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Abstract

State-of-the-art finite element methods for time-harmonic acoustics governed by the

Helmholtz equation are reviewed. Four major current challenges in the field are specifically

addressed: the effective treatment of acoustic scattering in unbounded domains, including

local and nonlocal absorbing boundary conditions, infinite elements, and absorbing layers;

numerical dispersion errors that arise in the approximation of short unresolved waves, pol-

luting resolved scales, and requiring a large computational effort; efficient algebraic equation

solving methods for the resulting complex-symmetric (non-Hermitian) matrix systems in-

cluding sparse iterative and domain decomposition methods; and a posteriori error estimates

for the Helmholtz operator required for adaptive methods. Mesh resolution to control phase

error and bound dispersion or pollution errors measured in global norms for large wave

numbers in finite element methods are described. Stabilized, multiscale and other wave-

based discretization methods developed to reduce this error are reviewed. A review of finite

element methods for acoustic inverse problems and shape optimization is also given.

Running Title: Finite element methods for acoustics
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I. INTRODUCTION

Finite element methods (FEM) for time-harmonic acoustics governed by the reduced wave

equation (Helmholtz equation), have been an active research area for nearly 40 years. Initial

applications of finite element methods for time-harmonic acoustics focused on interior prob-

lems with complex geometries including direct and modal coupling of structural acoustic

systems for forced vibration analysis, frequency response of acoustic enclosures, and waveg-

uides [46, 77, 132, 138, 179, 181]. In recent years, tremendous progress in the development

of improved finite element methods for time-harmonic acoustics including exterior problems

in unbounded domains, which incorporate knowledge of wave behavior into the algorithm,

combined with parallel sparse iterative and domain decomposition solvers, are moving the

application of FEM into the higher frequency (wave number) regimes.
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FIG. 1: Artificial truncation boundary Γ defining finite computational domain Ω for the exterior

problem.

The exterior acoustics problem in unbounded domains presents a special challenge for

finite element methods. In order to use the FEM for exterior problems, the unbounded

domain is usually truncated by an artificial boundary Γ yielding a bounded computational

domain Ω; see Fig. 1. Reducing the size of the bounded domain reduces the computa-

tion cost, but must be balanced by the ability to minimize any spurious wave reflection

with a computationally efficient and geometrically flexible truncation boundary treatment.

The first complete finite element approach for modeling acoustic radiation and scattering

in unbounded domains appears in the impedance matching technique presented by Hunt

et al. [99, 100]. Recent numerical treatments including infinite elements, absorbing layers,
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local absorbing boundary conditions, and exact nonlocal boundary conditions have proven

to be effective in handling acoustic scattering problems in unbounded domains, especially

for large-scale problems requiring iterative and parallel solution methods and for model-

ing inhomogeneities and acoustic-structure interaction. The method of choice depends on

the shape and complexity of the scattering object, inhomogeneities, frequency range, and

resolution requirements, among other parameters.

A natural way of modeling the acoustic region exterior to a scattering/radiating object

is to introduce a boundary element discretization of the surface S based on an integral rep-

resentation of the exact solution in the exterior [35, 45, 176]. Using the free-space Green’s

function (fundamental solution), the boundary element method (BEM) only requires surface

discretization on S, reducing the d-dimensional problem to a (d − 1)-dimensional one; and

automatically satisfies the required Sommerfeld radiation condition at infinity [149]. The

BEM naturally incorporates surface impedance conditions but is limited in the ability to

model complex, inhomogeneous regions. Application of the classical BEM for acoustic scat-

tering requires solution of large, dense, complex linear systems due to the nonlocal support of

the fundamental solution leading to high computational expense and storage requirements.

The finite element method (FEM) is able to solve problems in nonhomogeneous media and

allows for a natural coupling with complex structures. For exterior problems in unbounded

domains, special techniques are required to reduce spurious reflection to a level below that

of the discretization error. The numerical advantage of the FEM is that they lead to sparse

matrices, which by avoiding calculations on zeros, significantly speed up computations and

reduce memory requirements. Complexity estimates [87] and numerical evidence [31] have

shown that domain based methods such as the FEM are an effective alternative to the BEM

for exterior acoustics problems; especially for large systems due to the sparse structure of

the resulting system matrices. With the recent developments in fast multipole methods

which accelerate the calculation of matrix-vector products in iterative integral methods [40–

42, 47, 48, 56, 65, 79, 82, 141, 143, 145], the method with the best efficiency is less clear, yet

the FEM retains the advantages of robustness and natural integration with other discrete

models in coupled problems. It is also possible to couple the finite method with boundary

integral methods [64], and other domain based methods such as global Trefftz based wave

methods which are effective at high frequencies on moderate geometrical complexity [171].

A difficulty of the standard Galerkin FEM applied to short-wave problems with wave-
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lengths smaller than the geometrical parameters defining the domain has been the ability

to accurately resolve oscillating wave solutions at higher frequencies (wave numbers). The

difficulty of simultaneously achieving accuracy and efficiency at high wave numbers has been

cited as one of the most challenging problems in scientific computation [180]. The failure

to adequately control numerical dispersion errors not only inaccurately approximates the

oscillatory part of the solution, but has a global pollution effect that builds up over the

whole computational domain. The pollution effect is related to the loss of stability of the

Helmholtz operator at large wave numbers. Due to challenges in accurately resolving short

wave solutions at higher frequencies, many alternative and creative finite element methods

have been developed in the last decade including high-order methods, stabilized Galerkin

methods, multi-scale variational methods, and other wave-based discretization methods. A

common theme of many of these improved finite element methods is that they incorporate

knowledge of wave behavior into the solution algorithm. Other recent improvements which

are pushing the FEM into larger wave number regimes include the development of efficient

iterative solvers with accelerating preconditioners, and domain decomposition parallel solu-

tion methods for the resulting sparse complex-symmetric (non-Hermitian) matrix systems

arising from discretization of the Helmholtz operator.

In this paper, recent developments in finite element methods for time-harmonic acous-

tics, including treatments of unbounded domains are reviewed. Topics include local and

nonlocal Dirichlet-to-Neumann (DtN) nonreflecting boundary conditions, infinite elements,

and absorbing layers for exterior problems; discretization methods which reduce numerical

dispersion error arising in the approximation of short unresolved waves; efficient algebraic

equation solving methods including sparse iterative and domain decomposition methods;

a posteriori error estimates, adaptive methods; acoustic inverse problems, and shape opti-

mization.

II. THE EXTERIOR PROBLEM IN UNBOUNDED DOMAINS

Let V be the domain of an object with boundary S. The exterior domain is defined by

the unbounded region R = R3 \ V . Time-harmonic acoustics is governed by the Helmholtz

differential equation. For exterior problems defined on unbounded domains, solutions are

required to satisfy the Sommerfeld radiation condition at infinity [149]. The differential form
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of the boundary-value-problem for exterior problems in unbounded domains may be stated

for a general impedance surface condition as: Given wavenumber dependent boundary data

g(x; k) ∈ C, β(x; k) ∈ C; Find the complex-valued scalar field u(x; k) ∈ C, such that

∇2u + k2 u = 0, in R = R3 \ V (1)

∂u

∂n
+ β u = g, on S (2)

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0. (3)

Here, u(x) represents the spatial part of the acoustic pressure or velocity potential, with

wavenumber k ∈ C, Im(k) ≥ 0. The sign convention for the phase is e−iωt, where i =
√−1

and ω is the natural frequency. The normal derivative (∂u/∂n) := ∇u·n defines the gradient

in the direction of the unit outward vector normal to S. In the above, r = ‖x‖ is a radius

centered near the origin of the sound source. The Sommerfeld radiation condition (3) allows

only outgoing waves proportional to exp(ikr) at infinity. The radiation condition requires

that energy flux at infinity be positive, thus ensuring unique solutions.

Finite element methods typically introduce an artificial boundary Γ, which divides the

original unbounded domain into two regions: a bounded computational domain Ω discretized

with the finite element method and an infinite residual region D = R \ Ω, see Fig. 1. Re-

ducing the size of the bounded computational domain decreases the computational cost and

memory storage. Methods for modeling the exterior complement D = R\Ω, i.e., the infinite

region exterior to the artificial boundary Γ, can be divided into three main categories: local

or nonlocal absorbing (non-reflecting) boundary conditions, infinite elements, and absorbing

layers. Infinite element methods represent the exterior complement by assuming a radial

approximation with outgoing wave behavior. Matched absorbing layers attempt to decay

outgoing waves in a relatively thin layer exterior to Γ. For the non-reflecting (absorbing)

boundary conditions, the outgoing wave solution in D is represented by a relation of the un-

known solution and its derivative on the artificial truncation boundary Γ. Options include

matching exact analytical series solutions [99, 100] as used in the nonlocal Dirichlet-to-

Neumann (DtN) map [113], and various local approximations. The artificial boundary Γ is

usually taken to be a surface defined in separable coordinates for efficiency, e.g., a sphere or

spheroid. Formulations on nonseparable boundaries have also been developed; in this case

the formulations are usually applied directly to the surface of the scatterer, thus completely

avoiding discretization in Ω, e.g. [3, 4, 147]. Unbounded domain treatments may also be

6



derived for acoustic waveguide problems [19, 75, 131].

For absorbing boundary conditions, the originally unbounded exterior problem is replaced

by an equivalent reduced problem defined on the bounded domain Ω: Find u(x) ∈ C, such

that

∇2u + k2 u = 0, in Ω (4)

∂u

∂n
+ β u = g, on S (5)

∂u

∂n
= B u, on Γ (6)

where B is a linear operator called the Dirichlet-to-Neumann (DtN) map relating Dirichlet

data to the outward normal derivative of the solution on Γ. The DtN operator B approx-

imates the Sommerfeld radiation condition at a finite boundary Γ, and must satisfy the

condition Im(u,Bu)Γ 6= 0 to ensure unique solutions. The DtN operator B is usually either

a differential (local) or integral (nonlocal) operator, or combination of both. Physically, the

DtN operator B represents radiation admittance relating pressure u (Dirichlet data) to nor-

mal velocity vn which is proportional to the normal derivative ∂u/∂n = iωρ vn (Neumann

data), on the truncation boundary Γ.

III. LOCAL ABSORBING BOUNDARY CONDITIONS

Absorbing boundary conditions should annihilate any spurious reflections at the artificial

boundary (which are incoming). For local absorbing boundary conditions defined on a

sphere, the development is based on the idea of annihilating radial terms in the Atkinson-

Wilcox radial expansion in powers of 1/kr [10, 177]:

u(r, θ, ϕ; k) =
eikr

ikr

∞∑

l=0

fl(θ, ϕ; k)

(kr)l
. (7)

This expansion is valid for radius r > r0, where r0 is the radius of a spherical (or spheroidal)

surface circumscribing the target/radiator, labeled S in Fig. 1, and any inhomogeneities

of the domain Ω. Outside r0, and in particular the radius R of the truncation surface, the

exterior domain must be homogeneous and may not contain any objects/obstacles. Bayliss

et al. [17] showed that a sequence of local differential operators can be used to annihilate

terms in this expansion. The first two local operators acting on the expansion for u, with
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their corresponding remainders are

G1u =

(
∂

∂r
− B1

)
u = O(1/kr)3, (8)

G2u =

(
∂

∂r
+

2

r
− B1

)(
∂

∂r
− B1

)
u = O(1/kr)5, (9)

where

B1 = ik − 1

r
. (10)

In the case of the second-order operator G2, the second-order radial derivative is replaced by

second-order angular derivatives using the Helmholtz equation expressed in spherical coordi-

nates. Setting the remainders to zero results in approximate local radiation boundary condi-

tions which are easily implemented in standard finite element methods. The corresponding

local BGT boundary conditions are defined by relating the radial (normal) derivative to

Dirichlet data in the form of the differential map,

∂u

∂r
= Bju, (11)

where for j = 1, the first-order operator B1 is defined in (10) and for j = 2, the second-order

BGT operator is

B2 = B1 +
1

2B1

∆Γ. (12)

The second-order angular derivatives appearing in (12) are defined by

∆Γu := ∇Γ · ∇Γu

=
1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂ϕ2
,

where

∇Γ :=
1

r

∂

∂θ
eθ +

1

r sin θ

∂

∂ϕ
eϕ.

The corresponding weak (variational) form of the boundary value problem with the B2

BGT operator is: Find the trial solution u, such that, for all test functions w

B(w , u)−BΓ(w, u) = F (w), (13)

where

B(w , u) :=

∫

Ω

(∇w · ∇u − k2 w u) dx +

∫

S

βw u ds,

BΓ(w, u) :=

∫

Γ

B1 w u dΓ−
∫

Γ

1

2B1

∇Γw · ∇Γu dΓ,

F (w) :=

∫

S

w g ds,

8



with differential surface area dΓ = R2 sin θdθdϕ on a spherical truncation boundary of radius

R. The B1 and B2 operators both satisfy a required uniqueness condition, Im[BΓ(u, u)] > 0

(or < 0), for all u evaluated on Γ, u 6= 0 [80, 88]. The differential operators Bj, j = 1, 2,

are relatively simple to implement and retain the local sparse structure of the finite element

method. The local condition B2 is preferred since for a fixed radius, it is more accurate

compared to B1, as can be seen from the orders of the remainders in (9). Direct finite

element implementation of high-order operators Bj, j ≥ 3, are problematic in conventional

finite element methods since regularity in angular derivatives higher than standard C0(Γ)

are required [76].

Conventional finite element methods partition the computational domain Ω into nonover-

lapping subdomains (elements) Ωe with continuous piecewise polynomials. In the standard

h-version, basis (shape) functions Ni(x), associated with element nodes are C0 continuous

interpolation functions with compact support. The continuous approximation is written as

the linear combination,

uh(x) =

Ndof∑
i=1

Ni(x) di = NT (x) d, (14)

where N ∈ RNdof is a column vector of standard Co basis functions, and d ∈ CNdof is

a column vector containing the Ndof unknown nodal values di = uh(xi), where uh(xi) is

the approximation of the solution u at node xi. Using a standard Galerkin finite element

approximation, test (weighting) functions wh are expressed as a linear span of the same basis

functions. Substitution into (13) leads to the sparse, complex-symmetric (non-Hermitian)

linear algebraic system,

Zd = f , Z = (S − k2M −KΓ) (15)

with matrix coefficients

(S)ij =

∫

Ω

∇Ni · ∇Nj dx +

∫

S

βNiNj ds,

(M)ij =

∫

Ω

NiNj dx,

(KΓ)ij =

∫

Γ

B1 Ni Nj dΓ−
∫

Γ

1

2B1

∇ΓNi · ∇ΓNj dΓ

The excitation vector

(f)i =

∫

S

Ni g ds (16)
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is in general complex-valued, and wavenumber dependent. The contribution from the local

absorbing conditions are found in the k dependent sparse matrix KΓ associated with node

points on the boundary Γ. Further details of the finite element implementation such as

element mapping, integration, and assembly of element arrays are found in standard finite

element textbooks, e.g. [97, 137]. The local support of the element shape functions gives

the advantage of being able to handle complex geometries and producing sparse matrices

which are solved efficiently by avoiding storage and computation of zero coefficients. For

large three-dimensional problems at high wavenumbers k, accurate resolution requires a

large number of elements leading to large sparse matrices. In this case, iterative solvers

are preferred over direct factorization methods due to the lower memory requirements and

parallel computing performance.

Other local absorbing conditions which attempt to annihilate incoming waves include

the Enquist and Majda [11] and Feng [111] conditions. In a numerical study by Shirron

[146], the accuracy of the BGT conditions are the most accurate, especially for low-modes

and tight boundaries. The first- and second-order BGT conditions have been widely used

[26, 112, 156] and have been generalized to spheroidal [80] and arbitrary convex surfaces [4].

The use of spheroidal or rectangular coordinates allows the artificial boundary to obtain a

tight fit around elongated objects. For spheroidal, and other convex shapes, the conditions

tend to lose accuracy for higher wavenumbers [156]. Low-order approximate conditions

require careful placement when computing the response over a range of frequencies; the size

of the computational domain and the mesh density must be carefully selected to achieve

a prescribed accuracy. If not placed sufficiently far from the radiating/scattering object,

low-order local approximate absorbing boundary conditions may produce large spurious

reflections which can pollute the entire numerical solution.

Complexity estimates show that it is usually more efficient to use high-order accurate

absorbing conditions which enable smaller computational domains. The development of

high-order local boundary conditions for which the order can be easily increased to a desired

level are usually based on using auxiliary variables to eliminate higher-order derivatives [74,

84, 85, 96, 167, 172]. While generally derived for the time-dependent case, time-harmonic

counterparts are readily implemented with time derivatives replaced by iω, ω = kc, where c

is wave speed.
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IV. THE DTN NON-REFLECTING BOUNDARY CONDITION

An alternative to high-order local absorbing conditions are nonlocal DtN nonreflect-

ing boundary conditions. The conceptual foundation and experimental validation for the

DtN finite element method are presented for both acoustic radiation and scattering in the

impedance matching technique of Hunt et al. [99, 100]. In [99], the relationship between

the pressure (Dirichlet data) and its normal derivative (Neumann data) on a spherical sur-

face Γ is obtained using the surface Helmholtz integral equation with boundary condition

∂u/∂n = iωρ vn, and then by expanding the analytical solution for the pressure u and nor-

mal velocity vn in terms of spherical harmonics and matching coefficients. In Keller and

Givoli [113] the DtN map on a sphere of radius R is constructed directly and implemented

in the standard Galerkin finite element method by expanding the outgoing acoustic field in

a spherical harmonic series,

u(r, θ, ϕ) =
N−1∑
n=0

hn(kr)

hn(kR)

n∑
m=−n

unm Ynm(θ, ϕ) (17)

with coefficients

unm = (u, Ynm)S :=

∫ 2π

0

∫ π

0

u(R, θ, ϕ) Y ∗
nm dS (18)

In the above, dS = sin θdθdϕ is the differential surface element on the unit sphere S,

parameterized by 0 < θ < π, 0 < ϕ < 2π, and

Ynm(θ, ϕ) =

√
(2n + 1)

4π

(n−m)!

(n + m)!
Pm

n (cos θ)eimϕ

are angular spherical harmonics such that Yn,(−m) = (−1)mY ∗
nm; the star denotes complex

conjugate; and hn(kr) are outgoing radial spherical Hankel functions. The DtN map is

then obtained by evaluating the normal derivative of (17) on the boundary at r = R, and

implemented as a ‘natural’ boundary condition with standard finite element basis functions

for u on the surface Γ. Givoli [75] recognized that the DtN finite element method could

be generalized to other boundary value problems with infinite domains. The operator is

nonlocal since the coefficients unm in (18) require integration over the whole surface. The

DtN map exactly represents all harmonics in the solution up to the number of terms included

in the truncated series expansion as measured by N . For higher harmonics n > N − 1, the

truncated DtN models the boundary Γ with the homogeneous Neumann condition ∂u/∂r = 0
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at r = R. As a consequence, nonunique solutions may result when k2 matches an interior

resonance associated with the Laplacian operator. Harari and Hughes [88] showed that this

difficulty can be eliminated by using a sufficient number of harmonics N . However, the

restriction may require more terms in the DtN map than may be necessary to achieve a

desired accuracy, leading to a potential for excessive computation.

This problem is circumvented if a modified truncated DtN operator [80] is used, M∗ =

(MN−BN)+B, where B is any computationally efficient approximation to the DtN operator

with the uniqueness property Im(u,Bu)Γ 6= 0, and (MN−BN) is the truncation of M−B to

the first N modes. The modified DtN condition provides unique solutions at all wavenumbers

irrespective of the number of harmonics N included in the series. Suitable operators B
include local absorbing boundary conditions. The boundary condition B2 is preferred over

B1, since it provides an improved matrix preconditioner for iterative solvers and gives more

accurate solutions when the number of harmonics N used in the truncated DtN series is not

sufficient to capture important modes n > N − 1 in the solution. Applying the local B2

operator to (17) gives the modified DtN:

∂u

∂r
= B2u +

N−1∑
n=2

βn

n∑
m=−n

unm Ynm(θ, ϕ) (19)

where

βn = k
h′n(kR)

hn(kR)
+

n(n + 1)

2B1r2
− B1 (20)

The B1 modified DtN is a special case obtained by omitting the second term with n(n + 1)

and starting the summation at n = 1. Thompson and Pinsky [162] recognized that these

conditions also annihilate up to the first N = 2 spherical modes corresponding to n = 0 and

n = 1 in the expansion (17) and thus are equivalent to the first two localized DtN conditions

derived in [88].

Nonlocal conditions are very accurate, yet couple all solution unknowns on Γ, thus poten-

tially rendering a full dense matrix with associated solution cost and memory requirements.

However, if separable boundaries are utilized such as spheres or spheroids, a special structure

in the resulting data structures may be exploited to avoid storage of a full dense matrix.

Bayliss et al. [20] appear to be the first to recognize that a global DtN radiation boundary

condition formed by a harmonic expansion, and relating Dirichlet-to-Neumann data on a

separable boundary can be split as a vector outerproduct which then can be used to per-
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form matrix-by-vector multiplies in iterative solvers without the need for assembling a dense

matrix.

The contribution of the DtN operator to the complex-symmetric (non-Hermitian) system

matrix is defined by the admittance matrix,

Kdtn = R2

N−1∑
n=2

βn

n∑
m=−n

cnmcT
nm (21)

where cnm = (N , Ynm)S are vectors of size equal to the number of unknowns on the trunca-

tion boundary Γ.

Due to the special structure of the DtN map defined on a separable boundary as a

summation of vector outer products, we recognize that the Sherman-Morrison algorithm in

conjunction with direct solvers may be used to preserve the sparsity of the finite element

equations with a series of rank-1 vector updates. For Krylov subspace iterative solvers the

computationally intensive kernel is the repeated operation of matrix-by-vector products with

vector iterates. The special structure of the DtN matrix Kdtn, as a summation of rank-1

vector updates can be exploited to avoid direct evaluation of matrix-vector products with

Kdtn with significantly reduced storage and cost [134]. The matrix-vector product of the

DtN operator can also be carried out at the element level; preserving standard element-

based data structures [124]. Oberai et al. [134], Thompson et al. [165] have shown that the

local operator KΓ provides a good approximation to the spectral properties of the complete

system matrix which includes the DtN matrix Kdtn, and thus can be used as an efficient

preconditioner to accelerate convergence. Parallel iterative methods provide a means for

dividing the problem into subsystems which when solved in parallel, provide compute time

speedup, and for distributed-memory computer systems, the ability to scale up to very

large systems. Ianculescu and Thompson [102] showed that the symmetric outer-product

structure of the DtN matrix Kdtn can be exploited to compute in parallel with one collective

communication per iteration with a vector size equal to the number of harmonics included in

DtN series expansion; the effect on the overall communication is roughly that of a relatively

small dot-product interprocessor communication. Numerical studies reported in [103] show

that due to the special structure, and ability to tightly fit around scattering objects with

minimal spurious reflection, the nonlocal DtN condition can be implemented with significant

overall cost savings compared to the local operators B1 and B2.

The extension of the B2 modified DtN map in spheroidal coordinates suitable for finite

13



element implementation is given in [165]. Grote and Keller [80] derived a related modified

DtN condition for spheres and spheroids using the second-order BGT operator in native

form involving second-order radial derivatives (instead of angular derivatives); a form which

is not suitable for standard finite element approximation. Further details and discussions of

the properties of DtN nonreflecting boundary conditions are given in [75, 159].

V. INFINITE ELEMENTS

G

S
W

infinite
element

D

FIG. 2: Infinite element topology.

Infinite elements replace the nonreflecting boundary condition on Γ with a single layer

of elements with infinite extent. The infinite elements are constructed with radial wave

functions which automatically satisfy the Sommerfeld condition (3) at infinity; see Fig. 2.

Test and trial solutions in the region ΩX exterior to Γ are usually separated into radial and

angular functions; for a spherical boundary Γ with radius R, [5]:

w =
∑

µ

∑
ν

cµνWν(r)Nµ(θ, ϕ), (22)

u =
∑

µ

∑
ν

dµνUν(r)Nµ(θ, ϕ), (23)

In the above, Nµ are angular basis functions which match the interior finite element dis-

cretization on the surface Γ. Radial functions are defined to match the outgoing wave

character of the radial expansion (7),

Uν(r) = Rν(ξ)e
ik(r−R)

Here, the radial basis functions Rν are polynomial functions in the inverse radius variable

ξ = (R/r), where r := ||x|| > R is the radial position exterior to Γ. Different definitions of
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the radial polynomial functions lead to changes in the conditioning of the resulting system

matrix. Several alternatives for the radial test (weighting) functions have been proposed,

the three most common choices are,

Wν(r) =





Uν(r), Bettess− Burnett unconjugated

U∗
ν (r), Burnett conjugated

ξ2 U∗
ν (r), Astley − Leis conjugated

Bettess [23, 24] pioneered the infinite element concept and selected the test function to

be the same as the trial solution basis. Burnett [31], Burnett and Holford [32, 33] extended

the formulation to spheroidal and ellipsoidal coordinates, and was the first work to express

the shape functions as separable tensor products of radial and transverse functions, resulting

in improved performance and efficiency. A quantitative error analysis of the unconjugated

infinite elements is given in [32]. Alternatively, the weighting (test) function is conjugated.

In the Astley-Leis infinite element [8] the conjugated weighting function is scaled by a

geometric factor. It was later recognized that this formulation fits within the variational

framework of Leis [121]. The unconjugated infinite element leads to matrix coefficients

involving one-dimensional radial infinite integrals which are oscillatory and well-defined,

and can be evaluated using high-order Gauss-Legendre quadrature. For the conjugated

elements, the oscillatory plane-wave components cancel so that the radial coefficients may

be integrated analytically in closed form resulting in wavenumber independent matrices

which are proportional to ik and k2, a feature which allows for a direct local time-dependent

counterpart [9].

The unconjugated Burnett formulation, regardless of the definition for the radial function

Rν , gives the highest accuracy in the near field, yet exhibits instability and ill-conditioning

for higher radial orders [104, 146]. For the Astley-Leis conjugated schemes, although less

accurate in the near field, in the case of a spherical boundary, Rν can be constructed so that

the formulation remains stable and convergent in the far field [5, 7, 53, 73, 146]. However,

the performance of both conjugated and unconjugated formulations deteriorates at larger

wavenumbers and highly elongated artificial interfaces [6].
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VI. ABSORBING BOUNDARY LAYERS

The perfectly matched layer (PML) concept originally introduced by Berenger [22] for

electromagnetic waves is another option for modeling the far-field for the exterior acoustics

problem. The interface and PML are usually formulated in rectilinear Cartesian coordinates,

allowing a tight fit around elongated objects, (see Fig. 3), but can also be formulated in

spherical and other general curvilinear coordinates. The idea is to introduce an exterior layer

of finite thickness at an artificial interface such that outgoing plane waves are absorbed

prior to reaching the outer layer truncation boundary. By splitting the scalar field into

nonphysical components satisfying equations which describe decaying waves, and proper

selection of PML coefficients, plane wave reflection for an arbitrary angle of incidence is

theoretically eliminated.

In the absorbing layer ΩX , splitting the field in Cartesian coordinates x = (x1, x2, x3) =

(x, y, z), leads to a modified Helmholtz equation with complex-valued anisotropic material

properties suitable for standard finite element implementation [93, 169, 178],

∇ · (D∇u) + k2 s u = 0, in ΩX (24)

The corresponding weak form in the complete computational region Ω ∪ ΩX is,

∫

Ω∪ΩX

(∇w ·D∇u− k2 sw · u) dx = F (w) (25)

In the above, s = s1 s2 s3, and D = diag {s2s3/s1, s1s3/s2, s1s2/s3} is a diagonal, complex-

valued material matrix, with coefficients si(xi) = 1 + (iσi)/k, defined by a distribution of
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absorption functions σi(xi), i = 1, 2, 3, usually taken to vary quadratically from a value of

zero at the interface of the physical domain to a maximal value at the truncation of the

layer. In the physical domain Ω, si = 1, i = 1, 2, 3. In layers normal to the x1-direction,

σ2 = σ3 = 0. Only in corner regions are all σi values nonzero. Optimal placement of the

interface, layer thickness, number of elements, and variation of absorption functions and

their maximal value, which reduce error due to spurious reflection of decayed waves off the

layer truncation boundary to be less than the discretization error, are open questions [43].

The PML layer converges to perfect wave absorption as the thickness of the layer is increased

[168]. However, a compromise between a thin layer which requires a rapid variation of the

absorption parameters and a thick layer which requires more elements is required [169].

VII. DISCRETIZATION METHODS FOR THE HELMHOLTZ EQUATION

A. Galerkin Finite Element Methods

Accuracy of finite element approximations based on Galerkin’s method are characterized

by phase (dispersion) errors. In order to control dispersion, the element size must be adapted

to the wavenumber such that the number of elements per wavelength is held below a reso-

lution limit. The resolution is determined by the nondimensional wavenumber kh = 2πh/λ,

where λ is the wavelength and h is a measure of the element size. A discrete dispersion

analysis can be used to quantify the limiting value on mesh resolution.

For a uniform mesh of finite elements with piecewise linear interpolation in one-dimension,

and neglecting boundary conditions, the sparse system matrix Z is tridiagonal; neglecting

sources, each interior equation corresponds to a repeated finite difference stencil centered at

a typical node point xj of the form

Z2 uh(xj−1) + 2 Z1 uh(xj) + Z2 uh(xj+1) = 0 (26)

where Z1(kh) = 1 − (kh)2/3 and Z2(kh) = −(kh)2/6 − 1 are coefficients obtained by as-

sembly of element matrices. The solution of the difference stencil admits homogeneous

plane-wave solutions of the form uh(xj) = u0e
ik̃xj where k̃ is an unknown numerical wave

number. Substituting this solution into the difference stencil leads to a dispersion rela-

tion relating the numerical wavenumber k̃ to the continuous wavenumber k of the form,
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cos(k̃h) = −Z1(kh)/Z2(kh). For small kh, a Taylor series expansion reveals the dispersion

error of order [160]:

(k̃ − k)/k = − 1

24
(kh)2 + O(kh)4. (27)

The numerical wavenumber remains real valued corresponding to propagating waves, pro-

vided |Z1(kh)/Z2(kh)| < 1, which requires the continuous wavenumber k to be bounded by

the cutoff value, kh ≤ √
12, corresponding to a minimum resolution of λ/h > 2, i.e., just

under 2 elements per wavelength. Beyond this value, k̃ is complex valued, resulting in rapid

amplitude decay (evanescent behavior).

B. Mesh Resolution Rules for Low-Order Elements

Ihlenburg [106], Ihlenburg and Babuska [107] showed that the error measured in the

usual L2 integral norm, which characterizes averaged amplitude differences, is controlled by

a wavenumber dependent stability constant times the approximation error. For linear finite

elements of size h, (∫

Ω

|uh − u|2 dx

)1/2

≤ (C1 + C2kL)(kh)2 (28)

where L is a characteristic length scale, and C1, C2 are constants independent of the

wavenumber and element size. The meaning of (28) is that the integral norm is controlled

by a sum of two errors, where the first term C1 · (kh)2 is proportional to the usual approxi-

mation error, and the second term C2 · (kL)(kh)2 has an additional dependance on kL. The

second term has sometimes been referred to as a “pollution” error related to a loss of stabil-

ity at large wave numbers [19]. The second term increases even though the nondimensional

wavenumber kh is held fixed with a constant number of elements per wavelength (λ/h =

constant). In general, however, if the number of elements per wavelength λ/h is increased

(kh decreased), it follows that the second term also decreases, thus reducing the error in

amplitudes. To control local approximation error it is often suggested that one take at least

ten (λ/h > 10) linear elements per wavelength for a phase error of a few percent, i.e., keep

the element size below h < λ/10. However, to control amplitude error, a characteristic

length scale of the domain, L, should be accounted for such that (kL)(kh)2 < P , where P

is an admissible pollution error determined from computational experience [105].

A simple way to improve both dispersion and pollution error for low-order elements is to
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use slightly underintegrated stiffness and mass matrices with special numerical quadrature

rules. For 4-node bilinear quadrilateral and 8-node trilinear “brick” elements, use of quadra-

ture evaluation points ±
√

2/3 in each direction in the parent element with unit weights gives

a higher-order accurate dispersion error from O(kh)2 to O(kh)4, [39]. This same observation

for 4-node quadrilateral elements was later rediscovered in [81], where it was demonstrated

numerically that the high-order accuracy is maintained for unstructured meshes. In [158]

it is shown that for 3-node linear triangle elements, the dispersion error is reduced from

O(kh)2 to O(kh)4 by using three-quadrature points for the mass matrix me sampled at

(ξ, η, 1− ξ − η) = (1/3 +
√

10/6, 1/3−√10/12, 1/3−√10/12) in natural coordinates with

three symmetric permutations and conventional weights
∑3

j=1 Wj = 1,Wj = 1/3. For 4-

node tetrahedral elements for three-dimensional analysis, using the special quadrature rule

(ξ, η, ζ, 1−ξ−η−ζ) = (1/4+
√

21/8, 1/4−√21/24, 1/4−√21/24, 1/4−√21/24), with mul-

tiplicity 4, and standard weights
∑4

j=1 Wj = 1,Wj = 1/4, yields increased phase accuracy

compared to standard Galerkin.

C. High-order approximation

Dispersion error can be minimized by using higher-order polynomial approximations, e.g.

hp-version of FEM and spectral elements. The number of elements per wavelength to obtain

a given discretization error depends strongly on the order of the element basis functions. A

dispersion analysis similar to that outlined above for linear elements can be carried out for

high-order polynomials of order p ≥ 2, and after condensation of internal solution unknowns,

a dispersion relation in the same form as the linear p = 1 case is obtained. Thompson

and Pinsky [160] and Ihlenburg [106] show that the relative phase error is O(kh)2p. The

cutoff value prior to evanescent behavior grows with the increase of approximation order p;

however, before reaching this value the numerical wavenumber is complex valued on small

“stopping band” intervals [160]. As a result, kh should be kept below the first cutoff value

of kh ≤ √
12. Ihlenburg [106] showed that the error measured in the H1(Ω) global norm is

order kL (kh/2p)2p, and thus for quadratic and higher-order elements p ≥ 2, and resolved

waves such that kh/p is small, the dispersion is relatively small. For high wavenumbers

kh À 1, Ainsworth [1] has shown that dispersion error is virtually eliminated when p is

increased to a regime in which the error decays at a super-exponential rate, such that
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2p + 1 > kh + c(kh)1/3, where c is a user-defined constant; c = 2 is suggested. Since higher-

order elements generally provide greater computational efficiency, fewer degrees of freedom

are generally needed to achieve a given discretization error for oscillatory wave solutions

[49, 51, 160]. For high-order quadrilateral elements with quadratic Lagrange polynomial

basis functions of order p = 2, high-order accuracy is achieved by evaluating the stiffness

and mass matrices with special quadrature points ξ1 = −ξ3 = −
√

13/15, ξ2 = 0, and

corresponding weights W1 = W3 = 5/13, W2 = 16/13, in each natural coordinate direction

[39].

D. Stabilized Galerkin Methods

For low-order elements, reduced dispersion error may be achieved using residual-based

methods such as Galerkin least squares (GLS) and related methods. Least-squares stabi-

lization stands out among the numerous approaches that have been proposed for reduc-

ing resolution requirements of standard Galerkin finite element methods for time-harmonic

acoustics by combining substantial improvement in accuracy with simple implementation.

In the GLS method the Galerkin variational form is modified by appending residuals of the

governing Helmholtz equation in a consistent least-squares form [89],

B(w, u) +

∫

Ω̃

τLwLu dx = F (w) (29)

Here, L = ∇2 + k2 is the Helmholtz differential operator, and Ω̃ denotes integration over

element interiors. The element parameter τ is usually determined from discrete dispersion

analysis and selected to minimize or eliminate dispersion error in the numerical solution.

For two-dimensional quadrilateral (Q4) elements, the value of τ is determined by enforcing

numerical and continuous wavenumbers to coincide k̃ = k, [161]:

τ =
1

k2

(
1− 6

(kh)2

(
1− cos αx

2 + cos αx

+
1− cos αy

2 + cos αy

))
(30)

where (αx, αy) = kh(cos θ, sin θ). For uniform meshes this value eliminates dispersion error

for plane waves in the angular direction θ. In general, solutions to the Helmholtz equation

can be expanded in terms of plane waves with the predominant direction unknown a priori.

By preselecting the angle θ0 = π
8

in (30), the phase error, while not eliminated, is reduced

significantly for all other wave angles [161]. For unstructured finite element meshes the

20



Laplacian operator appearing in (29) is usually neglected and the element size h can be taken

as an average over the mesh or h =
√

A, where A is the element area. Numerical evidence

shows that the GLS-FEM is relatively insensitive to the precise definition of the measure of

element size [90, 92, 164]. The additional cost of computing the GLS contribution is trivial,

yet gives substantial improvement in accuracy, even on unstructured meshes. Values for τ

on triangle, quadratic, and trilinear brick elements are given in [91, 92, 161]. Successful

generalization of residual based methods to waves in plate bending elements and acoustic

fluid – structure interaction are given in [157, 163].

Many of the generalized Galerkin methods can be derived within the Variational Multi-

scale (VMS) framework [98], including the method of residual-free bubbles [66], also related

to nearly optimal Petrov-Galerkin methods [16]. For the GLS method defined in (29), the

mesh-dependent stability parameter τ may be interpreted as an algebraic approximation of

a global integral operator for unresolved fine scales obtained by a separation of coarse finite

element polynomials and enhanced fine scales within the VMS framework. Multiscale con-

siderations also underlie the residual-based method in [133], which includes the Helmholtz

residual in least-squares form over element interiors Ω̃, plus an additional residual defined

over interelement boundaries Γ̃. In this case, the variational form assuming negligible Lapla-

cian operation is

B(w, u) + k2(τw, u)Ω̃ − (γw, [[u,n]])Γ̃ − (γ[[w,n]], u)Γ̃ = F (w),

where [[u,n]] is the jump in discontinuous gradients across common element edges. Using this

framework, Oberai and Pinsky [133] find mesh parameters τ and γ for Q4 linear quadrilateral

elements which produce a leading order phase error for all plane wave directions of order

O(kh)6; a substantial improvement over standard Galerkin linear Q4 elements. Further

discussions relating residual and other stabilized methods within the VMS framework are

given in [86].

E. Wave-based discretization methods

Wave-based methods exploit known solutions such as plane waves, or other analytical

solutions to define or enrich the approximate solution space. Element-free methods (EFM)

based on moving least-squares, and partition-of-unity methods (PUM) provide a means to
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incorporate analytical wave functions within local basis functions. For the Helmholtz equa-

tion solutions can be approximated using increasing numbers of basis functions in the form

of plane waves [12, 25, 117, 118, 129]; in 2D problems, V =
{
eik(x cos θm+y sin θm), θm = 2πm

n

}
,

where m = 0, 1, . . . , n− 1, n = 1, 2, . . .. Suleau and Bouillard [153] have shown that disper-

sion and pollution errors can be reduced by adding a sufficient number of plane wave basis

functions within the element-free moving least-squares method. Plane-wave basis functions

have also been multiplied with standard piecewise polynomial shape functions as a partition-

of-unity finite element method [117, 152]. The general integral that arises in the element

matrices can be written as the product of plane waves, and polynomials. Such integrals

are highly oscillatory and difficult to evaluate efficiently using standard techniques. Burnett

and Soroka [34] and Pierce et al. [139] offer well-proven techniques for evaluating highly

oscillatory integrals. Ortiz and Sanchez [135] derive special integration techniques which

isolate the oscillatory effects to one-dimension. Another approach to reducing integration

costs is given in [25, 118]. While reducing dispersion and pollution error, a drawback of

these approaches is the potential for ill-conditioning of the resulting system matrices which

may disrupt the practical convergence of the method. Empirical rules relating condition

number, number of wave directions and wavenumber are given in [118].

Least-squares methods [130, 151] minimize the least-squares difference in jumps of the

solution and its normal derivative across element edges. The use of discontinuous solution

spaces allows for the use of a plane-wave basis. The ultra-weak variational formulation

[37, 38, 101] is another approach to using discontinuous local plane-wave solutions of the

Helmholtz equation on each element. In this approach integration-by-parts is used to derive

a variational formulation that weakly enforces continuity conditions between elements via

local transmitting impedance conditions. An advantage of this approach is that integrations

are carried out over element boundaries only and can be evaluated in closed form. Other

wave-based methods are the weak element method [78], and the iterative defect-correction

meshless method [116]. A difficulty with wave-based methods is that plane-wave, or other

free-wave solutions, used as basis functions, often lead to ill-conditioning of the resulting

system matrix as the number of wave functions per element is increased, or refined element

meshes are used. Another approach which may be derived in the framework of multiscale

methods is the discontinuous enrichment method (DEM), where standard finite element

polynomial field is enriched within each element by adding plane wave basis functions, and
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Lagrange multipliers are introduced at element interfaces to enforce a weak continuity of

the solution [61]. Using element level condensation, the system matrices are reported to be

better conditioned than the PUM.

VIII. A POSTERIORI ERROR ESTIMATES AND ADAPTIVE METHODS

Adaptive methods use a-posteriori error estimates to control discretization error in the

numerical solution, [2]. A-posteriori error estimates are computed by post processing the

numerical solution. For standard finite element methods, a-posteriori error estimates are

used to control mesh refinement, both element size h, and polynomial order p distribution.

The most common a-posteriori error estimates are residual (both explicit and implicit), and

recovery type. Implicit residual methods involve the solution of local or global problems

which usually require very little cost compared to solving the original finite element solution.

Explicit methods relate the residual of the original governing equation localized to each

element and do not require solving any auxiliary problems. Since the residual is a measure

of numerical error, the error estimate can be used as a refinement indicator for adaptive

strategies.

Stewart and Hughes [150] used explicit residual methods based on the use of adjoint

equations and duality arguments to develop adaptive strategies for the finite element dis-

cretization of the Helmholtz equation. The error estimator depends on a stability constant

which is approximated by solving global eigenvalue problems, which may be costly to com-

pute. Irimie and Bouillard [109] use standard explicit residual methods to estimate the

error for the Helmholtz equation. Babuska et al. [13] and Bouillard [27] studied implicit

element residual methods to estimate the finite element error. Bouillard and Ihlenburg

[28, 29] studied the gradient recovery-based error estimators based on the Zienkiewicz-Zhu

patch recovery technique, and found that the estimator converges with mesh refinement

for all wavenumbers, although the estimate underestimates the error at high wavenumber.

Attempts to estimate the pollution error are studied in Babuska et al. [14]. Initial studies of

goal-oriented adaptive methods which measure the error in quantities of interest other than

global norms are reported in [136, 144]. For finite element solutions with sufficient resolution

and for which the pollution error is under control, i.e. kL(kh)2 ¿ 1, the quality of both the

residual-based error estimators and recovery-type methods are good. However, since local
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error estimators do not detect pollution error, the quality deteriorates as the wavenumber

k increases.

IX. ITERATIVE SOLUTION METHODS

The system of equations Zd = f , Z ∈ CNdof×Ndof , resulting from the Galerkin FEM

applied to the Helmholtz equation is sparse, complex and symmetric (non-Hermitian and

generally not diagonally dominant). Direct solution methods based on Gaussian elimination

or factorization become exceedingly expensive both in terms of memory and computation

when solving large systems of this class, especially for larger wavenumbers. The primary

iterative solution method for these types of systems are complex versions of Krylov sub-

space methods. In order to accelerate convergence a preconditioner is required. Standard

preconditioners such as incomplete LU factorization (ILU) are optimal for matrices with

diagonal dominance. However, the matrices which arise from the Helmholtz equation can

be indefinite without diagonal dominance, making standard ILU not as practical and can

exhibit breakdown at high wavenumbers.

One possible approach is to recast the complex-symmetric system into Hermitian positive-

definite form by multiplying by the Hermitian transpose, resulting in the normal equations

ZHZd = ZHf . The above system can be solved with the well-known conjugate gradient

iterative method, with incomplete Cholesky factorization or other preconditioners. A dif-

ficulty of this approach is that the condition number of ZHZ is the square of Z, so that

convergence may be slow. Another possibility is to replace the complex-symmetric system

(A + iB)(x + iy) = a + ib, with a real symmetric system,

A B

B −A





 x

−y


 =


a

b




where A ∈ RNdof×Ndof and B ∈ RNdof×Ndof . However, in this form, the system may become

even more difficult to precondition.

Specialized preconditioners based on the original complex-symmetric matrix Z appear

to give the best results with significant acceleration, even at high wave numbers. In [122],

prior to incomplete factorization, the real part of the preconditioning matrix is made less

indefinite, by perturbations to the diagonal entries. This was shown to exhibit significant

reduction of iteration counts in the GMRES method [142]. A similar idea is used in [57]
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with a Shifted-Laplace preconditioner built on the modified Helmholtz equation ∇2 − ik2,

which is a generalization of the preconditioners introduced in [18]. In [112] incomplete LU

factorization with threshold (ILUT), and the Crout form of ILU were used as preconditioners

combined with the GMRES iterative solver. It was reported that stagnation issues arise with

high fill-in. The authors promise improvements by adding a damping parameter during the

factorization process. Multifrontal incomplete factorization methods have also been applied

to complex-symmetric indefinite systems with good results [140].

Suitable iterative solvers for sparse complex symmetric matrix systems other than GM-

RES include BiCG-Stab, [170], QMR [67] and TF-QMR [68] methods. Some numerical

comparisons of the alternative iterative solvers are reported in [128] and elsewhere. The best

combination of iterative solver and preconditioner seems to be problem dependent. From

the author’s experience, BiCG-Stab appears to be robust for complex-symmetric systems at

high wavenumber.

Other preconditioning approaches include analytic factorization methods [71] and ficti-

tious domain methods (FDM). The FDM is based on embedding the original domain into a

larger one with a simple geometry [127]. In the algebraic FDM (closely related to capacitance

matrix methods) the linear system resulting from the finite element discretization is replaced

by an equivalent, but enlarged, system corresponding to a simple-shaped domain containing

the original domain. In this enlarged, yet simplified form, efficient iterative preconditioners

are constructed based on locally perturbed orthogonal fitted meshes. Applications of the al-

gebraic FDM for acoustic scattering are reported in [54, 58, 94, 95]. Other solver techniques

for the Helmholtz equation include multigrid methods [30, 55, 120, 173].

For acoustic scattering problems, the incident field is often represented by a plane wave,

uinc(x) = exp (ikx · ν), ν = (cos α, sin α cos β, sin α sin β) with a sweep over different in-

cident directions α and β. This leads to a problem with fixed left-hand-side matrix and

multiple right-hand-side forcing vectors. Malhotra et al. [125] show how to efficiently solve

the multiple right-hand-side problem with QMR methods.

A. Multi-Frequency Solution Methods

Often a large number of frequency (wavenumber) evaluations are required over a broad

band to characterize the system response or when an inverse Fourier transform is needed
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to construct a corresponding time-domain solution. Since the complex-symmetric matrix

Z = (S − k2M − KΓ) is wavenumber-dependent, the solution generally involves a sepa-

rate inversion at each wavenumber k, causing the computation cost to grow linearly with

the number of wavenumber evaluations. Djellouli et al. [52] present an approach based on

Padé approximation to compute multi-frequency evaluations efficiently by solving a reference

scattering problem with multiple excitation vectors and local BGT boundary conditions to

characterize frequency derivatives of the scattered field. In [108, 166] domain decomposi-

tion concepts are combined with interpolation of substructure (subdomain) matrices over

frequency bands of interest to accelerate multi-frequency solutions.

For problems with frequency-independent excitation f , matrix Padé approximation via

the Lanczos (PVL) process can be used to obtain an efficient algorithm which grows sublin-

early for the simultaneous solution of the Helmholtz equation over multiple frequencies in

a window based on a Krylov projection to a subspace of much smaller dimension than the

original system size [63, 69, 148]. Wagner et al. [174, 175], show that the PVL process can be

implemented efficiently with the nonlocal modified DtN by utilizing the special structure of

the admittance matrix. Efficient algorithms based on this PVL approach over multiple fre-

quencies have not been demonstrated for the general case of frequency dependent excitation

f(k) which is required for general acoustic scattering and radiation problems.

B. Domain Decomposition Methods

Domain decomposition methods provide an effective means of problem subdivision for

parallel processing. Classical Schur complement based domain-decomposition methods have

difficulties when applied to the Helmholtz equation since the inversion of the matrix Ai =

(Si − k2Mi) defined on each interior subdomain will be singular when the wavenumber

corresponds to a resonance frequency (eigenvalue) of the pencil (Ki,Mi). The first resonance

will occur at a resolution of less than two subdomains per wavelength [166].

Kim [114] uses the Robin-type impedance (transmission) interface conditions presented in

[21, 50] in a Schwarz-type domain decomposition method to improve convergence; however,

the iteration count increases with many subdomains. Cai et al. [36] demonstrated an over-

lapping Schwarz method with GMRES acceleration and coarse grid corrections to improve

convergence. Another additive Schwarz domain decomposition method with the Robin-type
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subdomain interface transmission conditions has been proposed in [154] where the nonlocal

DtN nonreflecting boundary condition is computed with an iterative lag to maintain spar-

sity of the parallel subdomain solves. In [119] a preconditioned restarted GMRES iterative

method is used for the solving the Helmholtz equation, including nonlocal nonreflecting

boundary conditions. Domain decomposition is used with a Schur complement algorithm

and fast preconditioners for the subdomains to accelerate convergence.

In [59, 155], a non-overlapping domain decomposition method called FETI-H, based on

two-level Lagrange multipliers and the alternating Robin-type transmission conditions at

subdomain interfaces of the continuous operator form A(s) = ik, presented in [21, 50], is

used to solve the Helmholtz equation with second-order local nonreflecting boundaries. The

matrices restricted to each subdomain Ωs are Z(s) = (S(s)− k2M (s)−K
(s)
Γ + ikA(s)). Here,

A(s) are regularization matrices associated with the operator A(s) = ik, and defined by

integration over subdomain interfaces,

d(s)T

A(s)d(s) =

p∑
t=1
t 6=s

εst

∫

∂Ωs∩∂Ωt

u2.

Here, d(s) is the unknown vector restricted to subdomain Ωs, and εst ∈ {0,±1}, εst = −εts.

The use of regularization matrices for the Helmholtz operator provides for a unique solu-

tion on each subdomain. Inclusion of the alternating regularization matrix on the interface

boundaries cancel upon global assembly, thus reverting to the original problem, and leading

to nonsingular and invertible matrices Z(s). The transmission conditions can be interpreted

as a simple local preconditioner of the linear system condensed on the interface. Improved

transmission conditions with tangential derivatives of the form A(s) = α(s) + β(s)∂2
τ2 , with

coefficients α(s), β(s), and unit tangential vector τ , have been derived based on Fourier anal-

ysis of the Steklov-Poincare operators in a half-space [44]. Optimized coefficients have been

chosen to minimize the convergence rate of the Jacobi algorithm in the closely related addi-

tive Schwarz method with no overlap [72]. In [123] it is shown that the optimal augmented

interface operator A(s) is the Schur complement of the outer domain. Approximations of this

Schur complement with sparse approximate inverse methods and incomplete factorization

are investigated.
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X. ACOUSTIC INVERSE PROBLEMS AND SHAPE OPTIMIZATION

Acoustic inverse problems which involve determining the shape of a body from an acoustic

far-field pattern for the scattering of time-harmonic waves can be interpreted as a nonlin-

ear ill-posed operator equation with the operator mapping the boundary onto the far field.

Regularized Newton iterative methods provide accurate and robust solutions to the inverse

obstacle scattering equation [115]. Gradient-type methods based on regularized Newton or

quasi-Newton optimization requires computation of shape derivatives. The derivatives are

computed from solutions to the Helmholtz equation with different right-hand sides corre-

sponding to the number of parameters in the boundary representation. Implementation of

the regularized Newton method which incorporates exact sensitivities of far-field patterns

with iterative finite element solutions to the direct time-harmonic problem are given in

[60]. An alternate Newton-type method calculates the shape derivatives efficiently by solv-

ing an associated adjoint problem [62]. The adjoint method for the computation of shape

derivatives and smoothing for finding regular solutions is related to the shape optimization

problem [110] where observations of a numerical solution to the Helmholtz equation provides

an objective function which is formulated as a multi-point nonlinear optimization problem.

Habbal [83] and Bangtsson et al. [15] consider shape optimization of a sound barrier and

acoustic horn, respectively, using the regularized Newton iterations and the finite element

method. The shape optimization problem is solved using a gradient-based search method

where the gradient is provided by solving the associated adjoint equations. Developments

in coupled FEM-BEM structural-acoustic optimization and sensitivity analysis are reported

in [70, 126].

XI. CONCLUSION

Solutions to the challenging problem of developing accurate and efficient finite element

methods for time-harmonic acoustic radiation and scattering have a rich history of successes.

It is expected that this trend will continue leading to many new and exciting developments

in the future.
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