Useful TI-89 functions for Statics

Linear Equation Solver

Solve a system of n equations for n unknowns, useful for solving static equilibrium equations. You are allowed to use this on a test, but you must first show the system of equations you are solving and then indicate that you solved it on the calculator. To access the 'solve' command, go to F2 \rightarrow solve. Then, enter the equations using the syntax in the following example:

$$0 = x + 5y$$

$$0 = y - 2z$$

$$33 = x + y - 4z$$

Type in TI-89:

solve
$$(0 = x + 5 * y \text{ and } 0 = y - 2 * z \text{ and } 33 = x + y - 4 * z, \{x, y, z\})$$

This command will solve for the variables x, y, z. Be sure to enter the spaces before and after 'and'; type 'and' by using the alpha button and finding the appropriate key.

Ans: x = 27.5, y = -5.5, z = -2.75

Cross Product of Vectors

Useful for calculating moments of forces. Again, you are allowed to use this on a test as long as you show the cross-product you are solving beforehand. Cross product can be calculated using the 'crossP' command, found by going to $2^{nd} \rightarrow MATH \rightarrow 4$: Matrix $\rightarrow L$: Vector ops $\rightarrow 2$: crossP.

Alternatively, you can find it in the CATALOG menu. Cross-product is calculated using the syntax in the following example:

$$\bar{a} = (8\,\hat{\imath} + 4\,\hat{\jmath} + 5\,\hat{k}) \times (3\,\hat{\imath} - 4\,\hat{\jmath} + 5\,\hat{k})$$

$$= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 8 & 4 & 5 \\ 3 & -4 & 5 \end{vmatrix}$$

$$= (20 - (-20))\,\hat{\imath} - (40 - 15)\,\hat{\jmath} + (-32 - 12)\,\hat{k}$$

$$= 40\,\hat{\imath} - 25\,\hat{\jmath} - 44\,\hat{k}$$

Using your TI-89 function:

Of course, you can always use the determinate method shown as well.

Dot Product of Vectors

Useful when projecting a force onto a line, etc. Found in the same ways as 'crossP': $2^{nd} \rightarrow MATH \rightarrow 4$: Matrix $\rightarrow L$: Vector ops $\rightarrow 3$: dotP, or by searching in the CATALOG menu. The syntax is the same as for 'crossP', as shown in this example:

$$dotP([8,4,5],[3,-4,5]) = 33$$

Adding or Subtracting Vectors

The TI-89 can add and subtract vectors as well. Just enter them as in this example:

$$[8,4,5] + [3,-4,5] = [11,0,10]$$