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Abstract
In this paper, the development of a space-time finite element method for so-

lution of the transient acoustics problem in exterior domains is discussed. The
space-time formulation for the exterior acoustics problem is obtained from a
time-discontinuous Galerkin variational equation for coupled structural acous-
tics, specialized to the case of zero normal velocities on the wet surface, i.e.,
a rigid scatterer. The formulation employs a finite computational acoustic do-
main surrounding the scatterer and incorporates high-order time-dependent
non-reflecting (radiation) boundary conditions on the fluid truncation bound-
ary as ‘natural’ boundary conditions in the space-time variational equation, i.e.
they are enforced weakly in both space and time. The result is an algorithm for
direct transient analysis of acoustic radiation and scattering with the desired
combination of good stability and high accuracy. The method is especially use-
ful for the application of adaptive solution strategies for transient acoustics in
which unstructured space-time meshes are used to track wave fronts propagat-
ing along space-time characteristics. Optimal stability estimates and conver-
gence rates are reported together with two representative numerical examples
involving transient radiation and scattering which illustrate the high-order ac-
curacy achieved by the method for the exterior acoustics problem.
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1 Introduction

For linear problems characterized by a relatively small range of frequencies, a transient
solution may be obtained indirectly through a sequence of time-harmonic solutions in
the frequency domain followed by an inverse Fourier transform. Considerable progress
has been made in the development of numerical methods for the time-harmonic ex-
terior structural acoustics problem. Still, a direct time-domain approach is necessary
whenever nonlinearities occur and may be advantageous for some classes of linear
problems including real-time dynamic control and optimization. For example, in
problems characterized by broad frequency spectrums, such as short pulse wave prop-
agation, the indirect approach may not be computationally feasible since it requires a
large number of solutions in the frequency domain for any reasonably accurate sweep
of the problem band width. Previous direct time-domain approaches to the tran-
sient structural acoustics problem involving the interaction of vibrating structures
submerged in an infinite acoustic fluid have employed (i) boundary element meth-
ods based on Kirchhoff’s retarded potential integral formulation, e.g. [1, 2, 3, 4, 5],
(ii) Taylor-Galerkin methods, e.g. [6], and (iii) semi-discrete methods which em-
ploy standard Galerkin finite element methods in space and classical finite difference
techniques for integrating in time (also referred to as the method of lines), see e.g.
[7, 8, 9, 10, 11]. However for general transient wave propagation problems it is known
that these standard methods are not optimal. This is especially evident for problems
involving sharp gradients in the solution which typically arise in the vicinity of fluid-
structure interfaces near inhomogeneities such as stiffeners and structural joints, and
abrupt changes in geometry.
In this paper a space-time finite element formulation for solving the transient

acoustics problem in exterior domains is described. The formulation is based on the
time-discontinuous Galerkin finite element method for general second-order hyper-
bolic equations described in [12, 13], in the context of elastodynamics. The starting
point for application of this methodology to the exterior acoustics problem is the
time-discontinuous Galerkin variational equation for the coupled fluid-structure sys-
tem derived in [14, 15], specialized here to the case of a rigid scatterer, i.e., the normal
velocity is set to zero on the wet surface. In this approach, the concept of space-time
slabs is employed which allow for discretizations that are discontinuous in time and of-
fers great flexibility in the discretization; in particular through the possibility of using
space-time meshes oriented along space-time characteristics. The resulting space-time
algorithm gives a general solution to the fundamental problem of constructing a finite
element method for transient acoustics with the desired combination of good stabil-
ity and high accuracy. Stability is obtained through the introduction of temporal
jump operators which give rise to a natural high-frequency dissipation required for
the accurate resolution of sharp gradients in the physical solution. Additional sta-
bility may be obtained by a least-squares modification, i.e. Galerkin Least Squares
(GLS) stabilization. The order of accuracy of the solution is related to the order of
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the finite element spatial and temporal basis functions chosen, and can be specified
to any accuracy and for general unstructured discretizations in space and time.
In addition to the advantages cited above, the space-time finite element approach

provides a powerful framework for unified and simultaneous spatial and temporal
adaptivity of the discretization. This is especially useful in the application of self-
adaptive solution strategies for transient structural acoustics, in which both spatial
and temporal enhancement can efficiently capture waves propagating along space-
time characteristics. Furthermore the use of space-time hp-adaptive discretization
strategies, where a combination of mesh size refinement/unrefinement (h-adaptivity),
and finite element basis enrichment (p-adaptivity), can easily be accommodated in
the time-discontinuous formulation. Because the temporal and spatial domains are
treated in a consistent manner in the space-time variational equations, the method
gives rise to a firm mathematical foundation from which rigorous a posteriori error
estimates useful for reliable and efficient adaptive schemes may be established, see
e.g. [16].
The time-discontinuous Galerkin method is also referred to as the Discontinuous

Galerkin (DG) method in time and was first introduced by Lesaint and Raviart [17] in
the context of first-order neutron transport equations. DG space-time methods with
residual based stabilization such as Galerkin Least Squares (GLS), Streamline Diffu-
sion (SD) and Streamline Upwind Petrov-Galerkin (SUPG) methods in the context of
fluid flows, have successfully been applied to first-order hyperbolic/parabolic systems
of partial differential equations by Johnson, Hughes and colleages, and others, see e.g.
[18, 19, 20]. Stabilized methods of this type are now widely used in many applica-
tions arising in computational fluid dynamics (CFD), including problems governed by
the compressible Euler and Navier-Stokes equations [21, 22, 23], advection-diffusion
problems [24], and large-eddy and turbulence modeling [25].
Classical linear acoustics equations can be converted to first-order hyperbolic form

and these methods are thus immediately applicable. However, in this approach, the
coupled state vector consists of acoustic pressure and velocity components, which is
computationally uneconomical. Hughes and Hulbert [12, 13] have successfully ex-
tended the time-discontinuous Galerkin space-time method originally designed for
first-order systems to second-order hyperbolic equations in the context of transient
elastodynamics. Based on the success of the work in [12], this technology has recently
been used by the authors to develop a time-discontinuous Galerkin variational formu-
lation for the structural acoustics problem involving the second-order wave equation
governing acoustics coupled to the the elastodynamics equations governing the struc-
ture; see [14, 15, 26]. For the coupled equations, scalar velocity potential is used
as the solution variable for the acoustic fluid, while the displacement vector is used
to represent the structure. As a consequence of this choice of variables, the cou-
pled time-discontinuous Galerkin variational equations for structural acoustics give
rise to a positive matrix form, which in the context of the space-time finite ele-
ment formulation, allows for the proof of the algorithmic stability and convergence
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Fig. 1: Coupled system for the exterior problem, with artificial boundary Γ∞ enclosing the
finite domain Ω = Ωf ∪ Ωs.

of the method. In this paper, attention is focused on the stability and accuracy of
the time-discontinuous Galerkin method for the exterior acoustic fluid coupled with
the second-order non-reflecting boundary condition originally derived by Bayliss and
Turkel in [27]; or equivalently, the time-dependent counterpart to the local second-
order operator in the truncated Dirichlet-to-Neumann (DtN) map given [14, 28]. In
Section 2 the governing equations for the exterior acoustics problem are summarized.
In Sections 3 and 4, the space-time variational equation is presented together with
a discussion of the form of the resulting matrix equations. In Sections 5, 6, and 7,
results are reported from a stability and convergence analysis of the method. In Sec-
tion 8, we undertake a brief development of the high-order accurate time-dependent
radiation boundary conditions developed in [14, 28], together with a discussion of
their relationship to the local radiation boundary conditions of Bayliss and Turkel,
and characterize their accuracy when implemented in the space-time finite element
formulation for transient acoustics.

2 The Exterior Acoustics Problem

The exterior acoustics problem in an infinite domain is transformed to a problem
defined over a finite computational domain through the introduction of an artificial
fluid truncation boundary. Radiation boundary conditions are prescribed on the
fluid truncation boundary in the form of linear operators which approximate the
asymptotic behavior of the outgoing solution at infinity.
The computational fluid domain is denoted by Ωf with boundary ∂Ωf , divided

into the artificial truncation boundary Γ∞, and the surface of the scatterer, denoted
Γi. The infinite domain outside the artificial boundary is denoted by Ω∞. For an
elastic scatterer, the interface Γi, seperates the fluid domain from a structural domain
Ωs; see Figure 1. The unit inward normal to Ωf on Γi, and the unit outward normal
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to Ωf on Γ∞ is denoted by n. The temporal interval of interest is I =]0, T [ and the
number of spatial dimensions is nsd.
The fluid is assumed under the usual conditions for linear acoustics, namely an in-

viscid, and compressible fluid with small disturbance from a reference state. From the
assumption of an irrotational acoustic fluid, the velocity of the fluid can be written as
the gradient of the velocity potential φ(x, t) with x ∈ Ωf as vf = ∇φ. Consequently,
acoustic pressure is related to the velocity potential by p = −ρf φ̇, and the motion of
the fluid can be modeled by the scalar wave equation:

∇2φ− a2φ̈ = f in Qf ≡ Ωf × I (1)

The phase velocity is denoted by c > 0, with slowness a = c−1 and ρf > 0 is
the reference density for the fluid. The acoustic source loading is given by f . A
superposed dot indicates partial differentiation with respect to time t.
On the interface Γi, the normal component of the fluid velocity is assumed to be

equivalent to the motion of the surface. Projecting the velocity normal to the surface
gives: ∇φ · n = v · n on Γi where v is a given function in time on Γi. For an elastic
body coupled to the fluid, v(x , t) with x ∈ Ωs is the structural velocity vector. The
influence of the fluid pressure acting on an elastic structure is given by the normal
traction σ ·n = −pn where σ = σ(∇u) is the symmetric Cauchy stress tensor which
is a function of the structural displacements u, such that v = u̇. For a rigid scatterer,
the structural displacement is zero and v = 0, ∀ t ∈ I, so that the boundary condition
on Γi specializes to ∇φ · n = 0.
Initial conditions for the second-order hyperbolic equation governing the acoustic

fluid are:

φ(x, 0) = φ0(x) φ̇(x, 0) = φ̇0(x) x ∈ Ωf (2)

For an elastic solid, initial conditions on the structural displacement and velocity are
also prescribed.
On the artificial boundary Γ∞ boundary conditions are specified which approx-

imate the asymptotic behavior of the solution at infinity as described by the Som-
merfeld radiation condition. For Γ∞ taken to be a sphere in three spatial dimensions
R
nsd = R3, the obvious choice is to use a simple Sommerfeld-like boundary condition
of the form,

∇φ · n = −aφ̇ on Υ∞ := Γ∞×]0, T [ (3)

where ∇φ ·n = ∂φ/∂n is the normal derivative on Γ∞. Restated in terms of pressure,
p = −ρf φ̇, and velocity vf = ∇φ, equation (3) becomes,

vf · n = p/zo (4)

where zo = ρfc, is the characteristic impedance for plane-wave propagation. This
boundary condition is exact in one-dimension for any position, however in multi-
dimensions, when (3) is applied at a finite distance from the source of excitation,
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Fig. 2: Illustration of two consecutive space-time slabs with unstructured finite element
meshes in space-time.

this boundary condition will generally produce large spurious reflections, resulting in
unacceptable errors in the numerical solution, see e.g. [10]. Because of the potential
loss of accuracy resulting from the use of (3), an improved non-reflecting boundary
is needed. A number of high-order accurate non-reflecting boundary conditions are
available and can take several different forms depending on the local (differential) or
nonlocal (integral) operators appearing in their definition.
An example of a local operator is the first-order boundary condition,

∂φ

∂n
= −S1φ, where S1 :=

1

R
+ a
∂

∂t
(5)

where R is the radial distance to a spherical boundary Γ∞. This well-known radi-
ation boundary condition is referred to as a ‘spherical damper’ since this operator
completely absorbs radially symmetric spherical waves. In Section 8, higher-order
radiation boundary conditions are reviewed which absorb radially symmetric and
higher-order spherical wave harmonics on Γ∞.
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3 Space-time finite element formulation

The development of the space-time method for transient acoustics proceeds by con-
sidering a partition of the time interval, I =]0, T [, of the form: 0 = t0 < t1 < · · · <
tN = T , with In = ]tn, tn+1[ . Using this notation, Q

f
n = Ωf × In denotes the nth

space-time slab for the fluid. When an elastic solid is coupled to the fluid, the nth
space-time slab for the structural region is denoted by Qsn = Ωs × In. For the nth
space-time slab, the spatial domain is subdivided into (nel)n elements, and the interior
of the eth element is defined as Qen. Figure 2 shows an illustration of two consecutive
space-time slabs Qn−1 and Qn for the fluid where the superscript is omitted for clarity.
Within each space-time element, the trial solution and weighting function are

approximated by pth-order polynomials in x and t. These functions are assumed
C0(Qn) continuous throughout each space-time slab, but are allowed to be discontin-
uous across the interfaces of the slabs. This feature is implemented through the use
of discontinuous temporal jump terms at each space-time slab interface,

[[φh(tn)]] = φh(x , t+n ) − φ
h(x , t−n )

These jump operators weakly enforce initial conditions across time slabs and allows
for the general use of high-order elements and spectral-type interpolations in both
space and time. The specific form of these jump operators are designed such that a
natural norm emanates from the variational equation and satisfies a strong coercivity
condition. From a Fourier analysis, it can be shown that the jump operators introduce
beneficial numerical dissipation for frequencies above the spatial resolution limit.
For the acoustic fluid, the collection of finite element basis functions are given by

the space of trial velocity potentials,

Trial fluid potential

T h =
N−1⋃
n=0

T hn , T hn =
{
φh(x, t)

∣∣∣φh ∈ C0(Qfn) , φh∣∣∣
Q
fe
n

∈ Pp(Qf
e

n )
}

where Pp denotes the space of pth-order polynomials and C0 denotes the space
of continuous functions. For an elastic solid coupled to the fluid, the space of trial
functions Sh =

⋃N−1
n=0 S

h
n , for the structural displacements is defined in [12, 14, 15],

and has similar restrictions on continuity.
Before stating the space-time variational equations, it is useful to introduce the
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following notation.

(wh , uh)Ωs =

∫
Ωs

wh · uh dΩ

a(wh , uh)Ωs =

∫
Ωs

∇wh · σ(∇uh) dΩ

(wh , φh)Ωf =

∫
Ωf

wh φh dΩ

(wh , φh)Γ =

∫
Γ

wh φh dΓ

(wh , φh)Qn =

∫ tn+1
tn

(wh , φh)Ω dt

The meaning of other similar terms may be inferred from these. The L2 norm is
denoted by ||φ||Ω = (φ , φ)

1/2
Ω

4 Discontinuous Galerkin Space-Time Variational
Equation

The space-time variational formulation is obtained from a weighted residual of the
governing equations and incorporates time-discontinuous jump terms. The specific
form of this time-discontinuous Galerkin formulation is designed such that uncondi-
tional stability for arbitrary space-time finite element discretizations can be proved
through a functional analysis of the method. The variational equation for the coupled
structural acoustics problem derived in [14, 15] is presented first. The exterior acous-
tics problem is then obtained as a special case by setting the structural displacements
and velocities to zero. The coupled space-time variational equation can be stated as:

Within each space-time slab, n = 0, 1, ..., N − 1; Find the trial solution (uh , φh) ∈
Shn × T

h
n , such that ∀ weighting functions (w

h , wh) ∈ Shn × T
h
n :

Gf (w
h , uh , φh)n + Gs(w

h , uh , φh)n + G∞(w
h , φh)n = 0 (6)

where

Gf (w
h , uh , φh)n = Bf (w

h , φh)n +

∫ tn+1
tn

(
ẇh , ρf u̇

h · n
)
Γi
dt (7)

Gs(w
h , uh , φh)n = Bs(w

h , uh)n −

∫ tn+1
tn

(
ẇh · n , ρf φ̇

h
)
Γi
dt (8)
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and

Bf (w
h , φh)n =

∫ tn+1
tn

(
ẇh , ρfa

2φ̈h
)
Ωf
dt +

∫ tn+1
tn

(
∇ẇh , ρf∇φ

h
)
Ωf
dt

+
(
ẇh(t+n ) , a

2 ρf [[φ̇
h(tn)]]

)
Ωf
+
(
∇wh(t+n ) , ρf [[∇φ

h(tn)]]
)
Ωf

−

∫ tn+1
tn

(
ẇh , ρff

)
Ωf
dt (9)

Bs(w
h , uh)n =

∫ tn+1
tn

(
ẇh , ρsü

h
)
Ωs
dt +

∫ tn+1
tn

a(ẇh , uh)Ωs dt

+ (ẇh(t+n ) , ρs[[u̇
h(tn)]])Ωs + a(w

h(t+n ) , [[u
h(tn)]])Ωs (10)

In the operator Gf , the terms evaluated over Ωf × In, weakly enforce the scalar
wave equation over the interior domain of the space-time slab. Fluid-structure inter-
action is accomplished through the coupling operators defined on the interface Γi×In.
For an elastic solid the momentum balance in the structure is enforced through the
operator Bs, evaluated over Ωs×In. The reference density for the structure is denoted
ρs.
For a rigid structure, the normal velocity is zero, and the coupled variational

equation (6) reduces to

Bf (w
h , φh)n + G∞(w

h , φh)n = 0 (11)

For the exterior problem, the operator G∞, incorporates the time-dependent ra-
diation boundary conditions on Γ∞. The radiation boundary conditions are incor-
porated as natural boundary conditions in the variational equation, i.e., they are
enforced weakly through integration over both the artificial boundary Γ∞ and the
time interval In. For the spherical damper S1, defined earlier in (5), the boundary
operator is given by,

G∞(w
h , φh)n =

ρf

R

∫ tn+1
tn

(ẇh , φh)Γ∞ dt +
ρf

c

∫ tn+1
tn

(ẇh , φ̇h)Γ∞ dt

+
ρf

R
(wh(t+n ) , [[φ

h(tn)]])Γ∞ (12)

The implementation of higher-order boundary conditions will be described in Section
8.
The method is applied in one space-time slab at a time; data from the end of

the previous slab are employed as initial conditions for the current slab. Matrix
equations are obtained by introducing space-time finite element approximations for
the primary variables. For the coupled structural acoustics problem the velocity
potential and structural displacements are approximated as φh(x , t) = Nf (x , t)φ,
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and uh(x , t) =Ns(x , t)d, respectively. In these expressions Nf ∈ T hn and Ns ∈ S
h
n

are basis functions restricted to Qfn and Q
s
n respectively, and d and φ are global

solution vectors defined over a space-time slab. Inserting these expressions into the
variational equation (6) leads to the coupled system of algebraic equations to be
solved in sequence for each time interval In =]tn , tn+1[, n = 0, 1, · · ·N − 1:[

Ks A
AT Kf

]{
d
φ

}
=

{
0
f

}
(13)

where Kf is the matrix emanating from the fluid operator Bf together with the
radiation boundary operator G∞, andKs is the matrix emanating from the structural
operator Bs. The off-diagonal partition A is the fluid-structure coupling matrix;

A =

∫ tn+1
tn

∫
Γi

ρfN
T
s,tnNf,t dΓ dt (14)

In [26] it is shown that the coupled matrix system (13) is positive-definite; defining a
unique solution for d and φ for n = 0, 1, 2, · · · . For the uncoupled exterior acoustics
problem, the structure is assumed rigid, so that d = 0, and (13) reduced to the
positive matrix system;

Kf φ = f (15)

The algorithm resulting from this space-time finite element approach can be con-
trasted with standard semidiscrete finite element methods where basis functions are
defined in the spatial coordinate only, leaving a system of ordinary differential equa-
tions to be integrated in time; see e.g. [7, 8, 9, 10, 11] for applications of the semidis-
crete finite element method to the exterior structural acoustics problem.

5 Stability Results

Results are summarized from a stability analysis of the space-time finite element
formulation for the exterior structural acoustics problem performed in [14, 15]. These
results are then specialized for the case of a rigid scatterer. In the absence of forcing
terms, i.e., f = 0, and for S1, it has been proved in [14, 15] that the following energy
decay inequality holds for the coupled space-time formulation:

Es(u
h(t−n+1)) + Ef (φ

h(t−n+1)) +
1

2R
||φh(t−n+1)||

2

Γ∞
+
1

c

∫ tn+1
0

||φ̇h(t)||
2

Γ∞
dt

≤ Es(u0)) + Ef (φ0)) (16)

for n = 0, 1, 2, · · · , N − 1. In the above Es and Ef denote the energy for the elastic
structure and acoustic fluid respectively, i.e.

Es(u) =
1

2
(u̇ , ρsu̇)Ωs +

1

2
a(u , u)Ωs (17)
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Ef (φ
h) =

1

2
ρf ||aφ̇

h||
2

Ωf
+
1

2
ρf ||∇φ

h||
2

Ωf
(18)

Equation (16) states that the total energy in the fluid-structure system, plus the
energy absorbed through the radiation boundary, is always less than, or equal to the
initial energy in the system. For a rigid scatterer, the structural displacements and
velocities are zero, and (16) reduces to:

Ef (φ
h(t−n+1)) +

1

2R
||φh(t−n+1)||

2

Γ∞
+
1

c

∫ tn+1
0

||φ̇h(t)||
2

Γ∞
dt ≤ Ef (φ0)) (19)

Results (16) and (19) imply that the space-time formulation presented is uncondition-
ally stable.

6 Galerkin Least Squares Stabilization

For additional stability, local residuals of the governing differential equations in the
form of least-squares may be added to the Galerkin variational equations. The
Galerkin Least Squares (GLS) addition to the variational equation for the acoustic
fluid (7) is,

GfGLS(w
h , φh)n = Gf (w

h , φh)n + (ρfc
2τL1w

h , (L1φ
h − f))

Q̃
f
n

+ (ρfc
2sL2w

h , L2φ
h)(Υ̃∞)n + (ρfc

2sL3w
h , L3φ

h)(Υ̃i)n

+ (ρfc
2s[[wh,n(x)]] , [[φ

h
,n(x)]])(Υ̃e)n (20)

where (L1wh− f = ∇2wh− a2ẅh− f) is the residual for the wave equation, (L2wh =
wh,n+S1w

h) is the radiation boundary residual, and (L3wh = wh,n−u̇·n) is the interface
boundary residual. In the above expressions, a tilde refers to integration over element
interiors and τ and s are local mesh parameters designed to improve desirable high
frequency numerical dissipation without degrading the accuracy of the underlying
time-discontinuous Galerkin method. For the structural equation (8) similar least-
squares terms are added, see [14, 15]. Consistency of both the underlying method
and the least-squares addition is clear from the fact that a sufficiently smooth exact
solution of the initial/boundary-value problem satisfies the variational equation (6)
and (20) identically. Similar GLS methods have been used to enhance the stability
and accuracy of solutions to the related reduced wave equation (Helmholtz equation)
governing time-harmonic acoustics in the frequency domain, see [29, 30, 31].

7 Accuracy Analysis

Results are summarized from a convergence analysis of the space-time finite element
formulation for the exterior structural acoustics problem. Results are also specialized
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for a rigid scatterer. To study convergence, space-time mesh size parameters are
introduced. For the fluid domain Ωf , hf = max{c∆t , ∆x} where c is the acoustic
wave speed and ∆x and ∆t are maximum element diameters in space and time,
respectively. For a coupled elastic structure, hs = max{cL∆t , ∆x} where cL is the
dilatational wave speed.
Assuming that the exact solution to the governing differential equations for struc-

tural acoustics with radiation boundary condition S1, is sufficiently smooth, and as-
suming standard finite element interpolation estimates hold, then it has been proved
in [14] that the following error estimate holds for the time-discontinuous GLS formu-
lation,

|||E|||
2

≤ c(u)h2k−1s + c(φ)h2p−1f (21)

where k and p are the finite element interpolation orders for the structure and fluid
respectively. In the above, the error is defined as

E = {e , e} where e = uh − u and e = φh − φ, (22)

and c(u) and c(φ) are values that are independent of the mesh size parameters hs
and hf . The norm in which convergence is measured is given by,

|||E|||
2

= |||e|||
2

f + |||e|||
2

s

+
N−1∑
n=0

{
(σ(∇e) · n− ρf ėn , ρ

−1
s sσ(∇e) · n− ρf ėn)(Υi)n

+ (ė · n− e,n , c
2sė · n− e,n)(Υi)n

}
(23)

J. Acoust. Soc. Am., 99 (6) pp. 3297-3311, June 1996.
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|||e|||
2

f = Ef (e(0
+)) +

N−1∑
n=1

Ef ([[e(tn)]]) + Ef (e(T
−))

+
1

2R
||e(0+)||

2

Γ∞
+
N−1∑
n=1

1

2R
||[[e(tn)]]||

2
Γ∞
+
1

2R
||e(T−)||

2

Γ∞

+
N−1∑
n=0

1

c

∫ tn+1
tn

(ė(t) , ė(t))Γ∞ dt

+
N−1∑
n=0

{
||cτ 1/2L1e||

2

Q̃
f
n
+ ||cs1/2L2e||

2

(Υ̃∞)n

+ ||cs1/2[[e,n(x)]]||
2

(Υ̃f )n

}
(24)

|||e|||
2

s = Es(e(0
+)) +

N−1∑
n=1

Es([[e(tn)]]) + Es(e(T
−))

+
N−1∑
n=0

{
(Lse , ρ

−1
s τLse)Q̃sn

+ ([[σ(∇e)(x)]] · n , ρ−1s s[[σ(∇e)(x)]] · n)(Υ̃s)n

}
(25)

In the above expression Lsuh is the residual for the structure. This norm emanates
naturally from the coupled fluid-structure variational equation (6) together with the
least-squares operators discussed in Section 6. The error estimate is optimal in the
sense that the finite element error converges at the same rate as the interpolate. This
result indicates that the error for the coupled system is controlled by the convergence
rates in both the structure and the fluid. In other words, for an accurate solution
to the coupled fluid-structure problem, discretizations for both the structural do-
main and the fluid domain must be adequately resolved. For a rigid scatterer, (21)
specializes to

|||e|||
2

f ≤ c(φ)h2p−1f (26)

8 High-order Accurate Radiation Boundary Con-
ditions

For large-scale simulations the use of high-order accurate radiation boundary con-
ditions is essential to allow the fluid truncation boundary to be placed close to the
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scatterer and thereby minimizing the mesh and matrix problem size. Non-reflecting
boundary conditions for both two- and three-dimensional applications have been pro-
posed by several authors; complete surveys prior to 1991 can be found in [32] and [33].
Recently, there has been interest in transforming the frequency dependent Dirichlet-
to-Neumann (DtN) non-reflecting boundary condition derived in [34], to equivalent
time-dependent boundary conditions for direct transient analysis. The DtN map
represents the exact impedance relation on a seperable truncation fluid boundary.
Time-dependent non-reflecting boundary conditions based on the DtN map which
match the first N spherical wave harmonics on a spherical boundary Γ∞ have been
derived recently in [14, 28] and [35]. In [14, 28], two alternative sequences of time-
dependent non-reflecting boundary conditions have been obtained; the first involves
time derivatives while retaining a spatial integral (local in time and nonlocal in space
version), and the second involves both time and spatial derivatives (local in time and
local in space version). Both versions start with the nonlocal DtN map in the fre-
quency domain, followed by an inverse Fourier transform. Interestingly, in the second
version, the first two operators in the sequence are identical to the first two boundary
conditions in the well-known sequence derived by Bayliss and Turkel, [27], which are
obtained by annilating high-order radial terms in a multipole expansion for outgoing
waves. For higher-order boundary conditions in the sequence beyond second-order,
however, the boundary conditions derived in [14, 28] differ from those in [27]. An
alternative form of the localized DtN non-reflecting boundary condition, obtained
directly in the time-domain, is presented in [35].
In this section, we briefly review the development of the localized version of the

time-dependent DtN map first derived in [14], and examine the relationship of these
local radiation boundary conditions to the well-known sequence of boundary condi-
tions derived in [27]. Next, a direct implementation of the second-order boundary
conditions in the sequence of Bayliss and Turkel, or equivalently the second-order
operator in the localized time-dependent DtN map for the time-discontinuous space
finite element method is presented.
The nonlocal DtN map is derived in the frequency domain starting with the re-

duced wave equation (Helmholtz equation) in the exterior domain Ω∞. Assuming
harmonic time dependence e−iωt where ω > 0, the exterior problem in Ω∞ is,

∇2φ+ k2φ = 0 in Ω∞ (27)

φ = φ̄ on Γ∞ (28)

lim
r→∞
r(nsd−1)/2

(
∂φ

∂r
− ikφ

)
= 0 (29)

where k = ω/c ≥ 0 is the acoustic wave number and φ̄ is the restriction of φ to the
truncation boundary Γ∞. Restricting the boundary Γ∞ to be of separable geometry
it is possible to express the general solution as an infinite series of wave harmonics,
see e.g. [36]. For the simple case of a sphere of radius r = R, and nsd = 3, the
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outgoing solution can be expressed in terms of spherical harmonics as:

φ(r, θ, ϕ) =
∞∑
n=0

hn(kr)

hn(kR)
Yn(θ , ϕ) r ≥ R (30)

where

Yn(θ , ϕ) =
n∑
j=0

′P jn(cosϕ)(Anj cos jθ +Bnj sin jθ) (31)

are spherical surface harmonics of order n, with nonlocal coefficients

Anj = αnj

∫
Γ∞

φ̄(θ , ϕ)P jn(cosϕ) cos jθ dΓ (32)

Bnj = αnj

∫
Γ∞

φ̄(θ , ϕ)P jn(cosϕ) sin jθ dΓ (33)

and

αnj =
(2n+ 1)(n− j)!

2πR2(n+ j)!
(34)

In the above, 0 ≤ θ < 2π is the circumferential angle and 0 ≤ ϕ < π is the polar
angle for a spherical truncation boundary of radius r = R. The differential surface
area is dΓ = R2 sinϕdθdϕ, P jn are associated Legendre functions of the first kind,
and hn are spherical Hankel functions of the first kind of order n. The prime after
the sum indicates that a factor of 1/2 multiplies the term with j = 0. The solution
φ(R , θ , ϕ), restricted to the spherical boundary is given by φ̄(θ , ϕ).
The DtN map relating Dirchlet-to-Neumann data on Γ∞ is obtained by differen-

tiating (30) with respect to r evaluated at r = R, see [34]:

∂φ

∂n
(R, θ, ϕ) =

∞∑
n=0

zn(kR)Yn(θ , ϕ) (35)

with impedance coefficients,

zn(kR) =
kh′n(kR)

hn(kR)
(36)

The prime on hn indicates differentiation with respect to its argument. The DtN
operator (35) represents the exact impedance for the exterior acoustic fluid restricted
to the artificial boundary. Furthermore, since (35) is an integral operator coupling all
points on the artificial boundary Γ∞, it is a spatially nonlocal boundary condition in
the frequency domain.
In [14, 28] a local in time counterpart to the spatially nonlocal DtN map (35) is

derived which matches the first N spherical wave harmonics in the outgoing solution
(30) on Γ∞. This sequence of boundary conditions retains the nonlocal spatial inte-
gral, yet replaces a time-convoluted DtN map with higher-order local time derivatives.
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This form of time-dependent boundary conditions has the advantage that when im-
plemented in the time-discontinuous finite element formulation, standard C0(Γ∞×In)
interpolation functions may be used for both the space and time variables.
An alternative version is obtained by first localizing the acoustic impedance rela-

tion (35) in the frequency domain, followed by an inverse Fourier transform. In [14, 28]
it is shown that when the solution on the boundary Γ∞ contains only a finite num-
ber of spherical harmonics, then such a transformation gives an exact time-dependent
counterpart which is local in both x and t. This sequence of local boundary conditions
is obtained by truncating the DtN map (35), so that the sum ranging over n extends
over the finite range n = 0, 1, · · ·N − 1. The development proceeds by recognizing
that Yn can be interpreted as eigenfunctions of the Laplace-Beltrami operator

∆Γ :=
1

sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)
+

1

sin2 ϕ

∂2

∂θ2
(37)

with eigenvalues λ = −n(n+ 1), so that

[n(n+ 1)]mYn = (−∆Γ)
mYn (38)

This property of the spherical harmonics suggests writing the impedance coefficients
as a series of powers of n(n+ 1), see [37] and [38]:

zn(kR) =
N−1∑
m=0

[n(n+ 1)]mβm(kR), n = 0, 1, · · · , N − 1 (39)

This system of N linear equations can be solved for the N unknown values βm,m =
0, 1, · · ·N . By replacing zn in the truncated series representation of (35) with (39),
replacing [n(n + 1)]mYn with the high-order tangential derivatives (−∆Γ)mYn, and
using the assumption that the solution φ̄ on Γ∞ contains only the first N spherical
harmonics, the following sequence of local radiation boundary conditions is obtained:

∂φ

∂n
=

N−1∑
m=0

βm(kR) (−∆Γ)
mφ on Γ∞ (40)

Since this sequence follows directly from the truncated DtN map, these radiation
boundary operators annilate the first N spherical wave harmonics for the outgoing
solution (30) on a spherical boundary Γ∞.
Local time-dependent counterparts to (40) can be obtained by using the finite

series expansion for the spherical Hankel functions

hn(kr) = h0(kr)

[
(−i)n

n∑
j=0

(n+ j)!

j!(n− j)!

(
−1

2ikr

)j]
, n = 0, 1, 2, · · · (41)

evaluated at r = R which are embedded in βm(kR), and then taking an inverse Fourier
transform.
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For example, for N = 2, the system (39) can be solved to obtain β0 = z0 and
β1 = (z1 − z0)/2. Using this result in the local DtN condition (40) gives,

∂φ

∂n
= z0φ+

1

2
(z0 − z1)∆Γφ (42)

Clearing the common denominator h0h1 and using the recurrence relation

h′n = hn−1 −

(
n+ 1

kR

)
hn , n = 1, 2, · · · (43)

in conjunction with (41) leads to,(
1

R
− ik

)
∂φ

∂n
=

(
k2 +

2ik

R
−
1

R2

)
φ+

1

2R2
∆Γφ (44)

Since this expression involves only terms in powers of (ik), an inverse Fourier trans-
form is readily obtained with the result,

B2φ :=
∂φ

∂n
+
R

c

∂φ̇

∂n
+
R

c2
φ̈+
2

c
φ̇+

1

R
φ−

1

2R
∆Γφ = 0 (45)

When applied on a spherical boundary Γ∞, this operator acts as a higher-order accu-
rate local boundary condition which is perfectly absorbing for the first two spherical
wave harmonics of orders n = 0 and n = 1. As the order N is increased, i.e. more
terms are used in (40), the resulting boundary conditions BNφ match more terms in
the harmonic expansion for outgoing waves, and a better approximation is obtained:
see [14, 28] for expressions for the time-dependent counterparts to (40) for N ≥ 3.
For the simple case N = 1, the boundary condition resulting from the time-

dependent counterpart to (40) is equivalent to the ‘spherical damper’ expressed in (5),
as expected! It should also be noted that the first-order boundary condition in the
sequences derived by Engquist and Majda, [39, 40], and Bayliss and Turkel, [27], also
coincide with the well-known ‘spherical damper’ boundary condition. Furthermore,
for the case N = 2, the time-dependent counterpart to the localized DtN operator
(40), i.e. the operator B2 defined in (45), is identical to the second-order radiation
boundary condition derived by Bayliss and Turkel in [27], after second-order radial
derivatives are eliminated in favor of second-order tangential derivatives through use
of the wave equation in spherical coordinates. Thus, while the boundary conditions
derived by Bayliss and Turkel were obtained by annilating radial terms in a multipole
expansion, it is seen, that in fact, the first two boundary conditions in the sequence
share the property of the localized DtN, in that they match the first two spherical
harmonics for outgoing waves on a spherical boundary Γ∞. For higher-order boundary
conditions in the sequence beyondN ≥ 3, the form of the boundary conditions derived
in [14, 28] differ from those derived in [27]. Both sequences of local time-dependent
boundary conditions provide increasing accuracy with order N , which, however, is
also a measure of the difficulty of implementation.
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For the localized DtN, the Nth-order condition contains all the even tangential
and temporal derivatives up to order 2(N − 1), while in the sequence of Bayliss and
Turkel, the Nth-order condition contains all even tangential derivatives up to order
N , for N = 2, 4, 6, · · · , and up to order N − 1, for N = 3, 5, · · · . The number of
temporal derivatives appearing in the sequence [27] is equivalent to [28]. Because the
time-discontinuous formulation allows for the use of C0(Γ∞ × In) interpolations to
represent the high-order time derivatives, it is possible to implement these sequences
of time-dependent absorbing boundary conditions up to any order desired. However
for higher-order operators extending beyond N ≥ 3, the lowest possible order of
spatial continuity on the artificial boundary that can be achieved after integration by
parts is CN−2. For these high-order operators a layer of boundary elements adjacent
to Γ∞, possessing high-order tangential continuity on Γ∞ are needed, see e.g. [41].

8.1 Space-Time Finite Element Implementation

A direct approach for implementing time-dependent radiation boundary conditions is
to define a linear operator SN such that,

BN(φ) :=
∂φ

∂n
+ SN(φ) (46)

which implies
∇φ · n = −SNφ on Υ∞ ≡ Γ∞ × I (47)

In this way, the boundary conditions are expressed in a form relating Dirchlet-
to-Neumann data and can be incorporated into the Galerkin variational equation as
natural boundary conditions: for the case of the space-time finite element method,
the boundary conditions are weakly enforced in both space and time; for the case of
the standard semidiscrete finite element method, the boundary conditions are weakly
enforced in space, and then integrated in time using standard finite difference schemes.
For example, for N = 2;

S2φ =
1

2R
(2−∆Γ)φ+

1

c

(
2 +R

∂

∂r

)
φ,t +

R

c2
φ,tt (48)

In the time-discontinuous Galerkin formulation, the operator defined on Γ∞ in
Eq. (7) takes the form:

G∞(w
h , φh)n =

∫ tn+1
tn

(ẇh , S2φ
h)Γ∞ dt

+ d2
(
ẇh(t+n ) , [[φ̇

h(tn)]]
)
Γ∞
+ d0

(
wh(t+n ) , [[φ

h(tn)]]
)
Γ∞

(49)

where
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∫ tn+1
tn

(
ẇh , S2φ

h
)
Γ∞
dt = d0

(
ẇh , φh

)
(Υ∞)n

+ d1
(
ẇh , φ̇h

)
(Υ∞)n

+ d2
(
ẇh , φ̈h

)
(Υ∞)n

(50)
and

d0
(
ẇh , φh

)
(Υ∞)n

=
ρf

R

∫ tn+1
tn

(ẇh , φh)Γ∞ dt+
ρf

2R

∫ tn+1
tn

(ẇh,ϕ , φ
h
,ϕ)Γ∞ dt

+
ρf

2R

∫ tn+1
tn

(ẇh,θ , csc
2(ϕ)φh,θ)Γ∞ dt (51)

d1
(
ẇh , φ̇h

)
(Υ∞)n

=
2ρf
c

∫ tn+1
tn

(ẇh , φ̇h)Γ∞ dt+
ρfR

c

∫ tn+1
tn

(ẇh , φ̇h,r)Γ∞ dt(52)

d2
(
ẇh , φ̈h

)
(Υ∞)n

=
ρfR

c2

∫ tn+1
tn

(ẇh , φ̈h)Γ∞ dt (53)

In (51), continuity requirements due to second-order tangential derivatives in the
Laplace-Beltrami operator ∆Γ, are relaxed on the artificial boundary Γ∞, through
integration by parts.
The form of the terms defined in (49) involving temporal jump operators [[·]], eval-

uated on the boundary Γ∞, can be inferred from equations (51) and (53). These
consistent jump terms act to weakly enforce continuity of φh(tn) and φ̇

h(tn) between
space-time-slabs at the boundary Γ∞. These additional operators are needed in or-
der to ensure unconditional stability for the time-discontinuous Galerkin space time
finite element method; see [28] for an example illustrating an instability in the time-
discontinuous Galerkin solution resulting from the omission of these jump operators
on Γ∞.
The direct implementation of (45) in a stable semidiscrete finite element formu-

lation for the coupled structural acoustics problem in exterior domains is given in
[7, 8, 33]. The second-order boundary condition can also be implemented indirectly
through the addition of auxillary variables resulting in a spatially symmetric bound-
ary operator [42]; see [11] for application of this indirect approach in the standard
semidiscrete finite element method for two-dimensional analysis using the classical
trapezoidal rule for integrating in time; see also [28] for a discussion of this approach
for implementation in the space-time finite element method.

9 Representative Numerical Examples

Numerical examples are presented to demonstrate the effectiveness of the time-discontinuous
Galerkin space-time finite element method to accurately model transient radiation
and scattering from geometrically complex surfaces. The problems investigated also
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assesses the performance of the first- and second-order local radiation boundary con-
ditions through a direct implementation in the space-time finite element formulation.
For the numerical results presented, the structure is assumed rigid, i.e. cL/c = ∞,
the GLS mesh parameters are set to zero and C0 quadratic shape functions (Lagrange
interpolation) are used in isoparametric space-time finite elements.

9.1 Nonconcentric spherical radiator

To illustrate the improved accuracy that can be obtained by using high-order radiation
boundary conditions, we consider a sphere of radius r = a, pulsating with a uniform
sine pulse, φ(a, t) = sinωt and ω = π, during the short time interval t ∈ [0, 1].
Comparisons are made with the first-order S1, and second-order S2, local boundary
conditions defined in (5) and (48) respectively. Initial conditions are set to zero and
the wave speed is c = 1. The exact solution to this problem is an outgoing spherical
wave of short duration with a 1/r amplitude decay:

φ(r , t) =
(a
r

)
sinω(t− r̄/c) (54)

where r̄ = r−a is the radial distance from the spherical radiator and (t− r̄/c) ∈ [0, 1].
If the radiating sphere is placed concentric with a spherical artificial boundary,

then for the uniform radiation field given in (54), the problem is trivial in that the first
order S1, and higher order local non-reflecting boundary conditions are all exact by
design, i.e. the localized DtN boundary conditions all match the first n = 0, spherical
harmonic. In order to obtain a challenging problem, the radiating sphere is shifted
from the center of the spherical artificial boundary Γ∞, to a nonconcentric position.
In this example, the radiating sphere is offset by a distance a, with the radius of Γ∞
set at R = 3a, see Figure 3. With this positioning, wave fronts traveling outward
along radial lines will strike the artificial boundary at oblique angles. The closer the
radiating sphere gets to the edge of Γ∞, the more acute this angle becomes, making
it increasingly difficult for the local boundary conditions to transmit outgoing waves
without spurious reflection.
Figure 3 shows the computational domain discretized with 1518 axisymmetric

elements using quadratic interpolation. As a consequence of the axisymmetric nature
of the problem, there is no circumferential dependence on the solution and all terms
which depend on the coordinate θ are neglected in the definition of the non-reflecting
boundary conditions. In particular, for the local boundary operator S2 defined in
(48), the terms involving derivatives of θ in (51) and (53) are neglected.
Figure 4 shows the contours of the time-discontinuous Galerkin solution using

the second-order local boundary operator S2 defined in (48) applied to Γ∞. As time
progresses, the initial pulse propagates outward from the sphere as a uniform spherical
wave of decreasing amplitude. The numerical simulation is continued until just prior
to reaching the disappearance of the pulse from the computational domain. After
t = 1, the spherical pulse begins to pass through the artificial boundary Γ∞ with no
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Fig. 3: Computational domain for a sphere of radius a, offset from the center of a spherical
non-reflecting boundary of radius 3a. Illustration of spatial discretization: Upper half
modeled with 1518 axisymmetric space-time elements using piecewise polynomial quadratic
interpolation.

observable reflection, as manifested by the negligible wake (clear blue area) behind
the wavefront. This result illustrates the ability of the second-order operator S2 to
transmit waves striking the artificial boundary at rather severe angles.
For comparison, this same problem was solved with the first-order boundary op-

erator S1 defined in (5). Figure 5 shows the solution contours using S1. These results
illustrate that the solution using S1 exhibits significant reflections as the outgoing
pulse passes through Γ∞, as indicated by the dark blue contours appearing in the
solution. This conclusion is summarized in Figure 6 as a time history of the solu-
tion on the artificial boundary Γ∞ at the axis of symmetry. The solution using the
second-order operator S2 shows the correct amplitude and phase for the outgoing
pulse, and shows no observable reflections behind the wave front. In contrast, the
solution using the first-order operator S1 shows the incorrect maximum amplitude
of the outgoing pulse as well as significant reflections, as manifested by the non-zero
amplitudes appearing for times t > 2. This example illustrates the importance of
using a high-order accurate non-reflecting boundary condition for numerical solution
of the exterior acoustics problem.

9.2 Transient scattering from an infinite cylinder

In this example we consider the simulation of transient scattering from an infinite rigid
cylinder with conical-to-spherical ends and a large length to width ratio, L/d = 6.1.
Figure 7 illustrates the finite element spatial discretization of the computational do-
main. A total of 1600 space-time quadratic elements are used for this example. For
this problem, the local radiation boundary conditions defined in two spatial dimen-
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Fig. 4: Radiation from a nonconcentric sphere. Results obtained using the local second-
order radiation boundary condition S2. Solution contours shown at times t = 2.0, 2.5 and
t = 3.5
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Fig. 5: Radiation from a nonconcentric sphere. Results obtained using the local first-order
radiation boundary condition S1. Solution contours shown at times t = 2.0, 2.5 and t = 3.5
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Fig. 6: Radiation from a nonconcentric sphere: Solution on the artificial boundary Γ∞, at
the axis of symmetry ϕ = 0. (top) S1 local boundary condition. (bottom) S2 local boundary
condition.
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Fig. 7: Spatial discretization for cylinder with conical to spherical ends. (1600 quadratic
elements)

sions described in [43, 10] are used. In particular, the following second-order local
time-dependent boundary operator is applied on a circular boundary Γ∞,

S2φ =
1

2R
(3/4−

∂2

∂θ2
)φ+

3

2c
φ̇+
R

c

∂φ̇

∂r
+
R

c2
φ̈ (55)

The direct implementation of (55) in the time-discontinuous Galerkin space-time for-
mulation through the operator G∞, takes on a similar form to the expression for the
S2 operator (48) defined in three space dimensions, and implemented in (49); further
details are given in [26].
The driver for this problem is the source f = δ(x0, y0) sinωt for the time interval

t ∈ [0, 3], positioned inside the computational domain such that an incident wave
strikes the scatterer at an oblique angle. The phase speed is set at c = 1 with
frequency ω = π/3. To simulate an infinite structural impedance on Γi, homogeneous
Neumann boundary conditions, i.e. ‘rigid’ boundary conditions, are prescribed on the
cylinder surface. This example represents a challenging problem where the multiple-
scales involving the ratio of the wavelength to diameter and length dimension play a
critical role in the complexity of the resulting scattered wave field.
The numerical simulation at the end of the initial pulse at t = 3 is shown at the top

of Figure 8. The subsequent illustrations in Figure 8 and Figure 9 show the contours of
the scattering phenomena as time progresses. The solution is presented in terms of the
scalar velocity potential φ: Results for other solution variables such as the acoustic
pressure p = −ρ0φ̇, or the acoustic velocity vector v = ∇φ, are obtained through
simple calculations of the time derivative and gradient of the velocity potential. The
following sequence of events occur:

• At t = 6 the incident pulse has expanded in a cylindrical wave and has just
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reached the surface of the rigid cylinder, while at the artificial boundary, the
wave front passes through the boundary with negligible reflection.

• At t = 9 through t = 12, the incident wave has begun to reflect off the cylinder
boundary, creating a complicated backscattered wave. The amplitude of the
backscattered wave is positive creating a high intensity zone near the rigid
structure in areas where the incident and backscattered waves coincide.

• At t = 15, the incident wave begins to scatter into a part that travels along the
upper part of the cylinder, and a part that diffracts around the backside. The
backscattered wave is seen to transmit through the radiation boundary with no
observable reflection.

• At t = 18, the incident wave has passed over the cylinder and continues to
be absorbed through the non-reflecting boundary. A quiescent state near the
right of the cylinder suggests the effectiveness of the local boundary condition
in absorbing outgoing waves.

10 Conclusions

In this paper, a stable and high-order accurate space-time finite element method
for solution of the transient acoustics problem in exterior domains has been pre-
sented. The formulation is based on the time-discontinuous Galerkin method for
general second-order hyperbolic systems developed by Hughes and Hulbert [12] in
the context of elastodynamics, and incorporates a time-discontinuous implementa-
tion of the local second-order radiation boundary condition derived by Bayliss and
Turkel [27], which is shown to be identical to the second-order operator in a localized
version of the time-dependent Dirichlet-to-Neumann (DtN) map derived in [14, 28].
While the Bayliss and Turkel operator is obtained from annilating second-order radial
derivatives in a multipole expansion, the operator shares an important property of
the second-order operator in the truncated DtN map; namely, it matches the first
two spherical harmonics for outgoing waves on a spherical radiation boundary. This
observation plays an important role in the understanding of how individual wave
harmonics contribute to the accuracy and stability of the solution as effected by the
radial distance of the artificial boundary from the source, the geometric complex-
ity of the wave pattern, and the frequency content for outgoing waves; see [28]. As
the order of these and other non-reflecting boundary conditions increases they be-
come increasingly difficult to implement in standard time-domain solution methods,
e.g. semi-discrete methods, due to the occurrence of high-order time derivatives on
the fluid truncation boundary. The time-discontinuous Galerkin space-time method
provides a natural variational setting for the incorporation of general high-order ac-
curate non-reflecting boundary conditions possessing the property of being local in
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Fig. 8: Scattering from a ‘rigid’ cylinder with tapered ends due to a time-dependent point
source. Solution contours shown at the end of the initial pulse at t = 3 and later times
t = 6 and t = 9.
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Fig. 9: Scattering from a ‘rigid’ cylinder with tapered ends due to a time-dependent point
source. Solution contours shown at times t = 12, 15, 18.
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time. This is accomplished in the time-discontinuous formulation by allowing for the
use of C0 continuous finite element basis functions in time. Crucial to the uncon-
ditional stability and optimal convergence rates of the time-discontinuous Galerkin
formulation is the introduction of consistent temporal jump operators across space-
time slabs restricted to the radiation boundary. The specific form of these operators
are designed such that continuity of the solution across slabs is weakly enforced in a
form consistent with the absorbing boundary conditions.
The resulting space-time algorithm gives for the first time a general solution to the

fundamental problem of constructing a finite element method for the exterior acoustics
problem with unstructured meshes in space-time and with the desired combination of
good stability and high accuracy. Desirable attributes of this computational approach
for transient acoustics include a natural framework for the design of rigorous a poste-
riori error estimates for self-adaptive solution strategies for unstructured space-time
discretizations, and the implementation of high-order accurate time-dependent non-
reflecting boundary conditions. Results from a functional analysis of the formulation
indicates that the method is unconditionally stable, i.e, in the absense of any sources,
the acoustic energy at any time t, plus the energy absorbed through the radiation
boundary, is always less than, or equal to the initial energy in the system. High-order
accuracy is obtained simply by raising the order of the space-time polynomial ba-
sis functions; both standard nodal interpolation and hierarchical shape functions are
accommodated.
Numerical solutions obtained for the time-dependent acoustic radiation from a

nonconcentric sphere demonstrated the excellent agreement between the exact and ap-
proximate solution using a direct implementation of high-order accurate non-reflecting
boundary conditions in the space-time variational formulation. In particular, results
confirm the superiority of the second-order local non-reflecting boundary condition
S2 defined in (48), in comparison to the first-order S1 boundary condition defined in
(5). It has also been demonstrated that with proper usage, the second-order non-
reflecting boundary condition, when implemented in the space-time finite element
method, is sufficiently accurate to capture the important physics associated with a
complicated transient scattering problem involving some rather severe geometric and
time scales. Additional numerical examples for transient wave propagation in three-
and two- space dimensions are reported in [28] and [26], respectively.
In this paper we have concentrated on the accuracy of the solution for the uncou-

pled fluid. However, the present formulation for the exterior fluid is readily extended
to the coupled fluid-structure interaction problem involving complex submerged struc-
tures. By using the acoustic velocity potential as the solution variable for the fluid,
together with structural displacements as the solution variables for an elastic solid,
the time-discontinuous method is proven in [14] to be unconditionally stable and to
converge at an optimal rate for the structural acoustics problem; further details on
the formulation, stability, and convergence of this space-time finite element method
for structural acoustics in infinite domains are reported in [14, 15, 28, 26]. Further-
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more, the extension to a multi-field formulation, where independent finite element
approximations are used for the structural displacement vector and its time deriva-
tive, together with independent approximations for the acoustic pressure and velocity
potential has recently been developed in [44].
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