Project One: C^{∞} Bump functions

James K. Peterson

Department of Biological Sciences and Department of Mathematical Sciences Clemson University

April 3, 2017

Outline

 \bigcirc C^{∞} Bump Functions Background: From Lecture 14

2 The Project

$$f(x) = \begin{cases} 0, & x \leq 0 \\ e^{-1/x}, & x > 0 \end{cases}$$

Let (x_n) be any sequence with $x_n \leq 0$ which converges to 0. Then $f(x_n) \to 0$ also. So 0 is in S(0). Let (x_n) with $x_n > 0$ be any sequence with $x_n \to 0$. Then $f(x_n) = e^{-1/x_n}$. It is easy to see $-1/x_n$ with $x_n > 0$ always has an unbounded limit which we usually call $-\infty$. If you recall from calculus, $e^y \to 0$ as $y \to -\infty$. Thus, $f(x_n) \to 0$ here for these sequences.

If (x_n) was a sequence with infinitely many terms both positive and negative which still converged to 0, then the subsequence of positive terms, (x_n^1) , converges to 0 and the subsequence of negative terms, (x_n^2) , also converges to 0. Further, $f(x_n^1) \to 0$ and $f(x_n^2) \to 0$ as well. With a little work we can see $f(x_n) \to 0$ too.

We see the only cluster point at 0 is 0. Thus, $\underline{\lim}_{x_n\to 0} f = \overline{\lim}_{x_n\to 0} f = 0$.

This function has many properties which you are going to prove!

- This function is continuous at 0
- This function is infinitely differentiable and $f^{(n)}(0) = 0$ for all n. Note this tells us all the derivatives of f are actually continuous.

Note

- f is so flat at 0 its Taylor Series expansion at 0 does not match f at all!
- Even though 0 is a global minimum of f occurring at 0 and other points, the second derivative test will fail there.

$$f_a(x) = \begin{cases} 0, & x \leq a \\ e^{-1/(x-a)}, & x > a \end{cases}$$

A similar analysis shows f_a has a zero n^{th} order derivative at a for all n and has a continuous n^{th} order derivative at a for all n.

$$g_b(x) = \begin{cases} 0, & x \ge b \\ e^{1/(x-b)}, & x < b \end{cases}$$

A similar analysis shows g_b has a zero n^{th} order derivative at b for all n and has a continuous n^{th} order derivative at b for all n.

We can then show for any a < b,

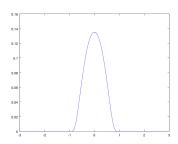
$$h_{ab}(x) = f_a(x) g_b(x) = \begin{cases} 0, & x \le a \\ e^{\frac{1}{x-b}} e^{-\frac{1}{x-a}}, & a < x < b \\ 0, & x \ge b \end{cases}$$
$$= \begin{cases} 0, & x \le a \\ 0, & x \le a \\ e^{\frac{b-a}{(x-a)(x-b)}}, & a < x < b \\ 0, & x \ge b \end{cases}$$

A similar analysis shows h_{ab} has a zero n^{th} order derivative at a and b for all n which is continuous a and b for all n.

Now multiply h_{ab} by $e^{\frac{2}{a+b}}$ to get $H_{ab}(x)=e^{\frac{2}{a+b}}$ $f_{ab}(x)$. $H_{ab}(x)$ is an infinitely differentiable function whose value is 0 off of the interval (a,b) and whose maximum value is +1. It is called a C^{∞} bump function. The closure of the set of x values where $H_{ab}(x)>0$ is then [a,b] which is a compact set. This closure is called the **support** of $H_{ab}(x)$ and so $H_{ab}(x)$ is a C^{∞} function with compact support. Very important!

[fragile] To plot h use the code below in the function Plottingh(a,b,eps,P). The arguments for the function are a and b which are used to define f_a and g_b , eps which is used to stay away for the points a and b in the plots and b which is used to set up the linspace command.

In the MatLab window type Plottingh(-1,1,.01,72);. This generates the plot



which needs labels and a title, of course, which you will have to add.

Just type in this function and save as the file Plottingh.m in your current directory.

```
function Plottingh (a,b,eps,P)
 fa = Q(x,a) \exp(-1/(x-a));
 gb = Q(x,b) \exp(1/(x-b));
 XA = Iinspace(a-2,a-eps,P/3);
XM = Iinspace(a+eps, b-eps, P/3);
 XB = linspace(b+eps, b+2,P/3);
 X = [XA, XM, XB];
 [m,n] = size(X);
 for i=1:n
   if(X(i) < a)
     h(i) = 0;
   end
   if(X(i) > b)
     h(i) = 0;
   end
   if(X(i) > a & X(i) < b)
     h(i) = fa(X(i),a)*gb(X(i),b);
   end
 end
 plot(X,h);
```

Due Date: Friday April 28, 2017

You are going to do the work to prove the stuff we talk about in the background slides. Do a great job on this. I want to see you put all the stuff we have been doing together. Write well on one side of the paper and treat this like a full report.

- \bullet f_a
- Prove f_a is differentiable for all x and in particular $f_a'(a)=0$
- Prove f_a is twice differentiable for all x and in particular $f_a''(a) = 0$
- Now look at what you have done and see if you can figure out how to scale your argument up to show f_a has an n^{th} derivative with $f_a^{(n)}(a) = 0$. You might want to look at the third derivative too to get a better idea what to do.
- ② Do the same thing for g_b .
- 3 Do the same thing for h_{ab} .
- 4 Plot a nice selection of h_{ab} 's to get the feel of how they look. You will have to be careful with the plots as you can't ask MatLab etc to plot near the place where h_{ab} become 0.