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Abstract

Transient radiation in a semi-infinite region, bounded by a planar infinite
baffle with a local acoustic source is considered. The numerical simulation of
the transient radiation problem requires an artificial boundary Γ, here chosen
to be a hemisphere, which separates the computational region from the sur-
rounding unbounded acoustic medium. Inside the computational region we use
a semidiscrete finite element method. On Γ, we apply the exact nonreflecting
boundary condition (NRBC) first derived by Grote and Keller for the free-space
problem. Since the problem is symmetric about the infinite planar surface, in
order to satisfy the rigid baffle condition it is sufficient to restrict the indices
in the spherical harmonic expansion which defines the NRBC and scale the
radial harmonics which drive auxiliary equations on the boundary. The Fourier
expansion in the circumferential angle appearing in the NRBC may be used
to efficiently model axisymmetric problems in two-dimensions. A new mixed
explicit-implicit time integration method which retains the efficiency of explicit
pressure field updates without the need for diagonal matrices in the auxiliary
equations on Γ is presented. Here, the interior finite element equations are inte-
grated explicitly in time while the auxiliary equations are integrated implicitly.
The result is a very natural and highly efficient algorithm for large-scale wave
propagation analysis. Numerical examples of fully transient radiation resulting
from a piston transducer mounted in an infinite planar baffle are compared to
analytical solutions to demonstrate the accuracy of the mixed time integration
method with the NRBC for the half-space problem.
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1 Introduction

We consider the problem of determining the transient acoustic field radiated from an
arbitrary shaped transducer or vibrating structure in a semi-infinite three-dimensional
region, bounded by a planar infinite baffle. Modeling of local acoustic sources in
a half-space has broad application including, numerical simulation of piezoelectric
transduction systems; ultrasonics and non-destructive testing, and non-invasive ther-
apeutic applications such as high intensity focused ultrasound. Examples include ring
transducers used in sonar devices [1] and geometrically focused transducers [2]. Often,
the transducer must deliver a precise acoustic near field radiation pattern which is
difficult to measure experimentally [3]. For this reason, in recent years, there has been
increased interest in the use of numerical simulation to predict the acoustic radiation
field and to aid in the design of optimal transduction systems, e.g. [4, 5].
When modeling transient radiation/scattering from structures in an acoustic medium

which extends to infinity with finite element/difference/volume methods, the compu-
tational domain must be truncated at a finite distance from the structure. The
impedance of the unbounded domain exterior to the artificial truncation boundary is
then represented on this boundary by either absorbing boundary conditions, infinite
elements, or matched ‘sponge’ layers. Survey articles of various boundary treatments
are given in [6]. If accurate boundary treatments are used, the finite computational
region can be reduced so that the truncation boundary is relatively close to the radi-
ator/scatterer, and fewer acoustic elements than otherwise would be possible may be
used, resulting in considerable savings in both cpu time and memory. In the frequency
domain, several accurate and efficient methods for representing the impedance of the
far-field are well understood, including the Dirichlet-to-Neumann (DtN) map [7, 8],
and infinite elements [9]. However, efficient evaluation of accurate boundary treat-
ments for the time-dependent wave equation on unbounded spatial domains has long
been an obstacle for the development of reliable solvers for time domain simulations.
Ideally, the artificial boundary would be placed as close as possible to the source, and
the radiation boundary treatment would be capable of arbitrary accuracy at a cost
and memory not exceeding that of the interior solver.
A standard approach is to apply local (differential) boundary operators which

annihilate leading terms in the radial multipole expansion for outgoing wave solutions.
A well known sequence of boundary conditions developed for a spherical truncation
boundary are the local operators derived by Bayliss and Turkel [10]. Because these
operators involve only local spatial derivatives, while derived for a spherical boundary
in free space, they may be used without alteration for semi-infinite regions, such as
the problem of a transducer mounted in an infinite half-space. However, these and
other approximate local boundary conditions exhibit significant spurious reflection
for high-order wave harmonics, especially as the position of the truncation boundary
approaches the source of radiation [11, 12]. In addition, as the order of these local
non-reflecting boundary conditions increases they become increasingly difficult to
implement in standard semidiscrete finite element formulations due to the occurrence
of high-order time derivatives on the truncation boundary.
In recent years, new boundary treatments have been developed which dramati-

cally improve both the accuracy and efficiency of time domain simulations compared
to approximate local radiation boundary conditions. One promising approach is the
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application of the ‘perfectly matched layer’ (PML) technique [14, 15] which introduces
an external layer designed to absorb outgoing waves. In [16, 17], exact nonreflecting
boundary conditions (NRBC) are derived for the free-space problem involving solu-
tion of an auxiliary Cauchy problem for linear first-order systems of time-dependent
differential equations on a spherical boundary for each harmonic. In [18], the NRBC
is rederived based on direct application of a result given in Lamb [22], with improved
scaling of the first-order system of equations associated with the NRBC. This rescal-
ing improves the numerical conditioning of the first-order system of equations when
solved with implicit methods. Formulation of the NRBC in standard semidiscrete fi-
nite element methods with several alternative implicit and explicit time-integrators is
reported in [18, 19]. When implemented in the finite element method, NRBC requires
inner products of spherical harmonics and standard C0 continuous basis functions
with compact support, appearing in the force vector. As a result, the NRBC may be
implemented efficiently and does not disturb the symmetric and banded/sparse struc-
ture of the finite element matrix equations. In [20], an efficient method is described
for calculating far field solutions concurrently with the near-field solution based on
the exact NRBC.
In [19], a modified version of the exact NRBC for the free-space problem with

improved accuracy for high-order harmonics is formulated. To obtain a symmetric
finite element variational equation, an additional auxiliary function is introduced
on the artificial truncation boundary. This modified version may be viewed as an
extension of the second-order local boundary operator derived by Bayliss and Turkel
[10]. In [19] an implicit time discretization scheme is developed to integrate the
semidiscrete finite element equations. However, in three-dimensions because of the
difficulty in obtaining diagonal matrices for the auxiliary equations, a fully explicit
time discretization which uncouples the system of equations was not possible.
Motivated by the excellent accuracy of the NRBC for the free-space problem,

it is natural to extend these ideas to the problem of radiation in a semi-infinite
acoustic domain resulting from transducers or vibrating structures mounted in a half-
plane. However, as a result of the nonlocal spherical transform and expansion on a
spherical boundary in free space, the NRBC must be modified for the infinite half-
space problem. In this work, we give the extension of the exact NRBC originally
derived by Grote and Keller [16] for the free-space problem for application to semi-
infinite problems defined by an infinite planar baffle. Two alternative forms of the
NRBC which satisfy the symmetry condition imposed by the rigid baffle are possible;
in the first we orient the baffle normal (perpendicular) to a z-axis of revolution defined
in spherical coordinates; while in the second the baffle is aligned (parallel) with the
z-axis. The advantage of the first approach is that axisymmetric radiation in a half-
space may be modeled efficiently in two-dimensions.
For the symmetric form of the modified NRBC we give a new mixed explicit-

implicit time integration method which retains the efficiency of explicit time dis-
cretization for the finite element matrix equations, without the need for diagonal
matrices in the auxiliary equations on the artificial truncation boundary. Here, the
interior finite element equations are integrated explicitly in time while the auxiliary
equations are integrated implicitly in time. By treating the auxiliary equations on
the boundary implicitly, a very natural and highly efficient algorithm is developed for
large-scale wave propagation analysis which allows the pressure field to be updated
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Fig. 1: Illustration of semi-infinite region lying on one side of a boundary composed of an
arbitrary radiation surface S and the xy plane. The computational domain Ω is surrounded
by a semi-spherical truncation boundary Γ. Exterior region denoted by D.

without assembling or factoring the interior finite element matrices.
In [18, 19] numerical experiments for radiation from a sphere in free-space are

presented which demonstrate the accuracy of the NRBC compared to steady-state
analytical solutions and standard local absorbing boundary conditions. In this work,
numerical results for fully transient solutions for a circular transducer mounted in
an infinite rigid planar baffle are compared to analytical solutions. The numerical
results are used to assess the accuracy of the mixed explicit-implicit time integration
method with the NRBC restricted for the half-space problem.

2 Transient Radiation In Acoustic Half-space

We consider time-dependent scattering/radiation in a three-dimensional semi-infinite
region bounded by a boundary composed of an arbitrary shaped radiation surface S
and a planar infinite baffle (see Fig. 1). We denote the space above this plane as the
semi-infinite region R. The numerical simulation of the transient radiation problem
requires an artificial boundary Γ, here chosen to be a semi-sphere of radius ||x|| = R,
which separates the computational region Ω from the surrounded unbounded acous-
tic medium. At R we impose an absorbing boundary condition to reduce spurious
reflection from it. Inhomogeneities and nonlinear sources may be incorporated within
the computational domain while the remainder of the problem is treated as a homo-
geneous acoustic medium occupying an infinite half-space and is dealt with through
the domain truncation boundary.
Within Ω the acoustic pressure p(x , t) satisfies the scalar wave equation:

∇2p−
1

c2
∂2p

∂t2
= − f, x in Ω , t > 0 (1)

with initial conditions,

p(x, 0) = p0(x) ,
∂p

∂t
(x, 0) = ṗ0(x), x ∈ Ω (2)
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and driven by a normal velocity v = −v ·n, prescribed on the radiation boundary S:

∂p

∂n
= ρov̇(x, t), x ∈ S, t > 0 (3)

In the above, c(x) is the velocity of sound in the acoustic medium, ρo(x) is the
mass density, a superimposed dot denotes a time-derivative, and n is an outward
pointing normal vector. The normal velocity represents the time-dependent motion
of the transducer. The normal velocity v(x, t), acoustic source f(x, t), and initial
data are assumed to be confined to the interior of the region Ω, so that in the infinite
half-space, i.e., the region outside Γ, the acoustic pressure field p(x, t) satisfies the
homogeneous form of the wave equation with constant wave speed c,

∇2p−
1

c2
∂2p

∂t2
= 0 x in D , t > 0 (4)

p(x, 0) = 0 ,
∂p

∂t
(x, 0) = 0, x ∈ D (5)

and the homogeneous Neumann boundary condition imposed by the rigid baffle,

∂p

∂n
= 0, x ∈ S, t > 0 (6)

In the following, we introduce spherical coordinates (r, θ, ϕ),

x = r cosϕ sin θ (7)

y = r sinϕ sin θ (8)

z = r cos θ (9)

such that the z-axis is aligned perpendicular (normal) to the planar baffle.
With this parameterization, the artificial boundary is defined by the hemisphere,

Γ := {r = R , 0 < θ ≤ π/2 , 0 < ϕ ≤ 2π}

and a general solution to the wave equation (4) in the exterior region D = {r ≥
R , 0 ≤ θ ≤ π/2 , 0 ≤ ϕ < 2π} may expanded as,

p(r, θ, ϕ, t) =
∞∑
n=0

n∑
m=0

′
Pm
n (cos θ) (p

c
nm(r, t) cosmϕ+ p

s
nm(r, t) sinmϕ) (10)

Here Pm
n is the associated Legendre function of the first kind, and the prime on

the sum indicates that a factor of 1/2 multiplies the term with m = 0. The radial
harmonics associated with the even and odd trigonometric functions are computed
from,

pcnm =
2

Nnm

∫ 2π
0

∫ π/2

0

p(r, θ, ϕ, t) Pm
n (cos θ) cosmϕ sin θ dθ dϕ (11)
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psnm =
2

Nnm

∫ 2π
0

∫ π/2

0

p(r, θ, ϕ, t) Pm
n (cos θ) sinmϕ sin θ dθ dϕ (12)

where Nnm is the normalization factor for the orthogonal spherical harmonics;

Nnm =
2π(n+m)!

(2n + 1)(n−m)!
(13)

For the semi-infinite region defined by the half-space D, the multiplier 2 appearing in
(11) and (12) results from integration restricted over the hemisphere only; the limits
of integration ranging from 0 ≤ θ ≤ π/2.
Since the problem is symmetric about the rigid planar baffle at θ = π/2, i.e.,

∂p

∂θ

∣∣∣∣
θ=π/2

= − r
∂p

∂z

∣∣∣∣
z=0

= 0, r ≥ R (14)

it is sufficient to restrict the expansion (10) in spherical harmonics to indices n +m
even. While this modification is trivial, it is not necessarily obvious. To prove this
result, we evaluate the expansion (10) at θ = π/2,

∂p

∂θ

∣∣∣∣
θ=π/2

=
∞∑
n=0

n∑
m=0

′
Pm
n (0) (p

c
nm(r, t) cosmϕ+ p

s
nm(r, t) sinmϕ) (15)

From properties of the associated Legendre functions [21],

P
′m
n (0) =

{
0 n+m = even

(−1)(m+n−1)/2 1·3·5···(n+m)
2·4·6···(n−m−1) n+m = odd.

(16)

only the combination n+m = even, satisfies P
′m
n (0) = 0, and it follows that expansion

(10) satisfies (15) only with the restriction n+m = even.

3 Exact NRBC’s On A Hemisphere

On the artificial boundary Γ the radial functions pcnm and p
s
nm appearing in (10) satisfy

the boundary condition derived in [16, 18] for a spherical boundary in free-space:

B1[pnm] = −
1

r
cn · znm(t), r = R (17)

where

B1[pnm] :=

(
∂

∂r
+
1

c

∂

∂t
+
1

r

)
pnm (18)

is the ‘first-order’ local boundary operator of Bayliss and Turkel [10]. The constant
n-component vector cn = {cjn} is defined with coefficients,

cjn = n(n+ 1)j/2R, j = 1 , 2 , . . . , n (19)
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while the vector functions znm(t) = {zjnm(t)} , j = 1, . . . , n of order n satisfy the
first-order system of ordinary differential equations,

d

dt
znm(t) = Anznm(t) + cΦnm(t) (20)

znm(0) = 0

with constant n× n matrices An = {Aijn } defined with coefficients [18]:

Aijn =




−n(n+1)c
2R

if i = 1
(n+ i)(n−i+1)c

2 i R
if i = j + 1

0 otherwise

(21)

For the semi-infinite half-space problem considered here, the system (20) is driven
by the time-dependent vector function,

Φnm(t) = [ c pnm|r=R , 0 , . . . , 0]T . (22)

with radial modes evaluated at r = R, pnm|r=R, computed from (11) and (12).
The exact nonreflecting boundary condition (NRBC) for the half-space problem

on the hemisphere Γ is obtained by multiplying (17) by spherical harmonics, summing
over n and m, setting r = R and using (10),

B1[p] = −
1

R

∞∑
n=1

n∑
m=0

′
Pm
n (cos θ) (w

c
nm(t) cosmϕ+ w

s
nm(t) sinmϕ) , n+m = even

(23)
where wcnm = cnm · zcnm and w

s
nm = cnm · zcnm are scalar functions defined by the

even and odd harmonics in ϕ. This condition is the same as the free-space problem
derived in [16, 18], except that for the rigid baffle symmetry condition, the indices are
restricted to n +m = even, and the radial harmonics include a factor of 2 resulting
from integration over a hemisphere.
Alternatively, the z-axis may be aligned (parallel) with the infinite baffle such that

the hemisphere is defined by, Γ := {r = R , 0 < θ ≤ π , 0 < φ ≤ π}. With this
orientation, the symmetry condition imposed by the rigid planar baffle is satisfied by
restricting the Fourier expansion in (10) to even functions cosmφ. In this case, the
exact nonreflecting boundary condition for the hemisphere may be written as,

B1[p] = −
1

R

∞∑
n=1

n∑
m=0

′
cn · znm(t)P

m
n (cos θ) cosmφ on Γ (24)

where the system of equations (20) for znm is driven by the radial modes,

pnm|r=R =
2

Nnm

∫ π

0

∫ π

0

p(R, θ, φ, t)Pm
n (cos θ) cosmφ sin θ dθ dφ (25)

with integration restricted over the range 0 ≤ φ ≤ π.
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4 Axisymmetric Problems

For general problems in three-dimensions, the two forms of the NRBC (23) and (24)
have the same storage requirements and operation counts. An advantage in expressing
the NRBC in the form (23) is that axisymmetric problems in a half-space defined by
a planar baffle may be solved efficiently with a periodic Fourier expansion in ϕ and
imposing the planar symmetry condition in the Legendre function expansion in θ.
In this case an efficient solution is obtained by reducing the axisymmetric problem
to a sequence of uncoupled two-dimensional problems with a Fourier expansion in
the circumferential direction ϕ about a z-axis of revolution perpendicular to the
planar baffle. This reduction is not possible with the NRBC expressed in the form
(24) since the Fourier harmonics are restricted by the baffle condition. An example
of axisymmetric radiation in a half-space is given by the classic model of transient
radiation from a circular piston mounted in an infinite planar baffle (see numerical
examples in Section 5).
To be specific, for radiation surfaces S with axisymmetric geometry about a z-axis

perpendicular (normal) to the planar baffle, and driven by acoustic sources (3) which
are periodic in the angle of revolution ϕ, i.e.,

v̇(x, t) =
∞∑
m=0

′
[gcm(r, θ, t) cosmϕ+ g

s
m(r, θ, t) sinmϕ] (26)

then the pressure may be expressed by the Fourier series,

p =
∞∑
m=0

′
[pcm(r, θ, t) cosmϕ+ p

s
m(r, θ, t) sinmϕ] (27)

In this case, the pressure field decouples for different Fourier harmonics m due to the
orthogonality of the trigonometric functions and the problem simplifies to solving for
the Fourier modes pcm(r, θ, t) and p

s
m(r, θ, t) in a two-dimensional half-plane defined by

the cylindrical coordinates (ρ, z), with ρ = r sin θ and z = r cos θ. Outgoing solutions
for the modes pm are absorbed exactly by imposing the NRBC in the form (23) with
the variation in ϕ suppressed, i.e.,

B1[pm] = −
1

R

∞∑
n=1

cn · znm(t)P
m
n (cos θ), n+m = even (28)

In the above cn · znm(t) = wcnm(t) for modes pm = pcm, and cn · znm(t) = wsnm(t) for
modes pm = psm. For the rigid baffle condition, the indices in the Legendre function
expansion remain restricted to n+m even, and the system of equations (20) for znm
are driven by radial modes pnm computed from the restricted Legendre transform,

pnm|r=R =
2π

Nnm

∫ π/2

0

pm(r, θ, t) P
m
n (cos θ) sin θ dθ (29)

When driven by sources v̇ = g0 which are independent of the angle of revolution
ϕ, the pressure field is defined by the single mode p = p0(r, θ, t), and the exact NRBC

J. Acoust. Soc. of Am., 106 (6), pp. 3095-3108, Dec. 1999
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reduces naturally by setting the index m = 0 in (23), with the result,

B1[p] = −
1

R

∞∑
n=2,4,...

cn · zn0(t)Pn(cos θ) (30)

Here the system of equations (20) for zn0 are driven by the radial modes,

pn0|r=R = (2n + 1)

∫ π/2

0

p(R, θ, t) Pn(cos θ) sin θ dθ (31)

with integration restricted over the quarter circle, 0 ≤ θ < π/2.

5 Modified NRBC’s on a Hemisphere

In practice, the infinite sum over n in (23) or (24) is truncated at a finite value N . In
this case, we denote the boundary condition by NR1(N), where N defines the number
of harmonics included in the truncated series. Use of NR1(N) on a hemisphere with
boundary Γ will exactly represent all harmonics pnm(r, t), for n ≤ N in the outgoing
solution to the initial-boundary value problem for the half-space. For n > N , then
NR1(N) approximates the harmonics with the local operator B1[p] = 0 on Γ, with
leading error of order, B1[p] = O( 1

R3
). Accuracy of the approximated harmonics

n > N , may be improved by increasing the radius of the truncation boundary R, but
at the added expense of a larger computation region Ω, resulting in increased memory
and cpu times.
To improve the approximation to the truncated harmonics n > N , without affect-

ing the modes n ≤ N , the second-order local boundary operator,

B2[pnm] :=

(
∂

∂r
+
1

c

∂

∂t
+
3

r

)
B1[pnm] (32)

of Bayliss and Turkel [10] may be used to obtain a modified boundary condition for
the radial modes [17, 19]:

B2[pnm] =
1

r
c̃n · znm(t), r = R (33)

Here the coefficient vector c̃n = {c̃jn} is given by,

c̃jn = n(n+ 1)j(j − 1)/2R
2 , j = 1, 2, . . . , n (34)

and the vector functions znm(t) appearing in (33) satisfy the same first-order system
of ordinary differential equations (20), driven by (22). This modified condition was
first derived in [17] for a spherical boundary Γ in free-space and modified in [19] with
improved scaling c̃nm.
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To obtain an equivalent but more tractable form for finite element implementation,
the second-order radial derivative appearing in the local B2 operator defined in (32),
is eliminated using the radial wave equation for the modes pnm,

∂2pnm

∂r2
=
1

c2
∂2pnm

∂t2
−
2

r

∂pnm

∂r
+
n(n+ 1)

r2
pnm. (35)

with the result,

r

c

∂

∂t
B1[pnm] +B1[pnm] +

n(n+ 1)

2 r
pnm =

1

2
c̃n · znm(t), r = R (36)

With the z-axis oriented perpendicular (normal) to the infinite planar baffle, then
multiplying (36) by the spherical harmonics defined in (10), gives the modified NRBC:

B̂2[p] =
1

2

N∑
n=2

n∑
m=0

′
Pm
n (cos θ) (w̃

c
nm(t) cosmϕ+ w̃

s
nm(t) sinmϕ) , n+m = even

(37)

B̂2[p] :=
R

c

∂

∂t
B1[p] +B1[p]−

1

2R
∆Γ[p] (38)

∆Γ[p] :=
1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+
1

sin2 θ

∂2p

∂ϕ2
(39)

where w̃nm = c̃n · znm(t). This modified condition takes the same form as the free-
space problem derived in [19]. Here, the indices are restricted to n + m = even in
order to satisfy the rigid baffle condition.
We denote (37) by NR2(N). Use of NR2(N) will exactly represent all harmonics

pnm(r, t), for n ≤ N on a semi-spherical truncation boundary for the half-plane. For
n > N , the truncated condition (37) reduces to B2[p] = 0 on Γ. This condition
approximates the harmonics n > N , with leading error of the order, B2[p] = O(

1
R5
).

Therefore, when truncated at a finite value N , the modified condition approximates
the truncated harmonics n > N with greater accuracy than NR1.
In [19], we show how a modified boundary condition in the form (37) can be

implemented in a symmetric finite element variational formulation for the free-space
problem by introducing additional auxiliary functions qnm(t) and ψ(θ, ϕ, t), such that:

B1[p]−
1

2R
∆Γ[ψ] =

1

2

N∑
n=2

n∑
m=0

′
Pm
n (cos θ) (q

c
nm(t) cosmϕ+ q

s
nm(t) sinmϕ) (40)

(
R

c

∂

∂t
+ 1

)
∆Γ[ψ] = ∆Γ[p], ψ(θ, ϕ, 0) = 0 (41)

and qcnm and q
s
nm satisfy,(

R

c

d

dt
+ 1

)
qnm(t) = c̃n · znm(t), qnm(0) = 0 (42)
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The three equations (40), (41), and (42), define an equivalent form of the exact NRBC
(37), suitable for implementation in a symmetric finite element formulation. With
the z-axis oriented perpendicular (normal) to the planar rigid baffle, it is sufficient to
restrict the expansion in spherical harmonics given in (40) to indices n+m even.
Alternatively, with the z-axis aligned (parallel) with the planar baffle, the rigid

condition is satisfied with the expansion,

B1[p]−
1

2R
∆Γ[ψ] =

1

2

N∑
n=2

n∑
m=0

′
qnm(t) Pn(cos θ) cosmφ (43)

Again, the advantage of the form (40), based on a Fourier expansion in ϕ about a z-
axis of revolution oriented normal to the planar baffle, is that axisymmetric problems
in a half-space can be modeled efficiently in two-dimensions.

6 Finite Element Formulation

Finite element discretization of the bounded acoustic region Ω, allows for a natural
coupling to an elastic radiator on the surface S. The finite element formulation of the
NR1(N) defined in (23) or (24), and the symmetric form of NR2(N) defined in (40)
or (43) for the half-space problem posed on a rigid planar baffle, follows the same
form as given in [18, 19] for the free-space problem. By introducing finite element
approximations, a system of ordinary differential equations are obtained which must
then be integrated in time. In the following, we summarize the semidiscrete matrix
equations resulting from the symmetric form of NR2(N) and then present a new
mixed explicit/implicit time-integration method for advancing the solution.

6.1 Finite Element Discretization

The finite element discretization is obtained by approximating the variational equa-
tion associated with the wave equation and the nonreflecting boundary condition.
The variational equation within Ω is obtained by multiplying (1) with a weighting
function δp and using the divergence theorem. For the symmetric NR2(N) condition,
an auxiliary equation on Γ is obtained by multiplying (41) with a different weighting
function δψ, then integrating by parts. Using independent finite element approxima-
tions,

p(x, t) ≈ Np(x)p(t) in Ω ∪ ∂Ω (44)

ψ(x, t) ≈ Nψ(x)ψ(t) on Γ (45)

where Np and Nψ are standard vector arrays of C
0 basis functions with compact

support associated with each node of the finite element mesh in Ω ∪ ∂Ω, and on
the boundary Γ, results in the following coupled, symmetric system of semidiscrete
matrix equations,

Mp

d2p(t)

dt2
+ Cp

dp(t)

dt
+ Kpp(t) = F (t)−Aψ(t), (46)
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Cψ

dψ(t)

dt
+ Kψψ(t) = ATp(t), (47)

The time-dependent vector p(t) determines the global solution at each node in
the mesh, while ψ(t) is a vector of auxiliary parameters associated with the nodes
on the truncation boundary. The symmetric arrays associated with the pressure field
take the same form as the free-space problem given in [19],

Mp =

∫
Ω

1

c2
NT

p Np dΩ (48)

Cp =

∫
Γ

1

c
NT

p Np dΓ (49)

Kp =

∫
Ω

(∇Np)
T (∇Np) dΩ +

1

R

∫
Γ

NT
p Np dΓ, (50)

Similarly, the symmetric arrays associated with the auxiliary function ψ take the
form,

Cψ =
R2

2

∫
Γ

1

c
(∇sNψ)

T (∇sNψ) dΓ (51)

Kψ =
R

2

∫
Γ

(∇sNψ)
T (∇sNψ) dΓ (52)

The coupling array between p and ψ is given by,

A =
R

2

∫
Γ

(∇sNp)
T (∇sNψ) dΓ (53)

where ∇s denotes the surface gradient on a sphere and dΓ = R2 sin θ dθ dϕ.
In deriving the matrix equations, second-order tangential derivatives appearing

in ∆Γ were reduced to first-order derivatives using integration-by-parts on the hemi-
sphere Γ, i.e., ∫

Γ

δp∆Γψ dΓ = −R2
∫
Γ

∇sδp · ∇sψ dΓ (54)

For the z-axis normal to the planar baffle, the above result follows from the symmetry
condition in the angle θ, i.e., ∂ψ/∂θ = 0 at θ = π/2, and the periodic condition in ϕ,
i.e., δp(R, θ, 0) = δp(R, θ, 2π).
The auxiliary functions ψ only appear as a surface gradient ∇sψ. As a result,

a family of solutions for ψ that differ by a constant will satisfy (47). To obtain a
unique solution, the function ψ may be constrained at one arbitrary node on the
truncation boundary. The value used to constrain the auxiliary function ψ at that
node is inconsequential to the unique solution for p, and may be set to zero [19].
The semidiscrete equations are driven by the initial conditions and discrete force

vector, F (t) = FS + FΓ composed of a standard load vector,

FS(t) =

∫
Ω

Np
Tf(x, t) dΩ +

∫
S

Np
Tρov̇(x, t) dS (55)
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and a part associated with the auxiliary functions appearing in the NRBC,

FΓ(t) =
1

2

N∑
n=2

n∑
m=0

′
(qcnm(t)f

c
nm + q

s
nm(t)f

s
nm) (56)

where,

f cnm :=

∫
Γ

NT
p P

m
n (cos θ) cosmϕ dΓ (57)

f snm :=

∫
Γ

NT
p P

m
n (cos θ) sinmϕ dΓ (58)

With the z-axis normal to the rigid planar baffle, the indices appearing in (56) are
restricted to n + m = even. The functions qnm(t) are solutions to the first-order
equation (42), driven by the auxiliary variables znm(t). The vector functions znm in
turn, satisfy (20) driven by the radial modes on the hemisphere:

pcnm(R, t) =
2

R2Nnm

f cTnm · pΓ(t) (59)

psnm(R, t) =
2

R2Nnm

f sTnm · pΓ(t) (60)

where pΓ(t) = {pI(t)}, I = 1, 2, · · · , NΓ, is a vector of nodal solutions on the artificial
boundary Γ with NΓ nodes.
Implementation of the non-reflecting boundary condition only requires inner prod-

ucts of spherical harmonics and finite element basis functions with compact support
within the force vector fnm. As a result, the non-reflecting boundary condition is
easy to implement using standard force vector assembly over each boundary element
on Γ, and does not disturb the symmetric, and banded/sparse structure of the finite
element matrix equations.
For axisymmetric radiation from a rigid baffle, the force vector (56) naturally

specializes with the index restricted to m = 0, i.e.,

FΓ(t) = π R
2

N∑
n=2,4,...

qn0(t)

∫ π/2

0

NT
p Pn(cos θ) sin θ dθ (61)

where the system of equations (20) for zn0 is driven by the radial modes given in (31).

7 Mixed Time Integration Algorithm

Both implicit and explicit time marching schemes have been developed in [18] to in-
tegrate the semi-discrete equations associated with the NR1(N) form of the exact
nonreflecting condition on a spherical boundary in free-space. These time-integration
algorithms may be used to implement the boundary condition (23) or (24) for the half
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space problem with no significant modifications. For NR2(N), implicit time marching
procedures developed in [19] may be applied directly to the coupled system of equa-
tions (46) and (47). However, direct application of explicit time stepping schemes
which uncouple the system of equations is not possible due to the difficulty in gener-
ating an accurate diagonal matrixCψ appearing in the auxiliary equations (47). Fully
explicit time discretization with diagonal matrices drastically reduces computational
cost and memory requirements. To obtain the efficiency of explicit time discretization
without the need for a diagonal matrix Cψ, we present a new mixed explicit-implicit
time integration method for solving the coupled system. Here, the interior finite ele-
ment equations (46) are integrated explicitly in time and the auxiliary equations (47)
on Γ are integrated implicitly in time. By treating the auxiliary equations implicitly,
a very natural algorithm results which avoids the need to update either the pressure
solutions or the auxiliary functions at intermediate time steps.
Let F k = F (tk) be the force at time step tk = k∆t. To compute the solution

pk+1 = p(tk+1), we apply the second-order accurate, explicit central difference method
to the interior finite element matrix equations given in (46), with the result:

M̂pk+1 = Rk (62)

with effective mass matrix,

M̂ =
1

∆t2
Mp +

1

2∆t
Cp (63)

and

Rk = F k − Aψk −

(
K −

2

∆t2
Mp

)
pk −

(
1

∆t2
Mp −

1

2∆t
Cp

)
pk−1 (64)

The algebraic equations given in (62) are decoupled using standard lumping tech-
niques to diagonalize Mp and Cp, e.g. using nodal (Lobotto) quadrature, row-sum
technique, or the HRZ lumping scheme [23]. Using nodal lumping the effective mass

M̂ is diagonal, and the system of equations (62) can be solved without factorizing
a matrix; i.e., only matrix multiplications are required to obtain the right-hand-side
effective load vector Rk, after which the nodal pressures pI can be updated using,

pk+1I =
Rk
I

m̂II

(65)

where pk+1I and Rk
I denote the Ith components of the vectors p

k+1 and Rk, respec-
tively, and m̂II is the Ith diagonal element of the effective mass matrix obtained from
the lumped mass and damping matrices. Furthermore, the matrix-vector products
Aψk and Kpp

k can be evaluated at the element level by summing the contributions
from each element to the effective load vector, without matrix assembly of A or Kp,
rendering a highly efficient algorithm for large-scale wave propagation analysis.
The system of equations (47) for the auxiliary parameters ψ are not readily de-

coupled because of the difficulty generating an accurate diagonal matrix for Cψ using
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standard lumping techniques. In this case, we compute ψk+1 using the implicit,
second-order Adams-Moulton method (trapezoidal rule), i.e.,

Ĉ ψk+1 =

(
Cψ −

∆t

2
Kψ

)
ψk +

∆t

2
AT

(
pk+1 + pk

)
(66)

with

Ĉ = Cψ +
∆t

2
Kψ (67)

Using a direct solver, and a constant time step ∆t, the banded/sparse matrix Ĉ is

factorized only once into Ĉ = LDLT , where L is a lower triangle andD is a diagonal
matrix. For constant wave speed c on the artificial boundary Γ, thenKψ =

c
R
Cψ and

the system (66) may be solved even more efficiently with the following procedure:

Compute: rk+1 = AT (pk+1 + pk) (68)

Solve: Cψ y
k+1 = rk+1 (69)

Update: ψk+1 =
b

a
ψk +

∆t

2a
yk+1 (70)

where a = 1 + γ, b = 1− γ, and γ = c∆t/2R.
Similarly, the numerical solution zk+1nm to the first-order system (20), and the

solution qk+1nm to the first-order equation (42) may be computed concurrently using
the implicit and unconditionally stable second-order Adams-Moulton method, i.e.,

Bn z
k+1
nm =

(
I +

∆t

2
An

)
zknm +

∆t

2

(
Φk+1nm + Φ

k
nm

)
(71)

with

Bn = I −
∆t

2
An (72)

and then update,

qk+1nm =
b

a
qknm +

γ

a
c̃n ·

(
zk+1nm + z

k
nm

)
(73)

After the initial conditions are established, the complete mixed time-integration
algorithm proceeds as follows for a fixed time step size, ∆t:

1. Calculate effective loads at time t from (64),

2. Update the pressure field at time t+∆t from (65),

3. Solve for auxiliary functions ψ at time t+∆t from (66),

4. For each mode, solve the functions znm at time t+∆t from (71),

5. For each mode, update the functions qnm at time t+∆t from (73),

6. Update the time step, and repeat.
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The key to the effectiveness of this algorithm is that the pressure update relies
only on the auxiliary functions at the current time step, i.e., ψk and qknm; and the
update of the auxiliary functions relies only on the most recently computed pressure
at time step tk+1. The result is a very natural algorithm which avoids the need for
intermediate updates between equations as would be the case in a staggered-step time
integration. We also note that this mixed time-integration method also provides an
efficient way to implement the local B2 boundary condition of Bayliss and Turkel [10]
in symmetric form; in this case the functions znm and qnm are not used, so that steps
4. and 5. may be skipped in the above algorithm.

8 Numerical Studies

In [18, 19] numerical experiments for radiation from a sphere in free-space are pre-
sented which demonstrate the accuracy of the NRBC compared to steady-state an-
alytical solutions and standard local absorbing boundary conditions. In this work,
numerical studies of fully transient solutions for a circular piston transducer mounted
in an infinite rigid planar baffle are presented. Numerical results are used to assess
the accuracy of the mixed explicit-implicit time integration method and the NRBC
defined in (40) - (42) for a half-space problem defined by a rigid baffle. Both sinu-
soidal and Gaussian pulse surface velocities are used to drive the transient solutions.
A circular transducer radiating into an acoustic fluid is considered since this case has
been widely studied and is important to many researchers.

8.1 Circular Piston In A Rigid Planar Baffle

We first consider a circular transducer of radius a, oscillating perpendicular to the
plane of a rigid infinite baffle. The sound pressure field is determined by the wave
equation and boundary conditions,

∂p

∂z
=

{
−ρo v̇(t)H(t), on piston P = {0 ≤ r ≤ a, θ = π/2}
0, on baffle B = {r > a, θ = π/2} (74)

where H(t) is the Heaviside (unit step) function. Here, z is the coordinate normal
(perpendicular) to the piston and baffle, v(t) is the normal velocity of the piston, and
a superimposed dot denotes a time derivative.
The sound field p(r, θ, t) is rotationally symmetric about the z-axis normal to the

center of the piston and independent of ϕ. Since the problem is axisymmetric, it is
convenient to introduce cylindrical coordinates (ρ, z), where ρ = r sin θ is the polar
radius.

8.1.1 SINUSOIDAL INPUT

We first assume that the piston velocity in Eq. (74) is sinusoidal for t ≥ 0, with

v(t) = 1− cosωt (75)
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resulting in a pressure gradient for t ≥ 0,

∂p

∂z
= −ρo ω sinωt on piston P (76)

where ω is a radian frequency.
The steady-state response along the z-axis for the sinusoidal input (75), is available

in a closed-form analytical solution given in [24]:

p(0, z, t) = Imag
{
i ρoce

iωt
[
e−ikz − e−ik

√
z2+a2

]}
(77)

where c is the speed of sound, and k = ω/c is the wave number. A study of the pressure
amplitude on the axis of this piston reveals that the axial response exhibits strong
interference effects, fluctuating between 0 and 2ρoc. These zero pressure amplitudes
occur at points zm satisfying the condition,

zm

a
=
1

m

a

λ
−
m

4

λ

a
(78)

where λ = 2π/k, and m = even.
Immediately after the circular piston (transducer) is switched on, the acoustic

field will undergo a transient solution that is quite different from the steady-state
condition; the radiation impedance consists of high frequency components only, and
then rapidly approaches the steady state value. Since the rigid vibrating piston can
be considered to be a distribution of point sources, the sound field occupies a region
in space which is obtained by locating spheres of radius c t from each point on the
piston. Thus the pressure on the piston itself is transient for the first 2a/c seconds,
which is the time required for a signal to propagate from one edge of the piston across
to the opposite edge. The pressure on the piston after the first 2a/c seconds is the
same as in the steady-state.
The transient sound field is available in a closed-form expression that can be

integrated numerically [25]. The velocity potential field φ is represented as the time
convolution of the normal velocity of the piston and a radiation impulse response:

φ(ρ, z, t) = v(t) ∗ h(ρ, z, t) (79)

where the asterisk is used to denote the convolution operation, h is the velocity
potential impulse response, t is the time, and a is the radius of the circular piston.
The acoustic velocity in the medium is the negative gradient of the velocity potential
φ, given by v = −∇φ. The pressure may then be obtained from the velocity potential
using the relationship p = ρo φ̇.
The impulse response function h(ρ, z, t) is the time-dependent velocity potential

field resulting from a Dirac impulsive z-velocity of the piston [25]:

h(ρ, z, t) =




c, ρ < a, z < ct < R1,
c
π
cos−1

(
c2t2−z2+ρ2−a2

2ρ
√
c2t2−z2

)
, R1 < ct < R2,

0, elsewhere,

(80)
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where R1 =
√
z2 + (a− ρ)2, and R2 =

√
z2 + (a+ ρ)2, are the shortest and longest

distances, respectively, from the observation point to the circumference of the piston.
For observation points on the z-axis, R1 = R2 =

√
z2 + a2, so that h is a delayed

rectangular pulse, and the time convolution given in (79) may be evaluated in closed-
form:

p(0, z, t) = ρo c

{
v
(
t−

z

c

)
H
(
t−

z

c

)
− v

(
t−

√
z2 + a2

c

)
H

(
t−

√
z2 + a2

c

)}

(81)
where and H(t) is the Heaviside function. The pressure on the z-axis is thus seen to
consist of two signals of opposite strength equal to the characteristic impedance ρoc.
Since the problem is axisymmetric, it is sufficient to compute the finite element

solution in the two-dimensional domain Ω defined by the (r, θ) plane for 0 ≤ r ≤ R,
and 0 ≤ θ ≤ π/2. The pressure field is approximated with 4-node bilinear axisym-
metric acoustic elements with a non-reflecting boundary applied to a quarter-circle
truncation boundary Γ := {r = R , 0 < θ ≤ π/2}.
For the finite element solution, the truncation boundary Γ is positioned close to

the radius of the piston at R/a = 1.25, resulting in a relatively small computational
domain. The piston radius and wave speed are normalized such that a = 1 and c = 1.
The calculation is then driven with a normalized frequency ωa/c = 4π on a mesh
with 150 evenly spaced elements along the z-axis from 0 ≤ z ≤ 1.25, and 90 evenly
spaced elements from 0 < θ ≤ π/2. For this frequency and piston radius, the zero
amplitude points along the z-axis occur at z2 = 0.75, and at the origin z4 = 0.0.
A time-harmonic solution is obtained by starting from rest with initial data p0 and

ṗ0 equal to zero and driving the solution to steady-state with a time step ∆t = 0.003
sec. The mesh and time step size are small relative to the wavelength λ = 0.5, so
that numerical error is due primarily to the the radiation boundary condition on Γ.
Fig. 2 shows time-dependent solutions at several observation points along the

z-axis obtained using the local B1 and B2 operators, and the nonreflecting boundary
condition NR2(20), compared to the analytical solution. Fig. 3 shows time-histories
at several locations on the truncation boundary Γ. The numerical solution obtained
using NR2(20) can barely be distinguished from the analytical solution at all locations,
including the interference point z = 0.75, where the steady-state amplitude is zero.
The solution using B2 exhibits relatively accurate solutions for points off-axis, however
significant amplitude errors occur for points on the z-axis. The B1 operator yields
both large amplitude and phase errors, at all observation points except the piston
origin z = 0, where all the operators accurately represent the solution, even during
the zero steady-state amplitude phase. This interesting result is expected since at
this location and for a piston of infinite radius it can be shown that the pressure and
normal velocity at z = 0 are related by the simple plane-wave relationship p = ρoc v,
which is accurately represented by all of the boundary conditions considered.
The instantaneous error measured in L2 norm on the z-axis is defined as,

E(t) =

{∫ R

0

[
ph(z, t)− p(z, t)

]2
dz

}1/2
(82)

where ph is the approximate finite element solution and p is the exact steady-state
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Fig. 2: Sinusoidal Input. Time-histories at on-axis observation points: (a) z = 0.0; (b)
z = 0.75; (c) z = 1.0.
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Fig. 3: Sinusoidal Input. Time-histories at off-axis observation points on truncation bound-
ary at R = 1.25, and θ = 30 , 60 , 90 degrees.
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Fig. 4: Instantaneous error E(t) along the z-axis and at steady-state due to a sinusoidal
radiating circular piston with normalized frequency ωa/c = 4π and truncation boundary
radius R/a = 1.25. Results compared for local operators B1, B2, and boundary condition
NR2(N), with series truncation N = 10 and N = 20.

solution, and R = 1.25. The magnitude of the absolute error E(t) can be scaled by
any constant, and will only serve as a means to compare the relative accuracy of the
different boundary conditions. Fig. 4 shows the instantaneous error on the piston
axis and over the steady-state time interval 4.7 < t < 5.5. The results illustrate
the reduction in error obtained from NR2(N) by increasing the number of terms
in the truncated series from N = 10 to N = 20. The accuracy of the NR2(20)
solution is significantly improved over the local B2 operator. We also observe that
the error using the nonreflecting boundary condition NR2(20) reduced by an order of
magnitude compared to the local B1 boundary condition.

8.1.2 GAUSSIAN PULSE

We next study the response due to a transient pulse which excites a range of frequen-
cies. The piston velocity is assumed to be the Gaussian pulse,

v(t) = e−0.5f
2
o (t−to)

2

H(t) (83)

where to = 0.5 s, and fo = 8. The frequency spectrum of this wavelet is,

v(ω) =

√
2π

fo
e−0.5ω

2/f2o (84)

Fig. 5 shows the pulse, and its amplitude spectrum.
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Fig. 5: Gaussian pulse and its Fourier transform: (a) Gaussian pulse versus time; (b) The
amplitude spectrum versus frequency ω.
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For this input, the pressure on the z-axis consists of two Gaussian pulses of op-
posite amplitude. The time delay of the initial pulse corresponds to the propagation
time from the center of the piston to the spatial point, and the time delay of the
second pulse corresponds to the propagation time from the edge of the piston to the
spatial point.
The computations are performed with the element size, and time-step unchanged

from the previous study. Fig. 6 and Fig. 7 show contours of the pressure field solu-
tion using NR2(20) at several time steps. Fig. 8 shows transient solutions at several
observation points on the z-axis. Fig. 9 shows time-histories at different locations
on the truncation boundary Γ. Comparisons are made between the analytical solu-
tion and finite element solutions using using the local operators B1 and B2, and the
non-reflecting condition NR2(N), with series truncation N = 20. The solution ob-
tained using NR2(20) can barely be distinguished from the analytical solution at all
observation points. The early time response is accurately represented on the z-axis
using any of the boundary conditions studied. However, the numerical solution for
B1 exhibits large errors during the second pulse; both overshooting and undershoot-
ing the exact solution. The solution using B2 shows significant error at the trailing
end of the second pulse. On the truncation boundary, at angles off the piston axis,
the local boundary operators exhibit spurious reflections during both the initial and
secondary pulses. It is observed that both the local operators and nonreflecting con-
dition NR2(N), accurately represent the solution at the center of the piston z = 0,
for all time.

9 Conclusions

An extension of the exact nonreflecting boundary condition (NRBC) first derived
by Grote and Keller [17] for the free-space problem, is formulated on a hemisphere
for the time-dependent wave equation in a half-space defined by a planar baffle.
Since the problem is symmetric about the infinite planar surface, we show that it
is sufficient to restrict the spherical harmonic expansion which defines the NRBC to
indices n+m even, and scale the radial harmonics by a factor of 2, in order to satisfy
the rigid baffle condition. In this case, we position the baffle normal (perpendicular)
to a z-axis in spherical coordinates. Since the symmetry condition is imposed with
the Legendre function expansion in θ, the Fourier expansion in the circumferential
angle ϕ may be used to efficiently model axisymmetric problems in two-dimensions.
Alternatively, the NRBC for the half-space problem may be formulated based on a
z-axis aligned parallel to the planar baffle. In this case the Fourier expansion in
the circumferential angle is restricted to even functions in order to satisfy the rigid
baffle symmetry condition. While this alternative form of the NRBC has the same
number of operation counts and memory requirements in general three-dimensional
problems, it cannot be used for the axisymmetric problem since the Fourier harmonics
are restricted by the baffle condition. Symmetry conditions for the planar baffle may
also be applied to recently developed asymptotic radiation boundary conditions given
in [26] which have improved efficiency over the exact condition.
For the symmetric form of the modified NRBC we developed a new mixed explicit-

implicit time integration method which retains the efficiency of explicit time dis-
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Fig. 6: Solution contours of pressure field using NR2(20) for transient radiation from a
circular piston in infinite planar baffle with Gaussian normal velocity at time (a) t = 0.45;
(b) t = 0.9; (c) t = 1.35.
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Fig. 7: Solution contours of pressure field using NR2(20) for transient radiation from a
circular piston in infinite planar baffle with Gaussian normal velocity at time (a) t = 1.8;
(b) t = 2.25; (c) t = 2.7.
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Fig. 8: Gaussian Pulse. Time-histories at on-axis observation points: (a) z = 0.0; (b)
z = 0.75; (c) z = 1.125. Solid lines denote analytic solution; Dashed lines denote NR2(20);
Dash-dotted lines denote B2; Dotted lines denote B1.
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solution; Dashed lines denote NR2(20); Dash-dotted lines denote B2; Dotted lines denote
B1.
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cretization for the finite element matrix equations, without the need for diagonal
matrices in the auxiliary equations on the artificial truncation boundary. Here, the
interior finite element equations are integrated explicitly in time while the auxiliary
equations on Γ are integrated implicitly in time. By treating the auxiliary equations
implicitly, a very natural algorithm results which avoids the need to update either
the pressure solutions or the auxiliary functions at intermediate time steps and which
retains the second-order accuracy of the underlying methods. The key to the effective-
ness of the scheme is that the pressure update relies only on the auxiliary functions
at the current time step, and the update of the auxiliary functions relies only on
the most recently computed pressure at time step tk+1. The result is a very natural
and highly efficient algorithm for large-scale wave propagation analysis which allows
the pressure field to be updated without assembling or factoring the interior finite
element matrices. This mixed time-integration method also provides an efficient way
to implement the local B2 boundary condition of Bayliss and Turkel.
Numerical examples of fully transient radiation from a circular piston transducer

mounted in an infinite rigid planar baffle demonstrate the improved accuracy of the
NRBC and the new mixed explicit-implicit time integration method compared to
the first- and second-order local boundary conditions of Bayliss and Turkel. For a
sinusoidal normal velocity input, the transient solution obtained using NR2(20) can
barely be distinguished from the analytical solution at all points in the computational
domain, including the difficult interference point on the piston axis where the steady-
state amplitude is zero. The solution using the local second-order operator exhibits
relatively accurate solutions for points off-axis, however significant amplitude errors
occur for the difficult points on the piston axis. The local first-order operator yields
both large amplitude and phase errors, at all observation points except the piston
origin. Similar results are found for a Gaussian pulse input. The accuracy of the local
operators may be improved by moving the artificial truncation boundary further away
from the source of radiation at the expense of a larger computational domain with
increased work. In other numerical studies [17], it is shown that the extra work in
employing the local conditions with a large mesh is several times larger than the work
required to compute the spherical harmonics in the exact NRBC on a smaller mesh.
An important area of future work is to determine the benefit of increased accuracy
using the modified NRBC with the extra expense in computing the auxiliary functions
ψ at each node on the artificial boundary.
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