of the special property that the high-order spherical Hankel functions appearing
in the impedance coefficients of the three-dimensional DtN map can be expressed in
terms of the zero-order spherical Hankel function multiplied by a finite series in pow-
ers of a nondimensional wavenumber. As a consequence of this special form of the
impedance coefficients, an exact inverse Fourier transform can be obtained yielding
time-dependent counterparts that are exact for the first N spherical wave harmonics
in both time and space.
In contrast, for the wave equation in two spatial dimensions it is not possible to
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express high-order cylindrical (integer) Hankel functions appearing in the exact DtN
impedance relation solely in terms of the zero-order cylindrical Hankel function. As
a consequence, in the two-dimensional case it is not possible to obtain local time-
dependent radiation boundary conditions that exactly represent outgoing cylindrical
wave harmonics. The difference between the two dimensional and three dimensional
cases can be interpreted physically by the difference in the fundamental solution
to the wave equation in two and three dimensions. In the three dimensional case,
waves propagate along space-time characteristics with constant phase and can be
represented exactly by local (differential) operators in time. In the two-dimensional
case fundamental solutions propagate with a trailing wake behind the wave front
creating a time history that cannot be exactly represented by simple local operators
in time.
While it is possible to obtain spatially local non-reflecting boundary conditions in

the frequency domain that exactly represent the first N cylindrical wave harmonics,
(see Givoli and Keller [9]), exact time-dependent counterparts are not readily
obtained due to the difficulty in obtaining an exact inverse Fourier transform for the
two-dimensional Hankel function. By taking advantage of an asymptotic approxi-
mation for the two-dimensional Hankel function an approximate localization of the
exact impedance relation, i.e. the Dirichlet-to-Neumann map, can be obtained which
has a direct time-dependent counterpart. The localization proceeds by first recast-
ing the exact solution for the exterior problem as a power series expansion in terms
of the zero-order and first-order cylindrical Hankel functions. By using a far-field
approximation, an asymptotic expansion is constructed in terms of negative powers
of the wavenumber and the radial distance to the artificial boundary. Following the
procedure outlined in Bayliss and Turkel [10, 11], a sequence of local (differential)
operators are then derived which satisfy the first m terms in this asymptotic expan-
sion. This can be considered as a way of matching the firstm terms of an approximate
solution for outgoing waves on the radiation boundary. The operators in this sequence
are of progressively higher order and provide increasing accuracy as more terms are
matched in the expansion. An important property of these approximate boundary
operators is that they have an exact inverse Fourier transform allowing a family of
boundary conditions to be defined which are local in space and time.
In this paper we undertake a brief development of the time-dependent radiation

boundary conditions for two-dimensional wave propagation, establishing their rela-
tionship to the exact impedance (DtN map) for the acoustic fluid, and characterize
their accuracy when implemented in our space-time finite element formulation for
transient structural acoustics. In addition, stability estimates are reported together
with an analysis of the positive form of the matrix problem emanating from the
space-time variational equations for the coupled fluid-structure system. Crucial to
the unconditional stability and optimal convergence rates of the formulation is the
introduction of consistent temporal jump operators across space-time slabs restricted
to the radiation boundary. The specific form of these operators are designed such that
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Fig. 1: Coupled system for the exterior fluid-structure interaction problem, with artificial
boundary Γ∞ enclosing the finite computational domain Ω = Ωf ∪ Ωs.

continuity of the solution across slabs is weakly enforced in a form consistent with
the two-dimensional absorbing boundary conditions. Direct implementation of these
radiation boundary conditions in a semidiscrete Galerkin finite element formulation
have been previously reported in [12, 13].

2 The Transient Structural Acoustics Problem

The coupled fluid-structure system is illustrated in Figure 1, and consists of the artifi-
cial truncation boundary Γ∞ enclosing the finite computational domain Ω. The finite
computational domain is composed of the fluid domain Ωf , which in turn surrounds
the structural domain Ωs such that Ω = Ωf ∪Ωs. The fluid boundary ∂Ωf , is divided
into the fluid-structure interface boundary Γi, and the artificial boundary Γ∞. The
structural boundary ∂Ωs, is composed of the shared fluid-structure interface boundary
Γi and a traction boundary Γσ. The infinite domain outside the artificial boundary
is denoted by Ω∞. The temporal interval of interest is I =]0, T [ and the number
of spatial dimensions is nsd. In this paper we concentrate on the two-dimensional
problem where nsd = 2.
The governing equations for the structure are stated for a linear solid continuum.

The acoustic fluid is modeled under the usual assumptions governing sound wave
propagation; a compressible and inviscid fluid linearized about an equilibrium state
with constant density and velocity.

2.1 The Strong Form

The strong (local) form of the fluid-structure initial/boundary-value problem may be
stated as:
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Given a prescribed traction t̄ : Γσ × I 7→ Rnsd and a source f : Ωf × I 7→ R ,
Find u : Ω̄s × I 7→ Rnsd , and φ : Ω̄f × I 7→ R, such that

∇ · σ = ρsü in Qs := Ωs × I (1)

σ = C : ∇su in Qs := Ωs × I (2)

∇2φ− a2φ̈ = f in Qf := Ωf × I (3)

σ · n = t̄ on Υσ := Γσ × I (4)

σ · n = ρ0φ̇n on Υi := Γi × I (5)

∇φ · n = u̇ · n on Υi := Γi × I (6)

∇φ · n = −Smφ on Υ∞ := Γ∞ × I (7)

In the above, u(x, t) with x ∈ Ωs, is the structural displacement vector, σ is
the symmetric Cauchy stress tensor, and φ(x, t) with x ∈ Ωf , is the scalar velocity
potential for the irrotational acoustic fluid. We denote the phase velocity of acoustic
wave propagation by c > 0, with slowness a = c−1 and ρs > 0 and ρ0 > 0 are the
reference densities of the structure and fluid respectively. The acoustic source loading
is given by f and the prescribed traction on the structure is t̄, where n is the unit
outward normal to Ωs, and inward normal to Ωf on Γi, and outward normal to Ωf
on Γ∞. A superposed dot indicates partial differentiation with respect to t, and ∇s

refers to the symmetric gradient. The acoustic pressure p, and the acoustic velocity
v, are related to the velocity potential by p = −ρ0φ̇ and v = ∇φ.
As a consequence of the above coupled second-order system of hyperbolic equa-

tions, we have the initial conditions,

u(x, 0) = u0(x) ; u̇(x, 0) = u̇0(x) x ∈ Ωs (8)

φ(x, 0) = φ0(x) ; φ̇(x, 0) = φ̇0(x) x ∈ Ωf (9)

Equation (1) governs the linear momentum balance of the structure, while (2)
is the constitutive relationship written here for linear elasticity. Equation (3) is the
acoustic scalar wave equation, Equation (6) is the normal velocity compatibility condi-
tion across the fluid-structure interface, and (5) represents the fluid pressure acting on
the structure. Equation (4) is the applied traction. Equation (7) represents the radi-
ation boundary condition imposed on the artificial boundary Γ∞ which approximates
the asymptotic behavior of the solution at infinity, as described by the Sommerfeld
radiation condition:

lim
r→∞
r1/2
(
∂

∂r
+
1

c

∂

∂t

)
φ = 0 r + ct = constant (10)

where r is the radial distance from the source. This condition asserts that at infinity
all waves are outgoing. The boundary condition (7) can take several different forms
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depending on the local (differential) or nonlocal (integral) operators appearing in the
definition of the linear map Sm.
For Γ∞ taken to be a circle in two spatial dimensions R

2, the obvious choice for
Sm is to use a simple Sommerfeld-like boundary condition of the form,

∇φ · n = −
1

c
φ̇ on Υ∞ := Γ∞×]0, T [ (11)

where ∇φ ·n = ∂φ/∂n is the normal derivative on Γ∞. Restated in terms of pressure,
p = −ρ0φ̇, and velocity v = ∇φ, equation (11) becomes v ·n = p/zo, where zo = ρ0c,
is the characteristic impedance for plane-wave propagation. This boundary condition
is exact in one-dimension for any position, however in multi-dimensions, when (11)
is applied at a finite distance from the source of excitation, this boundary condition
will generally produce large spurious reflections, resulting in unacceptable errors in
the numerical solution. Because of the potential loss of accuracy resulting from the
use of (11), an improved non-reflecting boundary is needed. A number of high-order
accurate non-reflecting boundary conditions which take the form of (7) are available
and will be discussed further in Section 4. Here we note that the index m, is related
to the order of temporal derivatives appearing in the operator. An example is the
first-order boundary condition,

∂φ

∂n
= −S1φ, where S1 :=

1

2R
+
1

c

∂

∂t
(12)

where R is the radial distance to a circular boundary Γ∞. This radiation boundary
condition is referred to as a ‘cylindrical damper’ since at the asymptotic limit of large
frequencies, this operator completely absorbs radially symmetric cylindrical waves.

3 A Space-Time FEM for Structural Acoustics

The development of the space-time finite element method (FEM) proceeds by con-
sidering an ordered partition of the time interval, I =]0, T [, of the form: 0 = t0 <
t1 < · · · < tN = T where the nth time interval is denoted, In : = ]tn, tn+1[ . Using this
notation the nth space-time slab for the structure and fluid are respectively,

Qsn = Ωs × In , Qfn = Ωf × In (13)

with boundaries Υsn = ∂Ωs × In and Υ
f
n = ∂Ωf × In.

Figure 2 shows an illustration of two consecutive space-time slabs Qn−1 and Qn for
the fluid where the superscript is omitted for clarity. Within each space-time element,
the trial solution and weighting function are approximated by pth-order polynomials
in x and t. These functions are assumed C0(Qn) continuous throughout each space-
time slab, but are allowed to be discontinuous across the interfaces of the slabs. The
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Fig. 2: Illustration of two consecutive space-time slabs with unstructured finite element
meshes in space-time.

trial functions are defined by the following spaces:
Trial structural displacements

Sh =
N−1⋃
n=0

Shn , Shn =
{
uh(x, t)

∣∣∣uh ∈ (C0(Qsn))nsd , uh∣∣∣
Qs
e
n

∈ (Pp(Qs
e

n ))
nsd

}

Trial fluid potential

T h =
N−1⋃
n=0

T hn , T hn =
{
φh(x, t)

∣∣∣φh ∈ C0(Qfn) , φh∣∣∣
Q
fe
n

∈ Pp(Qf
e

n )
}

where Pp denotes the space of pth-order polynomials within a space-time element
Qen. Assuming the function φ

h(x , t) to be discontinuous at time tn, suppressing the
argument x, the temporal jump operator is defined by,

[[φh(tn)]] := φ
h(t+n ) − φ

h(t−n ) (14)

where
φh(t±n ) = lim

ε→0±
φh(tn + ε)

This discontinuity of the finite element functions across space-time slab interfaces,
allows for the general use of hierarchical and spectral-type interpolations in both space
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and time, and provides freedom of changing the spatial discretization from one time
step to another. The jump operators are essential for establishing the unconditional
stability and positive form of the matrix equations of the Discontinuous Galerkin
space-time FEM.
Before stating the space-time variational equations, the following bilinear opera-

tors are defined:

(wh , uh)Ωs =

∫
Ωs

wh · uh dΩ (15)

a(wh , uh)Ωs =

∫
Ωs

∇wh · σ(∇uh) dΩ (16)

(wh , φh)Ωf =

∫
Ωf

ρ0 w
h φh dΩ (17)

(wh , φh)
Q
f
n

=

∫ tn+1
tn

(wh , φh)Ωf dt (18)

(wh , φh)(Υ∞)n =

∫ tn+1
tn

(wh , φh)Γ∞ dt (19)

Note that inner products for the fluid are weighted by the fluid reference density ρ0 .
The meaning of other similar notations may be inferred from these.

3.1 Time-Discontinuous Galerkin Formulation

The space-time variational formulation for the exterior transient structural acous-
tics problem is obtained from a weighted residual of the governing equations (1)–(7)
within a space-time slab and incorporates time-discontinuous jump terms across slab
interfaces. The time-discontinuous method is applied in one space-time slab at a
time; data from the end of the previous slab are employed as initial conditions for
the current slab. For simplicity the variational equations are stated for the first-order
radiation boundary conditions defined in (12). Extensions to higher-order radiation
boundary conditions are given in Section 4.

3.1.1 Space-Time Variational Equations

Within each space-time slab, n = 0, 1, ..., N − 1, the object is to
find {uh , φh} ∈ Shn ×T

h
n , such that for all weighting functions {w

h , wh} ∈ Shn ×T
h
n ,

the following coupled variational equations are satisfied,

Es(w
h , uh)n − A(w

h , φh)n = Ls(w
h)n (20)

Ef (w
h , φh)n + Er(w

h , φh)n + A(u
h , wh)n = Lf (w

h)n + Lr(w
h)n (21)

Int. J. Numer. Meth. Engng., Vol.39, pp. 1635-1657 (1996)



Time-Dependent Radiation Boundary Conditions in Two Space Dimensions 9

with the following definitions,

Es(w
h , uh)n :=

(
ẇh , ρsü

h
)
Qsn
+ a(ẇh , uh)Qsn

+ (ẇh(t+n ) , ρsu̇
h(t+n ))Ωs + a(w

h(t+n ) , u
h(t+n ))Ωs (22)

Ef (w
h , φh)n :=

(
ẇh , a2φ̈h

)
Q
f
n
+ (∇ẇh , ∇φh)

Q
f
n

+
(
ẇh(t+n ) , a

2 φ̇h(t+n )
)
Ωf
+
(
∇wh(t+n ) , ∇φ

h(t+n )
)
Ωf

(23)

Er(w
h , φh)n :=

1

2R
(ẇh , φh)(Υ∞)n +

1

c
(ẇh , φ̇h)(Υ∞)n

+
1

2R
(wh(t+n ) , φ

h(t+n ))Γ∞ (24)

A(wh , φh)n :=
(
ẇh , ρ0φ̇

hn
)
(Υi)n

(25)

and loading operators,

Ls(w
h)n := (ẇh , t̄)(Υσ)n

+ (ẇh(t+n ) , ρsu̇
h(t−n ))Ωs + a(w

h(t+n ) , u
h(t−n ))Ωs (26)

Lf (w
h)n := (ẇh , f)

Q
f
n

+
(
ẇh(t+n ) , a

2 φ̇h(t−n )
)
Ωf
+
(
∇wh(t+n ) , ∇φ

h(t−n )
)
Ωf

(27)

Lr(w
h)n :=

1

2R
(wh(t+n ) , φ

h(t−n ))Γ∞ (28)

The initial data at n = 0 is given by the initial conditions uh(t−0 ) = u0 and

u̇h(t−0 ) = u̇0, together with φ
h(t−0 ) = φ0 and φ̇

h(t−0 ) = φ̇0.
In the operator Es(w

h , uh)n, the terms evaluated over Q
s
n, act to weakly enforce

the momentum balance in the structure while in Ef (w
h , φh)n, the terms evaluated

over Qfn, act to weakly enforce the scalar wave equation in the fluid within the in-
terior of the nth space-time slab. The definition of the radiation boundary operator
Er(w

h , φh)n, is stated here for the first-order radiation boundary condition S1 de-
fined earlier in (12). The radiation boundary conditions are incorporated as natural
boundary conditions in the variational equation, i.e., they are enforced weakly through
integration over both the artificial boundary Γ∞ and the time interval In.
The coupling between the structure and fluid occurs through the operators A(· , ·)n

integrated over the fluid-structure interface (Υi)n = Γi × In. These coupling terms
appearing in (20) and (21) weakly enforce the acoustic pressure interface condition
(5) and continuity of normal velocity condition (6) across the fluid-structure interface.
The jump terms evaluated over Ωs in (22) and (26) act to weakly enforce continuity

of the structural displacements across space-time slab interfaces. Similarly, the jump
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terms evaluated over Ωf in (23) and (27) together with the terms evaluated over Γ∞
in (24) and (28) act to weakly enforce continuity of the acoustic velocity potential
across space-time slab interfaces. Because the solution is weakly enforced across slab
interfaces, the finite element mesh may change from one slab to the next. This is
especially useful in self-adaptive schemes where the finite element discretization can
be enriched within space-time slabs to track wave fronts as they propagate along
space-time characteristics.
For additional stability and to aid in the proof of convergence, least-squares opera-

tors based on local residuals of the Euler-Lagrange equations for the coupled system,
including time-dependent radiation boundary conditions, can be incorporated into
(20) and (21); see [5, 6]. Stabilized methods of this type are referred to as Galerkin
Least Squares (GLS) methods [14] and provide additional stability and control of the
residual of the finite element solution without degrading the accuracy of the under-
lying time-discontinuous Galerkin method.

3.2 Space-Time Matrix Equations

Matrix equations are constructed in an element-by-element fashion via standard finite
element assembly algorithms. Representing shape functions locally at the element
level by the function N ea(x , t), where a = 1, 2, · · ·nen is the local node number within
element Qen, and arranging in vector form as N

e(x , t) = [N e1 , N
e
2 , · · · , N

e
nen
], the

space-time approximations can be written as,

uh(x, t) = N es (x, t)d
e, (x, t) ∈ Qs

e

n (29)

φh(x, t) = N ef (x, t)φ
e, (x, t) ∈ Qf

e

n (30)

where N es (x, t) and N
e
f (x, t) are the e

th element shape function vectors for the struc-
ture and fluid respectively, and de and φe are the element structure displacement
and fluid velocity potential solution vectors. Global solution vectors d and φ may be
stated in terms of local element solution vectors using the relations,

de = Aesd, φe = Aefφ

where Aes and A
e
f are boolean matrices. Substituting (29) and (30) along with corre-

sponding approximations for the weighting functions into the space-time variational
equations (20) and (21), yields for each space-time slab, n = 0 , 1 , · · · , N − 1, the
following coupled system of matrix equations:[

Ks −A
AT Kf +Kr

]{
d
φ

}
=

{
Fs
Ff + Fr

}
(31)
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The global matrices emanating from (23),(24) and (27),(28) are given by,

Kf =

(nel)
f
n∑

e=1

Ae
T

f k
e
fA
e
f , Ff =

(nel)
f
n∑

e=1

Ae
T

f f
e
f (32)

Kr =

(nel)
f
n∑

e=1

Ae
T

f k
e
rA
e
f , Fr =

(nel)
f
n∑

e=1

Ae
T

f f
e
r (33)

where

kef =

∫ tn+1
tn

∫
Ωef

(ρ0
c2
(N ef,t)

T N ef,tt + ρ0(∇N
e
f,t)
T ∇N ef

)
dΩ dt

+

∫
Ωef

(ρ0
c2
(N ef,t(t

+
n ))

T N ef,t(t
+
n ) + ρ0(∇N

e
f (t
+
n ))

T ∇N ef (t
+
n )
)
dΩ (34)

ker =

∫ tn+1
tn

∫
Γe∞

( ρ0
2R
(N ef,t)

T N ef +
ρ0
c
(N ef,t)

T N ef,t

)
dΓ dt

+

∫
Γe∞

ρ0
2R
(N ef (t

+
n ))

T N ef (t
+
n )dΓ (35)

and

f ef =

∫ tn+1
tn

∫
Ωef

ρ0(N
e
f,t)
T f(t)dΩ dt

+

∫
Ωef

(ρ0
c2
(N ef,t(t

+
n ))

T φ̇h(t−n ) + ρ0(∇N
e
f (t
+
n ))

T ∇φh(t−n )
)
dΩ (36)

f er =

∫
Γe∞

ρ0
2R
(N ef (t

+
n ))

T φh(t−n )dΓ (37)

In the above, (nel)
f
n is the number of elements in the nth space-time domain Q

f
n.

and the comma with subscript t on the finite element shape functions indicates the
time derivative. Note that the weighting wh(x , t+n ) is evaluated using shape functions
for the present space-time slab whereas the trial solution φh(x , t−n ) is evaluated with
interpolations and nodal values of the previous slab. Expressions for structural arrays
Ks and Fs are defined similarly, and can be deduced from (22) and (26). The matrix
coupling the structural displacements to the fluid velocity potential emanates from
(25) and is defined by,

A =

(nel)n∑
e=1

Ae
T

s

∫ tn+1
tn

∫
Γei

ρ0(N
e
s,t)
T nN ef,t dΓ

e dtAef (38)
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As a consequence of choosing the velocity potential as the primary solution vari-
able for the acoustic fluid, the system of algebraic equations (31) takes on a positive
form. The positive form of (31) follows by considering the diagonal matrix partitions.
For Kf we have,

φTKfφ =

(nel)
f
n∑

e=1

φTAe
T

f k
e
fA
e
fφ

=

(nel)
f
n∑

e=1

φe
T

kefφ
e

= Ef (φ
h , φh)n

=

∫ tn+1
tn

d

dt
Ef (φ

h(t)) dt+ 2Ef (φ
h(t+n ))

= Ef (φ
h(t−n+1)) + Ef (φ

h(t+n ))

≥ 0 (39)

In the above, the expression for the energy is defined as,

Ef (φ
h) =

1

2
ρ0 ||aφ̇

h||
2

Ωf
+
1

2
ρ0 ||∇φ

h||
2

Ωf
(40)

and || · ||Ω denotes the L2 norm.
Similarly, for the matrix partition on the radiation boundary,

φTKrφ = Er(φ
h , φh)n (41)

=

∫ tn+1
tn

1

4R

d

dt
(φh(t) , φh(t))Γ∞ dt+

∫ tn+1
tn

1

c
(φ̇h(t) , φ̇h(t))Γ∞ dt

+
1

2R
(φh(t+n ) , φ

h(t+n ))Γ∞

=
1

4R
||φh(t−n+1)||

2

Γ∞
+
1

4R
||φh(t+n )||

2

Γ∞
+
1

c

∫ tn+1
tn

||φ̇h(t)||
2

Γ∞
dt

≥ 0 (42)

Assuming that the elastic coefficients C defined in (2) satisfy pointwise stability,
similar arguments can be used to show that the matrix partitionKs satisfies d

TKsd ≥
0. With these properties in hand, it follows that ∀ d and φ:{

d
φ

}T [
Ks −A
AT Kf +Kr

]{
d
φ

}
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= dTKsd − d
TAφ + φTATd + φT (Kf +Kr)φ

= dTKsd + φ
T (Kf +Kr)φ

≥ 0 (43)

where we have used (39) and (42), and the property dTAφ = φTATd.
The stability of the resulting algorithm follows directly from the positive form of

the matrix equations. Using the result (43), it can be shown that in the absence of
forcing terms, i.e., t̄ = 0 and f = 0, and for S1, the total energy for the fluid-structure
system,

E(u , φ) := Es(u) + Ef (φ) (44)

plus the energy absorbed through the radiation boundary Γ∞, is always less than, or
equal to the initial energy in the system, i.e.,

Es(u
h(t−n+1)) + Ef (φ

h(t−n+1)) +
1

4R
||φh(t−n+1)||

2

Γ∞
+
1

c

∫ tn+1
0

||φ̇h(t)||
2

Γ∞
dt

≤ Es(u0)) + Ef (φ0)) (45)

for n = 0, 1, 2, · · · , N − 1. In (44) and (45), the energy for the structure is defined as,

Es(u
h) =

1

2
(u̇h , ρsu̇

h)Ωs +
1

2
a(uh , uh)Ωs (46)

while the energy for the acoustic fluid has been defined previously in (40). Equation
(45) indicates that the proposed space-time formulation for structural acoustics is
unconditionally stable.

4 High-order Accurate Radiation Boundary Con-
ditions

To obtain high-order accurate radiation boundary conditions we start in the frequency
domain with the reduced wave equation (Helmholtz equation) in the exterior domain
Ω∞ with harmonic time dependence e

−iωt, and ω > 0. The boundary-value problem
under consideration is,

∇2φ+ k2φ = 0 in Ω∞ (47)

φ = φ̄ on Γ∞ (48)

lim
r→∞

√
r

(
∂φ

∂r
− ikφ

)
= 0 (49)

where k = ω/c ≥ 0 is the acoustic wavenumber and φ̄ is the restriction of φ to
Γ∞. Equation (49) is the Sommerfeld radiation condition for the two-dimensional
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problem. Restricting the artificial boundary Γ∞ to be of separable geometry, in this
case a circle of radius r = R in two-dimensions, we are able to express the general
solution to this problem as an infinite series of cylindrical wave harmonics:

φ(r, θ) =
∞∑
n=0

Hn(kr)(an cosnθ + bn sinnθ), r ≥ R (50)

where for outgoing waves, Hn(kr) are cylindrical Hankel functions of the first kind
of order n. The function φ̄(θ) in (48) can be expanded in a Fourier series in the
circumferential coordinate θ, and after equating its Fourier coefficients with (50)
evaluated at r = R, i.e. setting φ(R, θ) = φ̄(θ), we obtain,

φ(r, θ) =
∞∑
n=0

Hn(kr)

Hn(kR)
αn(θ) (51)

where

αn(θ) =
εn

π

∫ 2π
0

cosn(θ − θ′) φ(R, θ′) dθ′

and ε0 = 1/2 and εn = 1, n ≥ 1.
Differentiating (51) with respect to r evaluated at r = R results in the exact

Dirchlet-to-Neumann (DtN) boundary condition in the frequency domain presented
by Keller and Givoli [8].

∂φ

∂n
(R, θ) =

∫ 2π
0

s(θ − θ′) φ(R, θ′) R dθ′ (52)

where

s(θ − θ′) =
εn k

πR

∞∑
n=0

H ′n(kR)

Hn(kR)
cosn(θ − θ′)

and 0 ≤ θ < 2π is the polar angle. Eq. (52) can be written in operator form as,

∂φ

∂n
= −S φ on Γ∞ (53)

which represents a relation between Dirichlet and Neumann data through the linear
operator S. The DtN map S, represents the exact impedance for the exterior acoustic
fluid restricted to the artificial boundary. Furthermore, the operator S is an integral
operator coupling all points on the artificial boundary Γ∞, resulting in a nonlocal
boundary condition. The direct time-dependent counterpart to this condition involves
a convolution integral over time. As a result of the time integral, the boundary
condition is nonlocal in time, requiring the storage of a large pool of historical data
for long time solutions. For an efficient algorithm, it is desirable to obtain a time-
dependent counterpart to (52) which takes the form of a local boundary condition in
both time and space.
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4.1 Local Boundary Operators in the Frequency Domain

In the freqency domain, (Givoli and Keller [9]) have shown that it is possible to
derive a sequence of spatially local (differential) operators which share the property
of the DtN map (52); namely, the ability to exactly represent the first N cylindrical
wave harmonics on a circular boundary Γ∞. However, in two spatial dimensions, time-
dependent counterparts with local temporal derivatives are not readily obtained do to
the difficulty in obtaining an exact inverse Fourier transform for the two-dimensional
Hankel function. To address this difficulty, high-order accurate boundary conditions
which are local in both space and time are constructed by expressing the exact solution
(51) in an alternative form, using an asymptotic approximation for Hn(kr), and then
following a procedure outlined in Bayliss and Turkel [10, 11] for annilating radial terms
in the resulting expansion. To this end, a recurrence formula for Hankel functions is
used to express Hn(kr) in (51) as a linear combination of H0(kr) and H1(kr),

Hn(kr) = PnH0(kr) +QnH1(kr) (54)

where Pn(1/kr) and Qn(1/kr) are Lommel’s polynomials of degree n in the variable
1/kr,Watson [15]. The resulting expression, namely:

φ(r, θ) = H0(kr)
∞∑
n=0

Pn
αn(θ)

Hn(kR)
+H1(kr)

∞∑
n=0

Qn
αn(θ)

Hn(kR)
(55)

can be rearranged to take the form of a series expansion in 1/kr:

φ(r, θ) = H0(kr)
∞∑
j=0

Fj(θ)

(kr)j
+H1(kr)

∞∑
j=0

Gj(θ)

(kr)j
(56)

This series is uniformly and absolutely convergent and can be differentiated termwise
with respect to r any number of times, seeKarp [16]. The coefficients Fj(θ) andGj(θ)
are nonlocal functions, and if evaluated explicitly would lead to an exact boundary
condition coupling all points around the boundary Γ∞. To eliminate this source of
non-locality, the asymptotic expansion of cylindrical Hankel functions, for large kr,
is used, see e.g. Watson [15]:

Hn(kr) = (−i)
n

√
2

πkr
ei(kr−π/4)

{
1−
(4n2 − 1)

8ikr
+O
(
(kr)−2

)}
(57)

After substituting this approximation for H0(kr) and H1(kr) into (56) and accepting
an error of the order O

(
(kr)−3/2

)
an approximate asymptotic expansion is obtained:

φ(r, θ) ∼ φ̂(r, θ) =

√
2

πkr
ei(kr−π/4)

∞∑
j=0

fj(θ)

(kr)j
(58)
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Following the procedure outlined in Bayliss and Turkel [10, 11], a sequence
of local differential operators which eliminate the first m nonlocal terms fj(θ) in this
asymptotic expansion is found. Splitting the series (58) into two sums and multiplying
by rm−1/2 throughout gives,

rm−1/2φ̂ = eikr
m∑
j=1

rm−jgj(θ) + e
ikr

∞∑
j=m+1

rm−jgj(θ) (59)

where the coefficients are regrouped as,

gj(θ) =

√
2

π
e−iπ/4fj−1(θ)k

1/2−j

Applying the local differential operator

Lo =
∂

∂r
− ik (60)

to the power of m, i.e. (Lo)
m to both sides of (59), the first sum is annihilated: For

m = 1 and m = 2,

B1φ̂ = L1o(r
1/2φ̂)/r1/2 = (Lo + 1/2r)φ̂

B2φ̂ = L2o(r
3/2φ̂)/r3/2 = (Lo + 5/2r)(Lo + 1/2r)φ̂

By analogy, the family of local operators of order m are obtained recursively as,

Bm =
m∏
j=1

(
∂

∂r
− ik +

2j − 3/2

r

)
(61)

The Bm operator matches the first m terms in the expansion (58) with a remainder
of order,

Bmφ̂ = O
(
r−m(kr)−m−1/2

)
(62)

For fixed kr and increasing m, then limm→∞Bm(φ) = 0. Thus the hierarchical family
of approximate boundary conditions can be taken as,

Bm(φ) := 0 on Γ∞ (63)

These are higher order boundary conditions on Γ∞ and provide increasing accuracy
with m, allowing in principle the computational region to be reduced to a minimum.
Note that the accuracy of these local operators depends strongly on the parameter kr
such that for a fixed r, i.e. limk→∞Bm(φ) = 0. In this way, these local operators can
be viewed as high frequency approximations where as the frequency (wavenumber) is
increased relative to the distance from the structure to the radiation boundary, the
accuracy can be expected to increase (although not uniformly). On the other hand,
the operators will be increasingly accurate as the position of the artificial boundary
r = R, approaches infinity, i.e., limr→∞Bm(φ) = 0.
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4.2 Local Boundary Operators in the Time Domain

Local time-dependent counterparts to (61) are obtained by applying an inverse Fourier
transform, in effect replacing every occurrence of the operator −ik by 1

c
∂
∂t
with the

result,

Bm =
m∏
j=1

(
∂

∂r
+
1

c

∂

∂t
+
2j − 3/2

r

)
(64)

The space-time finite element method provides a natural variational setting for
the incorporation of the time-dependent radiation boundary conditions, where the
temporal derivatives appearing in the boundary operator may be approximated within
a space-time slab using standard C0 continuous shape functions in time. A direct
approach in which to implement (64) is to eliminate the high-order radial derivatives
in favor of tangential and temporal derivatives through recursive use of the wave
equation. It is then possible to define the operators Sm in (7) as,

Bm(φ) ≡
∂φ

∂n
+ Sm φ on Γ∞ (65)

which implies
∇φ · n = −Sm φ on Γ∞ (66)

which is in the form of a local, (i.e. differential) Dirichlet to Neumann boundary
condition through the linear map Sm. Using this approach, the first two operators
Sm for m equal to 1 and 2 are:

S1 φ =
1

2R
φ+
1

c
φ̇ (67)

S2 φ =
1

2R
(3/4−

∂2

∂θ2
)φ+

3

2c
φ̇+
R

c

∂φ̇

∂r
+
R

c2
φ̈ (68)

These local boundary conditions are incorporated into the space-time finite ele-
ment method as natural boundary conditions, i.e., they are enforced weakly in space-
time. The first-order operator S1 is equivalent to the cylindrical damper described
earlier in (12) and is implemented in the variational equation (21) through the op-
erators (24) and (28). For S2, the space-time operator on the truncation boundary
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generalizes to,

Er(w
h , φh)n =

3

8R
(ẇh , φh)(Υ∞)n +

1

2R
(ẇh,θ , φ

h
,θ)(Υ∞)n

+
3

2c
(ẇh , φ̇h)(Υ∞)n +

R

c
(ẇh , φ̇h,r)(Υ∞)n

+
R

c2
(ẇh , φ̈h)(Υ∞)n

+
3

8R
(wh(t+n ) , φ

h(t+n ))Γ∞

+
1

2R
(wh,θ(t

+
n ) , φ

h
,θ(t
+
n ))Γ∞

+
R

c2
(ẇh(t+n ) , φ̇

h(t+n ))Γ∞ (69)

In the second and seventh term in (69), continuity requirements due to second-order
tangential derivatives ∂2/∂θ2, are relaxed on the artificial boundary Γ∞, by use of the
identity,

(w , φ,θθ)Γ∞ = −(w,θ , φ,θ)Γ∞ (70)

Information from the previous space-time slab on Γ∞ is incorporated consistently
through temporal jump terms. For S2, information from the previous slab φ

h(x, t−n )
for x on Γ∞ is incorporated as,

Lr(w
h)n =

3

8R
(wh(t+n ) , φ

h(t−n ))Γ∞

+
1

2R
(wh,θ(t

+
n ) , φ

h
,θ(t
−
n ))Γ∞

+
R

c2
(ẇh(t+n ) , φ̇

h(t−n )Γ∞ (71)

Temporal continuity is weakly enforced across space-time slabs on Γ∞ through the
combination of the loading operator (71) and the last three operators in (69).
Because the time-discontinuous formulation allows for the use of C0(In) interpola-

tions in time to represent the high-order time derivatives, it is possible to implement
the boundary conditions in the sequence (64) up to any order desired. However for
operators extending beyond m > 3, the lowest possible order of spatial continuity
on Γ∞ that can be achieved after integration by parts is C

1(Γ∞). For these high-
order operators a layer of boundary elements adjacent to Γ∞, possessing high-order
tangential continuity on Γ∞ are needed.
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Fig. 3: Computational domain bounded internally by a radiating circular cylinder of radius
a, and bounded externally by a circular artificial truncation boundary of radius R = 2a.
By symmetry, only the upper half is discretized with 400 elements.

5 Numerical Examples

In this section numerical simulations of transient radiation and scattering are per-
formed in order to demonstrate the effectiveness of the time-discontinuous Galerkin
space-time finite element method to model two-dimensional wave phenomena. The
problems studied are primarily designed to assess the performance of the two-dimensional,
local time-dependent radiation boundary conditions when implemented in the space-
time formulation. To clarify the analysis, the structure is assumed rigid so that
the computational domain simplifies to the fluid region only. Standard isoparamet-
ric space-time elements with C0 quadratic shape functions in both space and time
dimensions are used for all the numerical examples presented.

5.1 Circumferential harmonic radiation

In this example we study the problem of an infinite circular cylinder of radius a = 1,
with circumferentially harmonic radiation loading,

φ(a, θ, t) = cosnθ sinωt for 0 ≤ θ < 2π , t > 0 (72)

The exact steady-state solution for this problem is for r ≥ a,

φ(r, θ, t) = −Imag

{
Hn(kr)

Hn(ka)
cosnθe−iωt

}
(73)

This example is used to quantify the accuracy of the sequence of local time-dependent
radiation boundary conditions Sm in a controlled setting. To obtain a challenging test
problem we take the artificial boundary Γ∞ to be a circular boundary of radius R = 2a
as illustrated in Figure 3, and increase the radiation loading from n = 1 to n = 2. As
the wave harmonic n is increased the radiation pattern becomes increasingly complex,
and this problem becomes more difficult to solve. It is expected that the higher-order
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operators in the sequence Sm, m = 1, 2, · · · will be increasingly accurate compared
to the simple PW damper, denoted by S0 and defined in (11).
Using symmetry, the computational domain is taken as, Ω = {a < r < R, 0 ≤ θ <

π}, and Ω is discretized with 10 elements in the radial direction, and 40 elements in the
polar direction; see Figure 3. A time-harmonic solution is obtained by starting from
rest with zero initial conditions on φ and φ̇ and driving the solution to steady-state
with a uniform time increment of ∆t = 0.1.
Figure 4 illustrates the contours of the space-time finite element solution for the

radiation loading (72) with n = 1 and a driving frequency of ka = ωa/c = 1. Results
are compared for the solution incorporating the simple ‘plane-wave’ boundary oper-
ator S0, the first-order operator S1, and the second-order operator S2. The solution
sample time of t = 30 is chosen such that many spurious reflections between the arti-
ficial boundary and the radiating cylinder could have occurred. Figure 5(top) shows
the profile of the solution plotted around the circular artificial boundary while Figure
5(bottom) shows the solution plotted along a radial line located at the angle θ = 0.
The results show that for this frequency and location of the radiation boundary, the
low-order boundary conditions S0 and S1 display significant errors in the solution,
while the second-order boundary condition S2 gives a remarkably accurate solution.
As the harmonic loading is increased to n = 2, the acoustic radiation pattern

becomes more complex. For a driving frequency ka = 1, significant errors occur in
the solution using S0 or S1, while the solution using S2 remains accurate throughout
the computational domain, see Figures 6 and 7. Further results for harmonics of
order n = 3, 4, 5 and increasing kR are reported in [6]. The numerical results confirm
the estimate given in (62), that as the frequency is increased the accuracy of the local
radiation boundary conditions increases, while the operator S2 outperforms the lower
order operators S1 and S0 as expected.

5.2 Radiation from a line element on a cylinder

To study the accuracy of the local radiation boundary conditions for a problem in-
volving an infinite number of circumferential harmonics, we consider the non-uniform
radiation from a line element on an infinite circular cylinder of radius r = a, with
loading

φ(a, θ, t) = sinωt, for − θp ≤ θ ≤ θp, t > 0 (74)

Elsewhere on the surface r = a, a homogeneous condition is prescribed. The steady-
state analytical solution for this problem is,

φ(r, θ, t) = −Imag

{
∞∑
n=0

Hn(kr)

Hn(ka)

[
εn sin θp
nπ

]
cosnθ e−iωt

}
(75)

where ε0 = 1/2 and εn = 1, n ≥ 1. For low values of the normalized wavenumber ka,
this solution is relatively uniform in the circumferential direction. The directionality
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Fig. 4: Radiation from a circular cylinder with circumferential harmonic n = 1, and
normalized frequency ka = 1. Contours of space-time solution at time t = 30, using local
boundary conditions, (Top): first-order S1, (Bottom): second-order S2. Dotted contours
denote analytical solution. Scale: (Max/Min ± 0.988)
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Fig. 5: Circumferential wave harmonic n = 1: Results at t = 30, comparing the ‘plane-
wave’ S0, first-order S1, and second-order S2 boundary conditions. (Top): Solution profile
on the artificial boundary r = R. (Bottom): Solution plotted along radial line at θ = 0.
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Fig. 6: Radiation from a circular cylinder with circumferential harmonic n = 2, and
normalized frequency ka = 1. Contours of space-time solution at time t = 30, using
the second-order S2 local boundary condition. Dotted contours denote analytical solution.
Scale: (Max/Min ± 0.988)

Second harmonic: ka = 1
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Fig. 7: Circumferential wave harmonic n = 2: Results at t = 30, comparing the ‘plane-
wave’ S0, first-order S1, and second-order S2 boundary conditions. Solution profile on the
artificial boundary r = R.
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Fig. 8: Solution contours for radiating element on a circular cylinder: Results at time t = 30
and normalized frequency ka = 3. Space-time solution with local boundary condition,
(Top): S1 (Bottom): S2 Dotted contours denote analytic series solution (50 terms). Scale:
(Max 0.254, Min -0.988)

of the solution grows as the wavenumber k is increased, and the solution becomes
attenuated at the side of the cylinder opposite the radiating element.
In this example, the properties and discretization are unchanged from the previ-

ous problem. Figure 8 shows the contours of the solution for ka = 3. Results are
compared to the analytical series solution nodally interpolated with the mesh em-
ployed. The low-amplitude oscillations in the vicinity of the inner boundary for the
analytical solution are a result of the difficulty the series solution has in resolving the
discontinuity in the loading at θp = 13.5

o, and are not relevant to the validation of the
numerical results. Near θ = 0, solutions using either the boundary condition S1 or S2
accurately capture the physics of the problem while as the wave spreads to the back-
side of the cylinder at θ = 180o, the solution using S1 deteriorates significantly while
S2 maintains an accurate solution in this difficult region. These results are quantified
in Figure 9, as a profile of the solution on Γ∞ at r = R. Results from this example il-
lustrate the significant improvement in the numerical solution using the second-order
operators S2, in comparison to the numerical solution using the operators S1 or S0,
for problems involving an infinite number of spatial harmonics.
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Line Segment: ka = 3
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Fig. 9: Radiating circular cylinder with line segment loading. Solution profile on the
artificial boundary r = R.

5.3 Transient scattering from a circular cylinder

To study a problem involving scattering, we consider the infinite circular cylinder of
radius r = a, now with an incident pulse reflecting off the wet surface. In the upper
left corner of Figure 10 the finite element spatial discretization of the computational
domain Ω = {a ≤ r ≤ R, 0 ≤ θ ≤ 2π} bounded internally by the projection of
the infinite circular cylinder, and externally by a circular artificial boundary with
radius R = 3a is shown. By symmetry only half the problem is modeled with 1200
quadratic elements. An incident pulse of short duration is generated by an acoustic
source positioned midway between the cylinder and the circular artificial boundary,
Γ∞. This example represents a challenging problem where both the incident wave
pulse and scattered waves should be transmitted through Γ∞ with negligible reflection.
For this two-dimensional problem, the second-order local boundary condition S2

defined in (68) is prescribed on Γ∞. The source f = δ(x0, y0) sinωt and t ∈ [0 , 0.5],
is positioned inside the computational domain at (x0, y0) = (2a, 0). Setting the phase
speed at c = 1 and frequency ω = 2π results in a challenging initial condition. The
numerical simulation is continued until just prior to reaching the practical disappear-
ance of the signal from the computational domain.
The numerical simulation at the end of the initial pulse is shown in Figure 10

at t = 0.5. The subsequent figures show the contours of the scattering phenomena
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with homogeneous Dirichlet boundary conditions on the cylinder surface r = a, i.e.
‘release’ boundary conditions. The following sequence of events occur: At t = 1.5
the incident pulse has expanded in a cylindrical wave and has just begun to reflect
off the surface of the inner cylinder, while at the artificial boundary, the wave front
passes through the boundary with no observable reflection. At t = 2.5 the incident
wave continuous to diffract around the cylinder, creating a backscattered cylindrical
wave that moves to the right and passes through the wake of the incident wave. At
t = 3.0 the backscattered wave has just reached the artificial boundary. At t = 4.0
the backscattered wave is also transmitted through the artificial boundary with no
observable reflection. As a result of the homogeneous Dirichlet boundary conditions,
the contours near the wet surface lie parallel to the cylinder outline and the amplitude
of the backscattered wave is negative.
Figure 11(left) shows the transient solution on the artificial boundary at the point

(r , θ) = (R , 0). Prior to time t = 1, the initial pulse has not reached the boundary
Γ∞ as indicated by the quiescent solution. Upon arrival at time t = 1, the solution
advances as a sharp pulse with a wake of decaying amplitude. At time t = 2.5,
the backscattered wave reaches Γ∞, as indicated by the pulse of negative amplitude.
For comparison, Figure 11(right) shows the transient solution when the boundary
condition at the inner cylinder is changed to a homogeneous Neumann condition, i.e.
a ‘rigid’ boundary condition. In this case the backscattered wave takes a positive
amplitude.

5.4 Transient scattering from a cylinder with tapered ends

As a final example of engineering significance, consider the time-dependent scattering
from a rigid infinite cylinder with conical-to-spherical ends and a large length to
width ratio, L/d = 6.1. Figure 12 illustrates the finite element spatial discretization
of the computational domain. A total of 1600 quadratic elements are used and the
second-order local boundary condition S2 defined in (68) is prescribed on Γ∞.
For this problem, the source f = δ(x0, y0) sinωt with time interval t ∈ [0, 3], is

positioned inside the computational domain simulating an oblique incident wave. The
phase speed is set at c = 1 with frequency ω = π/3. Homogeneous Dirichlet boundary
conditions are prescribed on the cylinder wet surface. This example represents a
challenging problem where the multiple-scales involving the ratio of the wavelength
to diameter and length dimension play a critical role in the complexity of the resulting
scattered wave field.
The numerical simulation at the end of the initial pulse at t = 3 is shown at the

top of Figure 13. The subsequent illustrations in Figure 13 show the contours of the
scattering phenomena as time progresses. At t = 6 the incident pulse has expanded
in a cylindrical wave and has just reached the boundary of the cylinder, while at the
artificial boundary, the wave front passes through with negligible reflection. At t = 9
through t = 12, the incident wave has begun to reflect off the ‘release’ boundary,
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Fig. 10: Scattering from an infinite ‘release’ circular cylinder due to point source. Solution
contours shown at the end of the initial pulse at t = 0.5 and later times t = 1.5, t = 2.5,
t = 3, and t = 4.
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Fig. 11: Scattering from an infinite circular cylinder: Solution time-history on the artificial
boundary Γ∞, at θ = 0. (left) ‘release’ cylinder. (right) ‘rigid’ cylinder.

Fig. 12: Spatial discretization for cylinder with conical to spherical ends. (1600 quadratic
elements)
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Fig. 13: Scattering from a ‘release’ cylinder with tapered ends due to a time-dependent
point source. Solution contours shown at the end of the initial pulse at t = 3 and later
times t = 6, 12, 15, 18.
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creating a complicated backscattered wave. As a result of homogeneous Dirichlet
boundary conditions, the amplitude of the backscattered wave is negative. At t = 15,
the incident wave begins to scatter into a part that travels along the upper part of
the cylinder, and a part that diffracts around the backside. The backscattered wave
is seen to transmit through the radiation boundary with no observable reflection. At
t = 18, the incident wave has passed over the cylinder and continues to be absorbed
through the non-reflecting boundary. A quiescent state near the right of the cylinder
suggests the effectiveness of the local boundary condition in absorbing outgoing waves.

6 Conclusions

For wave propagation in two dimensions, it is not possible to obtain local (differential)
time-dependent radiation boundary conditions that exactly represent cylindrical wave
harmonics. The difficulty can be traced to the representation of cylindrical Hankel
functions appearing in the impedance coefficients of the exact Dirichlet-to-Neumann
(DtN) map in the frequency domain. Because of this difficulty, we resort to an
approximation to the exact solution for outgoing waves expressed as an asymptotic
expansion for large frequency (short wavelength), normalized with the radius of the
circular DtN boundary. Following the procedure outlined in Bayliss and Turkel
[10, 11], a sequence of differential operators are defined which match the leading terms
of the asymptotic approximation to provide local boundary conditions which are of
progressively higher order and increasing accuracy. These boundary operators have
an inverse Fourier transform allowing a family of boundary conditions that are local
in space and time. After eliminating higher-order radial derivatives through the use
of the second-order scalar wave equation, the sequence of non-reflecting boundary
conditions can be incorporated into the time-discontinuous space-time variational
equations as natural boundary conditions in a straightforward manner. Crucial to
the unconditional stability of the formulation and positive form of the resulting matrix
equations is the introduction of consistent temporal jump operators across space-time
slabs restricted to the radiation boundary. The specific form of these operators are
designed such that continuity of the solution across slabs is weakly enforced in a form
consistent with the time-dependent radiation boundary conditions.
Numerical solutions for some carefully designed canonical acoustic radiation and

scattering problems demonstrated the accuracy of the two-dimensional non-reflecting
boundary conditions when implemented in the space-time finite element method. In
particular, the effects of increasing cylindrical harmonics n, frequency ω = kc, and the
position of the fluid truncation boundary R, on the accuracy of the space-time finite
element solution using the local radiation boundary operators was investigated. Re-
sults from this study are summarized in the following: (i) The local time-dependent
boundary operators provide increasing accuracy with the order m used in the se-
quence; (ii) The accuracy depends strongly on the normalized frequency ka, in that
the local operators can accurately capture increased wave harmonics as the frequency
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(wavenumber) is increased relative to the dimension of the radiator/scatterer; (iii)
The operators are increasingly accurate as the position R of the artificial boundary
is moved further away from the radiator/scatterer.
Numerical results confirmed the superiority of the second-order local non-reflecting

boundary condition S2, in comparison to the first-order S1, and simple ‘plane-wave’
S0, operators. The examples also demonstrate that with proper consideration given to
the position of the radiating boundary and frequency content of the time-dependent
solution, the second-order boundary condition S2 is sufficiently accurate to capture
the important physics associated with a variety of complicated transient scattering
problems. While the numerical simulations have been limited to two-dimensional
boundary conditions up to second-order, the time-discontinuous space-time finite el-
ement formulation is applicable to third and higher-order boundary conditions. It
remains to be seen what (if any) additional advantage in terms of accuracy and
economy can be achieved by the implementation of the third-order operators in the
space-time formulation for structural acoustics.
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