Bolzano Weierstrass Theorems I

James K. Peterson

Department of Biological Sciences and Department of Mathematical Sciences
Clemson University

September 5, 2016
Outline

1. The Bolzano Weierstrass Theorem

2. Bounded Infinite Sets

3. Homework
The Bolzano Weierstrass Theorem

Every bounded sequence with an infinite range has at least one convergent subsequence.

Proof

As discussed, we have already shown a sequence with a bounded finite range always has convergent subsequences. Now we prove the case where the range of the sequence of values \(\{a_1, a_2, \ldots, \} \) has infinitely many distinct values. We assume the sequences start at \(n = k \) and by assumption, there is a positive number \(B \) so that \(B \leq a_n \leq B \) for all \(n \geq k \). Define the interval \(J_0 = [\alpha_0, \beta_0] \) where \(\alpha_0 = -B \) and \(\beta_0 = B \). Thus at this starting step, \(J_0 = [-B, B] \). Note the length of \(J_0 \), denoted by \(\ell_0 \) is \(2B \).

Let \(S \) be the range of the sequence which has infinitely many points and for convenience, we will let the phrase infinitely many points be abbreviated to IMPs.
Proof

Step 1:
Bisect \([\alpha_0, \beta_0]\) into two pieces \(u_0\) and \(u_1\). That is the interval \(J_0\) is the union of the two sets \(u_0\) and \(u_1\) and \(J_0 = u_0 \cup u_1\). Now at least one of the intervals \(u_0\) and \(u_1\) contains IMPS of \(S\) as otherwise each piece has only finitely many points and that contradicts our assumption that \(S\) has IMPS. Now both may contain IMPS so select one such interval containing IMPS and call it \(J_1\). Label the endpoints of \(J_1\) as \(\alpha_1\) and \(\beta_1\); hence, \(J_1 = [\alpha_1, \beta_1]\). Note \(\ell_1 = \beta_1 - \alpha_1 = \frac{1}{2} \ell_0 = B\) We see \(J_1 \subseteq J_0\) and

\[-B = \alpha_0 \leq \alpha_1 \leq \beta_1 \leq \beta_0 = B\]

Since \(J_1\) contains IMPS, we can select a sequence value \(a_{n_1}\) from \(J_1\).

Step 2:
Now bisect \(J_1\) into subintervals \(u_0\) and \(u_1\) just as before so that \(J_1 = u_0 \cup u_1\). At least one of \(u_0\) and \(u_1\) contain IMPS of \(S\).
Choose one such interval and call it \(J_2 \). Label the endpoints of \(J_2 \) as \(\alpha_2 \) and \(\beta_2 \); hence, \(J_2 = [\alpha_2, \beta_2] \). Note \(\ell_2 = \beta_2 - \alpha_2 = \frac{1}{2} \ell_1 \) or \(\ell_2 = (\frac{1}{4})\ell_0 = (\frac{1}{2^2})\ell_0 = (\frac{1}{2})B \). We see \(J_2 \subseteq J_1 \subseteq J_0 \) and

\[
-B = \alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \beta_2 \leq \beta_1 \leq \beta_0 = B
\]

Since \(J_2 \) contains IMPS, we can select a sequence value \(a_{n_2} \) from \(J_2 \). It is easy to see this value is different from \(a_{n_1} \), our previous choice. You should be able to see that we can continue this argument using induction.

Proposition:
\[\forall p \geq 1, \exists \text{ an interval } J_p = [\alpha_p, \beta_p] \text{ with the length of } J_p, \ell_p = B/(2^{p-1}) \text{ satisfying } J_p \subseteq J_{p-1}, J_p \text{ contains IMPS of } S \text{ and} \]

\[
\alpha_0 \leq \ldots \leq \alpha_{p-1} \leq \alpha_p \leq \beta_p \leq \beta_{p-1} \leq \ldots \leq \beta_0
\]

. Finally, there is a sequence value \(a_{n_p} \) in \(J_p \), different from \(a_{n_1}, \ldots, a_{n_{p-1}} \).
Proof

We have already established the proposition is true for the basis step J_1 and indeed also for the next step J_2.

Inductive: We assume the interval J_q exists with all the desired properties. Since by assumption, J_1 contains IMPs, bisect J_1 into u_0 and u_1 like usual. At least one of these intervals contains IMPs of S. Call the interval J_{q+1} and label $J_{q+1} = [\alpha_{q+1}, \beta_{q+1}]$. We see immediately that

$$\ell_{q+1} = (1/2)\ell_q = (1/2)(1/2^{q-1})B = (1/2^q)B$$

with $\ell_{q+1} = \beta_{q+1} - \alpha_{q+1}$ with

$$\alpha_q \leq \alpha_{q+1} \leq \beta_{q+1} \leq \beta_q.$$

This shows the nested inequality we want is satisfied.

Finally, since J_{q+1} contains IMPs, we can choose $a_{n_{q+1}}$ distinct from the other a_{n_i}'s. So the inductive step is satisfied and by the POMI, the proposition is true for all n. \[\Box\]
Proof

- From our proposition, we have proven the existence of three sequences, \((\alpha_p)_{p \geq 0}\), \((\beta_p)_{p \geq 0}\) and \((\ell_p)_{p \geq 0}\) which have various properties.
Proof

- From our proposition, we have proven the existence of three sequences, \((\alpha_p)_{p \geq 0}\), \((\beta_p)_{p \geq 0}\) and \((\ell_p)_{p \geq 0}\) which have various properties.

- The sequence \(\ell_p\) satisfies \(\ell_p = (1/2)\ell_{p-1}\) for all \(p \geq 1\). Since \(\ell_0 = 2B\), this means \(\ell_1 = B\), \(\ell_2 = (1/2)B\), \(\ell_3 = (1/2^2)B\) leading to \(\ell_p = (1/2^{p-1})B\) for \(p \geq 1\).
Proof

- From our proposition, we have proven the existence of three sequences, \((\alpha_p)_{p \geq 0}\), \((\beta_p)_{p \geq 0}\) and \((\ell_p)_{p \geq 0}\) which have various properties.

- The sequence \(\ell_p\) satisfies \(\ell_p = (1/2)\ell_{p-1}\) for all \(p \geq 1\). Since \(\ell_0 = 2B\), this means \(\ell_1 = B\), \(\ell_2 = (1/2)B\), \(\ell_3 = (1/2^2)B\) leading to \(\ell_p = (1/2^{p-1})B\) for \(p \geq 1\).

\[-B = \alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_p \leq \ldots \leq \beta_p \leq \ldots \leq \beta_2 \leq \ldots \leq \beta_0 = B\]
Proof

- From our proposition, we have proven the existence of three sequences, \((\alpha_p)_{p \geq 0}, (\beta_p)_{p \geq 0}\) and \((\ell_p)_{p \geq 0}\) which have various properties.

- The sequence \(\ell_p\) satisfies \(\ell_p = (1/2)\ell_{p-1}\) for all \(p \geq 1\). Since \(\ell_0 = 2B\), this means \(\ell_1 = B, \ell_2 = (1/2)B, \ell_3 = (1/2^2)B\) leading to \(\ell_p = (1/2^{p-1})B\) for \(p \geq 1\).

-
 \[
 -B = \alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_p \\
 \leq \ldots \leq \\
 \beta_p \leq \ldots \leq \beta_2 \leq \ldots \leq \beta_0 = B
 \]

- Note \((\alpha_p)_{p \geq 0}\) is bounded above by \(B\) and \((\beta_p)_{p \geq 0}\) is bounded below by \(-B\). Hence, by the completeness axiom, \(\inf (\beta_p)_{p \geq 0}\) exists and equals the finite number \(\beta\); also \(\sup (\alpha_p)_{p \geq 0}\) exists and is the finite number \(\alpha\).
Proof

If you think about the construction process here (there is a picture of it in the notes too that might help), at level p we have an interval $J_p = [\alpha_p, \beta_p]$. At the next step, we pick one of the halves of J_p and so J_{p+1} shares one endpoint with J_p. However at the next steps, J_{p+2}, J_{p+3} and so on, the new subintervals we get do not share any endpoints of J_p. Hence form J_{p+2} on, we know J_{p+2} are on are strictly contained in J_p.

Thus, α and β are in $[\alpha_p, \beta_p] = J_p$ for all p. Next we show $\alpha = \beta$.

Proof

If you think about the construction process here (there is a picture of it in the notes too that might help), at level p we have an interval $J_p = [\alpha_p, \beta_p]$. At the next step, we pick one of the halves of J_p and so J_{p+1} shares one endpoint with J_p. However at the next steps, J_{p+2}, J_{p+3} and so on, the new subintervals we get do not share any endpoints of J_p. Hence form J_{p+2} on, we know J_{p+2} are on are strictly contained in J_p.

So if we fix p, it should be clear the number β_p is an upper bound for all the α_p values (look at our inequality chain again and think about this). Thus β_p is an upper bound for $(\alpha_p)_{p \geq 0}$ and so by definition of a supremum, $\alpha \leq \beta_p$ for all p. Of course, we also know since α is a supremum, that $\alpha_p \leq \alpha$. Thus, $\alpha_p \leq \alpha \leq \beta_p$ for all p.
Proof

- If you think about the construction process here (there is a picture of it in the notes too that might help), at level p we have an interval $J_p = [\alpha_p, \beta_p]$. At the next step, we pick one of the halves of J_p and so J_{p+1} shares one endpoint with J_p. However at the next steps, J_{p+2}, J_{p+3} and so on, the new subintervals we get do not share any endpoints of J_p. Hence form J_{p+2} on, we know J_{p+2} are on are strictly contained in J_p.

- So if we fix p, it should be clear the number β_p is an upper bound for all the α_p values (look at our inequality chain again and think about this). Thus β_p is an upper bound for $(\alpha_p)_{p \geq 0}$ and so by definition of a supremum, $\alpha \leq \beta_p$ for all p. Of course, we also know since α is a supremum, that $\alpha_p \leq \alpha$. Thus, $\alpha_p \leq \alpha \leq \beta_p$ for all p.

- A similar argument shows if we fix p, the number α_p is an lower bound for all the β_p values and so by definition of an infimum, $\alpha_p \leq \beta \leq \beta_p$ for all the α_p values.

- This tells us α and β are in $[\alpha_p, \beta_p] = J_p$ for all p. Next we show $\alpha = \beta$.
Proof

Let $\epsilon > 0$ be arbitrary. Since α and β are in J_p whose length is $\ell_p = (1/2^{p-1})B$, we have $|\alpha - \beta| \leq (1/2^{p-1})B$. Pick P so that $1/(2^{P-1}) < \epsilon$. Then $|\alpha - \beta| < \epsilon$. But $\epsilon > 0$ is arbitrary. Hence, by a previous proposition, $\alpha - \beta = 0$ implying $\alpha = \beta$.
Proof

- Let $\epsilon > 0$ be arbitrary. Since α and β are in J_p whose length is $\ell_p = (1/2^{p-1})B$, we have $|\alpha - \beta| \leq (1/2^{p-1})B$. Pick P so that $1/(2^{P-1}) < \epsilon$. Then $|\alpha - \beta| < \epsilon$. But $\epsilon > 0$ is arbitrary. Hence, by a previous proposition, $\alpha - \beta = 0$ implying $\alpha = \beta$.

- We now must show $a_{n_k} \to \alpha = \beta$. This shows we have found a subsequence which converges to $\alpha = \beta$. We know $\alpha_p \leq a_{n_p} \leq \beta_p$ and $\alpha_p \leq \alpha \leq \beta_p$ for all p. Pick $\epsilon > 0$ arbitrarily. Given any p, we have

$$
|a_{n_p} - \alpha| = |a_{n_p} - \alpha_p + \alpha_p - \alpha|, \quad \text{add and subtract trick}
$$
$$
\leq |a_{n_p} - \alpha_p| + |\alpha_p - \alpha|, \quad \text{triangle inequality}
$$
$$
\leq |\beta_p - \alpha_p| + |\alpha_p - \beta_p|, \quad \text{definition of length}
$$
$$
= 2|\beta_p - \alpha_p| = 2(1/2^{p-1})B.
$$

Choose P so that $(1/2^{P-1})B < \epsilon/2$. Then, $p > P$ implies $|a_{n_p} - \alpha| < 2\epsilon/2 = \epsilon$. Thus, $a_{n_k} \to \alpha$.

A more general type of result can also be shown which deals with sets which are bounded and contain infinitely many elements.

Definition

Let S be a nonempty set. We say the real number a is an **accumulation** points of S if given any $r > 0$, the set

$$B_r(a) = \{x : |x - a| < r\}$$

contains at least one point of S different from a. The set $B_r(a)$ is called the **ball** or **circle** centered at a with radius r.

Example

$S = (0, 1)$. Then 0 is an accumulation point of S as the circle $B_r(0)$ always contains points greater than 0 which are in S, Note $B_r(0)$ also contains points less than 0. Note 1 is an accumulation point of S also Note 0 and 1 are not in S so accumulation points don’t have to be in the set. Also note all points in S are accumulation points too. Note the set of all accumulation points of S is the interval $[0, 1]$.
Example

$S = ((1/n)_{n \geq 1}$. Note 0 is an accumulation point of S because every circle $B_r(0)$ contains points of S different from 0. Also, if you pick a particular $1/n$ in S, the distance from $1/n$ to its neighbors is either $|1/n - 1/(n + 1)|$ or $1/n - 1/(n - 1)$. If you let r be half the minimum of these two distances, the circle $B_r(1/n)$ does not contain any other points of S. So no point of S is an accumulation point. So the set of accumulation points of S is just one point, $\{0\}$.
8.1 Let $S = (2, 5)$. Show 2 and 5 are accumulation points of S.

8.2 Let $S = (\cos(n\pi/4)_{n \geq 1}$. Show S has no accumulation points.

8.3 This one is a problem you have never seen. So it requires you look at it right! Let (a_n) be a bounded sequence and let (b_n) be a sequence that converges to 0. Then $a_nb_n \rightarrow 0$. This is an $\epsilon - N$ proof. Note this is **not** true if (b_n) converges to a nonzero number.

8.4 If you know (a_nb_n) converges does that imply both (a_n) and (b_n) converge?