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ABSTRACT OF THE MASTER OF SCIENCE THESIS

Fabrication of Suspended Carbon Structures Using SU-8 Photolithography 

By 

Emanuele Giogli 

Master of Science Student in Mechanical Engineering 

Clemson University, Clemson 2016 

Professor Rodrigo Martinez-Duarte, Chair 

The phenomenon of T-topping has been deemed as an imperfection of the SU-8 

photolithography process, due to light diffraction, overexposure of the SU-8, and other 

process parameters. The first objective of this work is to demonstrate that T-topping can 

be used as a microfabrication resource to produce suspended structures between photo-

patterned high aspect ratio SU-8 posts, as precursors for carbon wires (width>1µm) and 

bridges (width>1µm). Such carbon structures could be used in a number of applications, 

such as the fabrication of nanowire based biosensors for the medical and food industry. 

The second objective is to develop a model able to predict what type of structures will be 

featured by an array of SU-8 posts, and in case of suspended structures, their length and 

width, in function of the particular choice of process parameters. 

The parameters examined are: type of contact, exposure time, type of gap, 

nominal size and nominal gap. A variety of suspended structures are obtained, and 

repeatable carbon wires of diameter as low as 800nm can be fabricated with the right 

choice of parameters. Given a choice of the parameters, the model proposed succeeds 



iii 

into predicting the presence and length of posts of hexagonal, squared and circular shape, 

but fails in calculating their width.  

The model needs future work to reliably calculate the width of the suspended 

structures, and needs to be calibrated for triangles and diamonds. Also, the SU-8 

thickness will have to be integrated in the model. 
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CHAPTER ONE 

 

INTRODUCTION 

 

Biosensors are devices that sense the variation of a biological change and 

transduce it on a measurable signal [1]. A biosensor is constituted by a biological probe 

that selectively reacts to a specific molecule either trapping it or emitting a signal, and a 

transducer which can convert the probe signal to a measurable electric signal. Among the 

different sensor types, electrochemical sensors are a relative recent technology, which 

combines the high sensitivity of electrochemical transducers and the high selectivity of 

biological recognition probes. An extensive review of the different types of 

electrochemical biosensors has been written by Ronkainen et al. [2]. Electrochemical 

biosensors are largely used in many applications involving healthcare, such as medical 

diagnosis and food inspection. For medical purposes, biosensors are employed for the 

detection and quantification of a variety of dangerous biomolecules, including proteins, 

DNA mutagens, bacteria, viruses and cancerous cells. In the alimentary industry, they are 

primarily used as means to detect the presence of bacteria or GMO, which could 

compromise the freshness and salubrity of food [3].  

Important properties that make a biosensor preferable include but are not limited 

to: selectivity, sensitivity, dynamic range and multiplexing. Selectivity is the capacity of 

selecting only the analyte of interest; sensitivity (or limit of detection) is the smallest 

concentration of analyte in the sample solution that can be reliably read; dynamic range is 

defined on the lower boundary by the limit of detection, and on the upper one by the 
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maximum flow sustainable by the sensor; multiplexing is the capacity of trapping 

different molecules at the same time.  

The limits of classic biosensors conceptions have been pushed forward with the 

introduction of nanofabrication technologies. Nanobiosensors rely on their extremely 

small dimension, comparable to biomolecules size, to largely enhance the sensitivity. 

Nanoparticles, nanomembranes, nanowires, carbon nanofibers (CNFs) and nanotubes 

(CNTs), are all different working principles for nanobiosensors [4-5]. Above all, CNTs, 

CNFs and nanowires are the ones looking more promising, and extensive reviews can be 

found in: CNFs [6,7]; CNTs [8-10]; nanowires [11,12].  

These structures are too thin to be considered as 1-D structures in the literature. 

Their strength point is the possibility of obtaining very long structures, which translates 

to high area to volume ratios, increasing the sensitivity and the response time. Although 

the highest ratios are obtained with CNFs and CNTs, some authors have found the 

nanowires biosensors preferable, due to the possibility of tailoring the material properties 

with doping techniques and because the natural oxide layer formed around the nanowires 

allows to use well developed probes [5,13].  

Several key features of the nanowires biosensors are the label-free, real-time 

transduction of the signal, very high sensitivity and selectivity, and the possibility of 

being assembled in arrays for improving multiplexing [12]. In every case, the biggest 

problem does not come from the sensors performance, but from their fabrication. A 

number of methods to fabricate nanowires have been developed, including laser ablation 
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synthesis [14], solution phase synthesis [15], metal-assisted chemical etching [16], and 

electron beam lithography [17]. 

A common issue of the current technologies is that nanowires have to be 

fabricated by themselves, and then attached to the anchor posts. Therefore, attempts have 

been made to develop a bottom-up fabrication technology able to produce the whole 

sensor at once. The architecture of a typical nanowire biosensor is a series of biological 

probes attached to a nanowire connecting two anchor posts. A constant voltage is applied 

to the two posts, and the current flowing through the nanowire is recorded and 

transformed in an electric signal by a transducer. When the analytes in exam are captured 

by the probes, the resistivity of the nanowire changes, affecting the current in transit and 

thus the sensor reading. The variation of the current is proportional to the amount of 

biomolecules stack on the nanowires, which gives the quantity of the analytes in the 

sample solution.  

It has been reported that carbon electrodes can be fabricated through pyrolysis in 

inert atmosphere of photolithographically patterned SU-8, in protocols known as carbon 

microelectromechanical systems (C-MEMS) and carbon nanoelectromechanical systems 

(C-NEMS) technologies [18-21]. SU-8 is an epoxy-based negative photoresist popular in 

the micromanufacturing industry because of its good chemical, thermal and mechanical 

properties [22]. SU-8 is commonly used in a large number of structural applications, 

including lab-on-a-chip, micromolding, and microfluidics [23-26].  

SU-8 photolithography is commonly used to obtain self-standing posts, which can 

be used, upon characterization, for different applications, for example cell manipulation 
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using electric field gradients [27-28]. However, many authors have reported the joining 

of the top of the SU-8 posts, when too close to each other [29-31]. This effect has been 

defined T-topping by some authors and has been attributed to light diffraction. The 

combination of light diffraction and overexposure initiates crosslinking processes of the 

SU-8 in zones that should be shielded by the opaque part of the mask. The result is an 

increased dimension of the cross-section respect to the nominal value, and therefore, 

possible interaction between posts as the gap between them narrows.  

Although T-topping is unanimously considered a fabrication defect, the 

possibility of exploiting the T-topping for producing suspended structures, nanowires in 

particular, has already been investigated by Wang and Madou [32]. The results found 

proved that suspended structures and nanowires can be obtained through pyrolysis of SU-

8, but the features obtained where considered unpredictable. At the best of my 

knowledge, no results have been obtained so far on the control of the T-topping 

phenomenon, to obtain structures of the desired dimensions through pyrolysis of 

photolithographically patterned SU-8.  

Therefore, the hypothesis of this work is that T-topping can be successfully used 

as a powerful microfabrication tool, by controlling the photolithography parameters, and 

a mathematical model can be defined to successfully predict the results of the process, in 

function of the relative parameters. More specifically, in this work, a large number of 

self-standing SU-8 posts arrays have been patterned through photolithography, while 

varying six parameters of the photolithography process: SU-8 thickness, type of contact, 

time of exposure, type of gap, nominal size and nominal gap. Because of the effect of T-



 5 

topping, not all the posts were produced as designed, but a number of different outcomes, 

such as SU-8 bridges, wires, or merged structures, were reported, depending on the 

particular combination of parameters used.  

The goal of this work is to characterize the suspended structures obtained, with 

particular focus on the nanowires, in function of the photolithography parameters chosen. 

The results of the characterization are successively analyzed to find common trends 

which will lead to define a mathematical model, devoted to predict the microfabrication 

results in function of the parameters selected. A schematic illustration of the parameters 

is shown in Figure 1.1. 
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Figure 1.1: Vertical and top view of a sample suspended structure in between two circular 

posts. Important dimensional parameters that will be used later on this work are shown. 
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CHAPTER TWO 

BACKGROUND 

 

2.1 Carbon MicroElectroMechanical Systems (C-MEMS) 

Carbon MEMS or C-MEMS are the ensemble of techniques devoted to obtain 

glass-like carbon structures by carbonization of organic polymers. Carbon derivation, or 

carbonization, is a heat treatment performed in inert atmosphere, which derives solid 

residues very rich in carbon from a variety of organic materials, such as resins, alcohols, 

polyimides and cellulose. The treatment is divided in three steps, depending on the 

temperature: pre-carbonization, carbonization and annealing. The pre-carbonization is for 

T<300ºC, when the molecules of solvent and unreacted monomer are expelled from the 

material. The carbonization happens in two sub steps: for 300<T<500 ºC, when the 

material mass is quickly reduced because of the expulsion of oxygen and others 

heteroatoms; for 500<T<1200 ºC, when hydrogen oxygen and nitrogen are expelled. The 

last step is the annealing, for T>1200ºC, used to eliminate structural defects. The final 

temperature reached during carbonization affects the degree of carbonization of the 

material obtained.  

Glass-like carbon can be derived by pyrolysis of organic polymers. The name 

glass-like carbon is derived from its resemblance to the glass surface, and their common 

fracture mode. The surface of the glass-like carbon is smooth and shiny, and the fracture 

profile is characterized by concentric ripples, like those of seashells (conchoidal fracture). 

This material was introduced in the early second half of the 20th century. Almost 

simultaneously, studies from two material scientists, the English Bernard Redfern and the 



 8 

Japanese Shigehiko Yamada, were published, promoting the atypical properties of a new 

glassy-carbon material [33-34]. Many studies and research about the microstructure and 

properties of glass-like carbon have followed, but there has not been a single 

microstructure model unanimously accepted. Some of the studies are openly 

contradicting each other such as the model of Jenkins and Kawamura (1971) [35] with 

the model of Oberlin (1989) [36], while other models are incomplete, for example Pesin 

and Baitinger (2015) [37]. The model given by Jenkins and Kawamura, is one of the 

oldest, but still largely accepted. It describes the glass-like carbon as a ball of tangled 

aromatic ribbons, randomly interconnected through covalent bonds in between carbon 

atoms. This structure is in accordance with some of the glass-like carbon properties, 

tested experimentally, such as the very low permeability for gases and liquids, the good 

conductivity, and the glass-like brittleness. Other interesting properties are the very high 

stability and corrosion resistance, even under the attack of very strong acids, the low 

oxidability compared to other carbon forms, and the very low thermal conductivity 

(compared to graphite). Although the structure of glass-like carbon is amorphous, and the 

material does not show propensity to recrystallize in graphitical structures at high 

temperatures, it is not an amorphous carbon, because it does not respect completely the 

definition of amorphous carbon, given by the International Union of Pure and Applied 

Chemistry (IUPAC). 

Initially, most of the interest on the glass-like carbon was about its gas 

impermeability and chemical inertness, which made it a good material for laboratory 

equipment. The fact of not reacting with molten metals, made it popular for producing 
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recipients and crucibles for metallurgic processes. Also, biocompatibility and good 

mechanical properties favored its use for medical and mechanical equipment. The 

number of application for glass-like carbon kept on increasing along with the technical 

progresses of its manufacturing technique. In the last twenty years, the strong drive of the 

MicroElectroMechanical Systems (MEMS) technology brought an incredible interest on 

the development of glass-like carbon obtained by pyrolysis of photolithographically 

patterned photoresist. At first and until 2002, only positive photoresists were used. Then, 

a glass-like carbon material was derived from SU-8, a negative epoxy photoresist, which 

will be described in the next section of this work. The introduction of SU-8 as carbon 

precursor opened new perspectives for the glass-like carbon, the carbon MEMS 

technology, and their possible application to microfluidics, and nanobiosensors 

manufacturing.   

 

2.2 SU-8 

SU-8 is an epoxy-based negative photoresist, which means that exposure to UV 

light triggers a cross-linking chemical reaction that makes the photoresist unsolvable by 

the chemicals used during the development. SU-8 is a solution composed by EPONTM 

SU-8 resin, which is a polymeric solid epoxy novolac resin trademark of the Shell 

Chemical Company (www.shell.com), in an organic solvent, such as cyclopentanone, 

gamma-butyloractone, or Propylene Glycol Methyl Ether Acetate (PGMEA) [38]. The 

solution may contain up to 10 wt% of triarylsulfonium/hexafluoroantimonate salt, which 

generates the acid that initiates the cross-linking reaction.  
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Specific compositions of SU-8 were patented by IBM in the early 90’s, and the 

first commercial version of the negative photoresist came into the market in 1996, as an 

exclusive of MicroChem (www.microchem.com). Recently a Swiss company, Gersteltec 

(www.gersteltech.ch), entered the market so now both companies offer a large spectrum 

of different SU-8 versions. In particular, varying the percentages of resin and organic 

solvent, it is possible to obtain photoresists of different viscosities, which affects the 

thickness of the SU-8 that can be spin coated on the substrate, and consequently the 

maximum height of the SU-8 features obtainable. At the moment, there are compositions 

that allow for spin coating in a range between few and 500µm with a single deposition, 

and up to 3mm with multiple depositions. The possibility of depositing thick layers and 

the high resolution achieved, allow to obtain features with high aspect ratios (HAR), as 

reported by Chuang in 2002 (HAR>190) [29].  

The possibility of producing features with HAR, high resolution, and smooth 

lateral surfaces is a peculiarity of the SU-8. The outstanding combination of this 

peculiarity with the good chemical, mechanical, electrical and thermal properties, erected 

the SU-8 as one of the most utilized materials for micromanufacturing applications 

involving photolithography. Low molecular weight gives high solubility, which translates 

in solution dense in resin, and consequently thicker spin coated layers. The high Young’s 

modulus gives stability to the patterned SU-8, making it usable as structural material. 

Also, SU-8 has high thermal and chemical resistance. high thermal stability, good 

adhesion to various substrates and is highly biocompatible.  

    

http://www.microchem.com/
http://www.gersteltech.ch/
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2.3 Photolithography of SU-8 

Photolithography is a microfabrication process that reproduce the pattern of an 

opaque mask onto a photoresist material. A photoresist is a material that reacts to UV 

light, and it can be defined either positive or negative. Positive photoresists are materials 

that are naturally resistant to the chemicals used during development, but they become 

solvable if exposed to an energy source. Conversely, negative photoresists such as the 

SU-8, are naturally solvable by the development solvents, but they become unsolvable 

after exposure to UV light. Photolithography processes are defined positive or negative, 

according to the type of photoresist used. The two processes are conceptually very 

similar, but differ in two substantial points. In order to fabricate the same geometry with 

positive and negative photolithography, the masks used in the two processes must be one 

the negative of the other. This is because in case of positive photoresist, the exposed part 

is washed away, while in case of negative photoresist, the shaded part is the one that gets 

removed.  

Therefore, to obtain a specific pattern, the SU-8 has to be exposed through an 

opaque mask with openings in correspondence to the target pattern. Vice-versa, when 

using a positive photoresist, the UV light has to hit the parts to be removed, therefore the 

mask has to be the exact negative copy of the one for negative photoresists. The other 

difference between the two types of photolithography is that the positive does not have a 

post exposure bake phase, since in this case there is no cross-linking reaction.  

A brief step by step overview of the negative photolithography process is given in Table 

1. A detailed description of SU-8 photolithography is out of the scope of this thesis and 
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the reader is directed to thorough recent reviews on the topic by Martinez-Duarte and 

Madou [39] and Abgrall [40]. The exposure step, however, is of particular importance in 

the fabrication of suspended wires and is described in detail next. 

Table 2.1: Photolithography process, step by step. 

STEP DESCRIPTION 
PARAMETERS 

OF INTEREST 
REMARKS 

Spin Coating The photoresist is 

deposited on a clean 

silicon substrate. 

There are many 

options for 

deposition, but the 

most common is the 

spin coating. 

Spinning time, 

speed and 

acceleration. The 

Su-8 thickness is 

inversely 

proportional to 

all the three. 

During spinning, the 

SU-8 tends to 

accumulate at the 

edge of the substrate 

(edge bead). The 

edge bead has to be 

removed by either 

using acetone or 

including a quick 

speed peak at the 

end of the spinning 

cycle. 

Soft Baking

The photoresist is 

heated on a hotplate 

at T>glass 

temperature in order 

to get rid of the 

casting solvent. 

Temperature and 

time. Usually the 

soft baking is 

performed at 

95ºC for a 

variable time, 

function of the 

SU-8 thickness. 

In certain cases, 

a prebake at 65 

ºC is needed to 

make the process 

less drastic. 

The hotplate is 

preferable to the 

oven. When baking 

in oven, the solvent 

evaporates first from 

the top surface, 

which hardens, 

trapping the rest of 

the solvent in (skin 

effect). 



13 

Exposure 

The SU-8 is 

exposed to UV light 

through an opaque 

mask. The exposed 

SU-8 produces a 

strong acid that 

initiate the cross-

linking reaction. 

Exposure dose 

(light intensity × 

exposure time) 

time of exposure, 

type of contact. 

The SU-8 is usually 

exposed with a UV 

mercury lamp. 

Overexposure and 

light diffraction are 

responsible for the 

T-topping, which

can be reduced

filtering the light of 

the components with 

wavelength 𝜆 <
365. 

Special exposure 

techniques are the 

gray scale mask, and 

the back-side 

exposure. 

Post Exposure Bake 

(PEB)
It brings to a 

completion the 

cross-linking 

reactions initiated 

during exposure 

Temperature and 

time are the 

important 

parameters in 

PEB. The 

temperature is 

usually set at 

95ºC, but an 

intermediate step 

at 65ºC could be 

added, as in the 

soft bake. 

Below 55 ºC, there is 

no polymerization 

even if the SU-8 is 

baked for a very 

long time. 

Insufficient 

temperature and/or 

time might result in 

a structure not 

completely cross-

linked, and possibly 

vulnerable to the 

development. Too 

high temperature 

and/or time could 

cause cracking of the 

SU-8, and 

sometimes even 

peeling from the 

substrate 
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Development The wafer is 

immersed in a 

developer bath. The 

cross linked parts 

resist to the 

chemical but the 

rest SU-8 gets 

washed away. 

Time and 

agitation speed. 

Time is 

important to 

guarantee a full 

development. 

Agitation speed 

is important to 

avoid failures. 

The development 

can be due to 

immersion or spray, 

and in case of 

immersion, there is 

the possibility of 

having a calm or 

agitated solvent bath. 

The immersion is 

more effective, but 

at the same time 

more aggressive than 

the spray. Agitation 

enhances the solving 

capability of the 

bath, but exposes the 

SU-8 to mechanical 

stress. 

Rinse and Dry
The wafer is dried 

from the developer. 

There are different 

drying techniques: 

nitrogen blowing, 

spinning, freeze-

drying, and 

supercritical point 

drying. 

Surface tension 

of the liquid 

where the wafer 

is immersed 

High surface tension 

and HAR posts may 

cause stiction. 

Stiction bends and 

merges the SU-8 

posts.  To avoid 

stiction, an 

intermediate liquid 

with less surface 

tension than the 

solvent can be used 

for the developing 

bath. 
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2.4 Importance of the Exposure in making suspended structures 

The purpose of the exposure is to provide the necessary energy for the 

hexafluorantimonate salt to become hexafluorantimonic acid and liberate protons. The 

protons are received by the SU-8 epoxy rings, which are initially neutral closed chains, 

but open to receive the protons, becoming positively charged oxoniums. The oxoniums 

are positively charged ions, but they do not undergo further reactions, until heat is 

administered to the photoresist. During the post exposure baking, the heat activates the 

oxoniums, and they start reacting with other ions or with the leftover neutral epoxy rings, 

generating the cross-links.  

The exposure phase is crucial in determining the SU-8 structures that will be 

microfabricated. In fact, the cross-linking is a reaction localized to the SU-8 parts with 

ionized epoxy rings, and the amount of the reaction is proportional to the number of 

oxoniums, and thus, to the exposure dose received. In case of underexposure, the cross-

linking reaction may result incomplete, and the SU-8 may not resist to the development. 

Increasing the exposure dose, will not only fully cross-link the exposed areas, but the 

reaction will also start penetrating more deeply into the material, and propagating 

sideways. Therefore, the amount of exposure affects the fidelity of the SU-8 structures to 

the mask pattern.  

In an ideal photolithography process, with infinite resolution and perfect setting of 

the process parameters, the SU-8 would perfectly match the pattern designed on the 

mask, and the structures sidewalls would be perfectly smooth and vertical. In practice, 

patterns are broadened in their dimensions due to overexposure and light diffraction. 
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Light diffraction is the bending of light rays as they pass in proximity of an 

opening edge. The amount of bending increases when the opening size is comparable 

with the light wavelength, and therefore, it is very important in SU-8 photolithography. 

Because of light diffraction, the exposed area on the SU-8 is actually bigger than the ideal 

one, and becomes even bigger as the distance in between the mask and the SU-8 

increases. This, in combination with the overexposure, will cause undesired phenomena 

such as T-topping, which is the object of the next section. 

  

2.5 T-topping 

T-topping is a loosely defined term in the SU-8 photolithography literature. T-

topping defines a broadening of the SU-8 top surface, respect to its designed value and 

the rest of the features. A vertical section of an SU-8 post would show a peculiar T-

profile, from which the phenomenon takes the name of T-topping, as shown in Figure 

2.1. 
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Figure 2.1: A) SEM picture of SU-8 feature overexposed by 100% [41]; B) SEM 

picture of a carbon plate [32]; C) SEM picture of a T-topped SU-8 ribbon, exposed with 

100µm contact distance [29]. 

T-topping is essentially a photolithography imperfection, and has been considered

by several authors as a problem when fabricating structures that are closely located. 

Besides the loss of resolution of the process, it precludes the possibility of obtaining 

perfectly straight walls, and it may also cause a loss of functionality. For example, self-

standing vertical SU-8 posts may merge due to T-topping, becoming unusable. For all 

these reasons, significant efforts have been undertaken to minimize the entity of the T-

topping.  

A solution to this problem is to reduce the air gap between the mask and SU-8, 

which can be obtained choosing contact as type of exposure, instead of proximity or 
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projection. In soft contact photolithography, the mask is directly laying on the SU-8, so 

the distance is theoretically zero. In reality, however, the mask stops at the first contact of 

the two surfaces, which happens when the highest peak of one of the two surfaces 

touches the other. The resulting air gap is variable from point to point based on the 

topography of the surfaces. In order to minimize the topography variation and reduce the 

gap, the spin coating parameters have to be optimized, and the edge bead carefully 

removed. Also, the gap can be reduced by applying a force that pushes the mask against 

the substrate (hard contact). 

Another solution to limit the T-topping, is the introduction of a filter to block the 

light waves with wavelengths <350 nm. In fact, the SU-8 has the maximal absorption for 

the light with wavelength 365nm, which can get as deep as 2mm, while its absorption of 

light wavelengths<350nm is very shallow. Eliminating such waves means eliminating 

light that would expose only the surface of the SU-8 layer, and thus reducing the T-

topping.  

Lastly, the T-topping can be reduced optimizing the exposure time. As mentioned 

in the previous section, overexposure increases the cross-linked area at the top of the SU-

8 layer, thus, limiting the exposure to the minimum required to fully cross-link the 

nominal, area reduces the T-topping.  
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2.6 Turning T-topping into a microfabrication tool 

The previous section explains in details the phenomenon of T-topping, the 

problems connected to it, and some possible solutions. Unfortunately, no matter the 

strategy adopted and the effort spent, it is impossible to completely eliminate it. 

Nevertheless, on the other hand, it is possible to see the T-topping as a microfabrication 

resource. The biggest risk with the T-topping is that structures designed to be separated, 

may come out connected. However, if the ultimate goal is to obtain connected structures, 

T-topping becomes, all of a sudden, a useful resource. For example, if the objective was

obtaining a structural layer of SU-8 minimizing its weight, having SU-8 pillars connected 

by simple bridges, or entirely covered by a thin SU-8 film, could be preferable respect of 

a thick layer of SU-8.  

Furthermore, thinking of the SU-8 as a precursor of carbon electrodes for C-

MEMS applications, a suspended structure connecting two adjacent posts, could be the 

electrical connection of two carbon electrodes. This is exactly the application envisioned 

in this thesis, which strives to fabricate SU-8 suspended structures to derive carbon 

electrodes for C-MEMS and biosensors in the micro and nanoscale. The hypothesis of 

this work, is that T-topping can be exploited to fabricate suspended bridges and wires. In 

these terms, the focus of this work is not to eliminate the T-topping, but find a way to 

control it.  

It has been explained that the entity of the T-topping is greatly depending on the 

exposure dose and the distance between mask and SU-8. These translates immediately 

into two of the process parameters analyzed in this work: exposure time and type of 
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contact. Also, it is hypothesized that other parameters will affect the entity of the T-

topping, such as the nominal size of the features, their shape and their nominal distance. 

Therefore, if it possible to define the relationship among the variation of these parameters 

with the amount of T-topping first, and with the final patterns second, it will be actually 

possible to consider the T-topping as a powerful microfabrication tool.  
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CHAPTER THREE 

PARAMETERS OF INTEREST 

3.1 General Assumptions 

As previously mentioned, T-Topping indicates the broadening of the top section 

of the feature respect to its body, in the case of SU-8 posts. An example is given in Figure 

3.1.   

Figure 3.1: Exposure of an SU-8 post in vertical view. 
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Such broadening is due to the combined effect of multiple process parameters: 

exposure dose, type of contact, geometry and nominal size of the shape. As the top 

section broadens, the posts get more packed, eventually leading to the interaction of the 

adjacent ones, and sometimes, to the formation of suspended structures, as shown in 

Figure 3.2.  

Figure 3.2: SEM picture of an array of hexagonal posts, featuring suspended bridges. 

Let us look in greater detail the dynamics behind the formation of the suspended 

structures. As explained in previous sections, the SU-8 is a negative photoresist, thus the 

parts of the SU-8 that are desired to stay need to be exposed to light, to initiate the cross-

linking reaction. The part exposed to light is the first to cross-link, and successively the 

cross-linking propagates through the SU-8 layer. The energy given to the cross-linking 

process is dependent on the intensity of the light source and the time of exposure. The 
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intensity of the light used for this fabrication process is 10 𝑚𝑊/𝑐𝑚2, and the minimum 

exposure time is 10 𝑠, which gives an exposure sufficient to crosslink all the way through 

the bottom of the SU-8 layer. Hence, the regions in correspondence of the mask slots are 

fully cross-linked and all the post anchors are formed independently from their size or 

shape.  

The areas surrounding the nominal size of the post undergo cross-linking for 

effect of overexposure and light diffraction from the mask edges. Nevertheless, the 

diffracted light is not as concentrated as the light that hits the surface straight, so the 

entity of the cross linking fades as it goes further from the post. Consequently, the 

broadened area is not necessarily receiving enough energy to fully crosslink the SU-8. 

Looking at the top view of an SU-8 post, from the center going outward, the following 

areas can be seen: a fully cross-linked area down to the substrate (A in Figure 3.3), a 

cross-linked area suspended (B in Figure 3.3), and an area partially cross-linked, but not 

sufficient to resist the development (C in Figure 3.3).  
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Figure 3.3: Shift from fully cross-linked to partially and not cross-linked areas, in 

function of the distance from the post center. 

Considering an array of posts, so close to each other that the partially cross-linked 

areas of two adjacent posts intersects, the quantity of energy received by the intersection 

might be enough to complete the cross-linking process, as shown in Figure 3.4. 
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Figure 3.4: Effect of light exposure on the interaction between two adjacent circular 

posts. 

As the time of exposure increases, the SU-8 behaves as follows: the top surfaces 

stretch towards each other; small spikes start protruding in the same direction, until they 

connect; the first points to connect are the closest of the two facing profiles, and the 

connection will most likely be a suspended wire; then, numerous new connections are 

established along the profiles, forming messy texture of wires and spikes, which 

eventually become a single, continuous, wide bridge. This explains why the structures 

form along the vertical and horizontal axis of the array, but not in diagonal (longer 

distance). If the exposure continues past this point, the structures expand sideways, filling 
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the gaps within the array, and finally generating a continuous film over the posts. At the 

same time, the exposure affects the penetration of the cross-linking process, so that the 

suspended structure in the vertical view is not simply a bar in-between two posts but 

looks like an arch. As for the width, the thickness will increase with the exposure time, 

and will eventually generate a wall all the way to the substrate. An example of the effect 

of overexposure on a suspended bridge is shown in Figure 3.5, where the bridge in 

between two triangular posts is already half way to the bottom, and tiny connections are 

progressively filling the gap. 

Figure 3.5: SEM picture of the effect of overexposure on the width (w) and thickness (t) 

of a suspended bridge in between triangular posts BTB. 

Since the final product of the photolithography process is the result of the 

combined influence of the type of contact, exposure dose, type of gap, nominal gap, 

nominal size, and SU-8 thickness, it is not possible to identify the exact influence of a 

single parameter on the process (all parameters are explained in detail in the following 
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subsections). Therefore, in order to formulate a hypothesis and later on to analyze the 

results, it is necessary to fix all the parameters but the one of interest at a time. The result 

of such analysis is still dependent on the values chosen for the fixed parameters but the 

single “degree of freedom” of the system allows to determine common trends that repeat 

throughout the different setups.   

3.2 Type of Contact 

There are three possible types of contacts: hard contact, soft contact, and 

proximity. 

Proximity indicates that the mask is fixed to a distance of 20 𝜇𝑚 from the SU-8 

layer. In soft contact, the mask is laying directly on the SU-8 layer, touching, but with no 

additional pressure applied. Hard contact indicates that the mask is laying on the SU-8, 

and a sort of clamping force is applied to keep them pressed against each other. The type 

of contact determines the clearance between the bottom of the mask and the top of the 

SU-8. The maximum clearance is obtained in proximity because there is no actual 

contact. In the case of soft contact, the distance between the two surfaces is, in theory, 

zero, but, in practice, the surface roughness of the two surfaces sets a stop whenever a 

point of the mask enters in contact with a point of the SU-8 layer. Therefore, the distance 

in between the two bodies varies from point to point, according to the topography of their 

surfaces. In hard contact, the mask is stopped at the same distance of the soft contact but 

the extra force applied on the mask presses it against the SU-8, flattening the roughness 

peaks that set the stop point and, consequently, reducing the clearance. 
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To understand the influence of the distance between the mask and SU-8, let us 

consider parallel light rays hitting the mask surface perpendicularly and from above, 

which is the outcome of a light source fixed far enough above the mask. The mask, as 

described in the photolithography section, is made of an opaque material were slots have 

been patterned in correspondence of the features desired on the photoresist layer. The 

rays hitting the opaque mask are totally absorbed and reflected. In correspondence of the 

slots, the rays pass unobstructed and unaltered and hit the surface of the SU-8 

perpendicularly and with full intensity. Instead, around the slots edges, a part of the rays 

is deflected at a certain angle, which causes a larger area of SU-8 to be exposed to light 

comparably to the nominal profile. The projection of the initial straight light rays is 

actually a cone, after passing through the mask slots. Hence, the further the SU-8 layer is 

from the mask, the larger the area exposed to light will be.  

Based on the previous considerations, the first hypothesis is that as the distance 

in-between the mask and the SU-8 increases so does the entity of the T-Topping, 

facilitating the formation of suspended and merged structures. Thus, the wafer obtained 

by proximity should be clearly the one featuring the most number of bridges, and the 

longest nominal gaps between adjacent posts. Following these two criteria for the ranking 

of the types of contact, the second type should be soft contact, and the third one, hard 

contact. In particular, in hard contact, the distance between the mask and the SU-8 is 

theoretically zero and practically very small, so suspended bridges are expected only at 

the shortest nominal gaps. 
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3.3 Exposure Dose 

The exposure dose is probably the parameter that influences the most the process 

outcome. Exposure dose is the product of the light intensity and the time of exposure. 

The light intensity is a constant determined by the type of lamp used for the 

photolithography, in this case, 10 𝑚𝑊/𝑐𝑚2. The time of exposure can be varied freely 

and such variation does not require any additional change of mask or setup. The influence 

of the exposure dose is quite straightforward. As previously seen, the cross-linking 

process of the SU-8 is the direct consequence of the exposure dose. The amount of cross-

links increases with the exposure dose, and when a part is fully cross-linked, that part will 

become resistant to the development process, and will, consequently, be included in the 

final product. Also, as the time of exposure increases, the cross-linking process penetrates 

into the SU-8 layer until the substrate and propagates sideways on the lighted surface. 

This leads to the following hypothesis for the exposure dose. A longer exposure time: (1) 

increases the area of the SU-8 that will cross-link till the bottom, resulting in larger posts; 

(2) increases the area that will fully crosslink on the top surface of the material (bigger T-

topping); (3) facilitates the formation of suspended structures, walls, and merged shapes. 

In this experiment, each wafer was divided in quarters, and each quarter of a 

wafer was exposed for: 10s, 20s, 30s, and 40s, respectively. The minimal exposure, 10 

seconds, is enough to fully crosslink the SU-8 till substrate in the area hit by the 

unobstructed light rays, but not enough to fully crosslink the entire lighted area. Thus, 

observing in sequence arrays of posts that get exposed to 10s, 20s, 30s, and 40s, while 

keeping all other parameters fixed, it is expected to find larger shapes, new bridges where 



30 

there were not before, or wider bridges than the previous ones, and eventually walls and 

merged shapes where there were previously suspended bridges.  

3.4 Nominal Gap 

The nominal gap indicates the minimal distance in vertical and horizontal 

directions, in-between two consecutive slots of the mask and it depends on the shape of 

the slots. If the slots have a square shape, the nominal gap is the distance between the 

sides of two squares. If the slots are triangles, it is the distance between two points, or 

two sides, or a point and a side, depending on the orientation of the shapes. A significant 

difference of the nominal gap comparably to the other parameters, is that the nominal gap 

is decided before even starting the photolithography process, when the mask is produced, 

and changing it, would mean having to produce a new mask. It is worth to note that the 

actual distance between two shapes is not the actual nominal gap, but the fabricated gap.  

To obtain the fabricated gap, the increase of the actual SU-8 shapes respect to 

their nominal size on the mask has to be subtracted from the nominal gap. Due to the T-

topping effect, the actual shapes are either larger or equal to their nominal size (they are 

equal in the ideal case where there is no T-topping at all), thus the fabricated gap can only 

be smaller or equal to the nominal gap.  

As previously explained, shapes closer to each other are more likely to interact 

and form a connection. Therefore, the hypothesis is that decreasing the nominal gap, the 

formation of suspended structures, and eventually merged shapes will be facilitated.  Two 

posts far apart would show no bridges. Repeating the experiment for shorter gaps, the 
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outcomes would be spikes, broken bridges, stable bridges, walls, and finally merged 

structures, in this exact order. If the nominal gap was the only parameter under 

examination, it would be relatively easy to find out a reasonable range of distances to 

obtain each of the outcomes. Nonetheless, since there are other parameters that come into 

play, such correlation is not possible because two pairs of posts at the same distance, 

might have or not bridges, depending on the combination of the other parameters.  

In this experiment, there are 7 different nominal gaps: 45µm, 30µm, 25µm, 20µm, 

15µm, 10µm, and 5µm, for each exposure type and shape of the posts. The features 

obtained when all the other parameters are fixed, are expected to obey to the trend 

previously mentioned, in the same order, but repeating some of the outcomes, and 

skipping others.  

The nominal gap and the exposure dose are the two parameters that influence the 

most the formation of suspended structures, and they are dependent on each other. Fixing 

the exposure time at any value, suspended structures could be obtained in the majority of 

cases if the nominal gap was decreased just enough. Vice-versa, for a fixed nominal gap, 

suspended structures could be obtained in the majority of cases, increasing the time of 

exposure just enough.  

3.5 Type of Gap 

The type of gap is a parameter created in this study to refer to two actual 

parameters of the process, the shape and orientation of the posts in the arrays. The shapes 

used for this experiment are all regular geometrical figures, and precisely: hexagons, 
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squares, diamonds, triangles, circles. These shapes are aligned along an axis of 

symmetry, so that adjacent posts in vertical and horizontal direction may be facing each 

other differently, with a point or a side. There are cases where the elements facing each 

other are: two points (point-to-point or “PTP”), two sides (side-to-side or “STS”), one 

point and a side (point-to-side or “PTS”), and two circular elements.  

The hypothesis, for the type of gap, is that when the closest elements of the two 

adjacent posts are sides, the interaction of the two shapes is easier than when the two 

elements are points. The explanation of such hypothesis is that in the case of sides, the 

conditions for the initial connection between the shapes are met simultaneously all along 

the sides. Hence, it is possible that the initial connection happens in more than one point 

at the same time, facilitating the outcome of a suspended structures. An additional 

consideration is that, even though generic structures are more likely in the STS case, if 

the outcome desired is a suspended wire (thinner than 1µm), the odds are in favor of the 

PTP case.  

Circular elements and PTS are two exceptions, the former happens only in the 

case of circles and the latter only in the case of triangles with the vertex facing the base. 

However, their behavior is similar to shapes STS and PTP respectively, and thus they are 

considered part of those two groups 
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3.6 Nominal Size 

The nominal size refers to the characteristic dimension of the particular shape 

considered. For example, in the case of the circles, it indicates the diameter. For all the 

other shapes, it indicates the length of a side. This parameter is defined nominal because 

it refers to the ideal dimensions carved on the mask. The SU-8 posts’ size is actual bigger 

than the nominal, due to the T-topping effect induced by diffraction of light and 

overexposure of the photoresist. At a first thought, a change of the shape size should not 

significantly influence the interaction of adjacent posts, as long as the gap in between 

them is the same. Nevertheless, it is foreseeable that the broadening due to T-topping is 

more conspicuous when the nominal size is bigger. Conversely, the nominal gaps remain 

the same, resulting in a reduction of the fabricated gap, and consequently, influencing 

indirectly the formation of suspended structures.  

The nominal size is once again a parameter set during the mask fabrication and 

cannot be varied without reworking the mask, or creating a new one. In this experiment, 6 

nominal sizes have been taken into consideration: 160µm, 80µm, 40µm, 30µm, 20µm, 

and 10µm. 

The hypothesis is that among arrays with different nominal size, there is not a 

significant difference in the formation of suspended structures, although bigger sizes may 

slightly favor it. Also, a larger nominal size is hypothesized to help the posts remain 

straight upright during the development phase, when they are in danger of bending and 

sticking together due to stiction (the arrays failing in such way are considered irregular 
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and have no use for the purpose of this study). In other words, irregular features are 

expected to be found for the 10µm and 20µm arrays, but not for the 160µm.  

3.7 SU-8 Thickness 

The SU-8 thickness is the height of the SU-8 layer, which has been spin coated on 

the wafer substrate. It is the same height of the SU-8 posts after exposure and 

development. This thesis does not provide a comprehensive study of this parameter. 

However, it is possible to assume that the SU-8 thickness does not directly affect the 

formation of suspended structures, but it is important for the stability of the posts 

themselves. In fact, as previously mentioned, slender posts are more subjected to stiction. 

Therefore, the wafers with a SU-8 thickness of 300µm, are expected to have many more 

irregular arrays than the wafers with SU-8 thicknesses 50µm and 100µm. This parameter 

will be the subject of future studies.  



35 

CHAPTER FOUR 

MATERIALS AND METHODS 

This section starts with a detailed description of the microfabrication process that 

produced the specimens analyzed in this study. A depiction of a sample specimen will 

follow, explicating the geometrical shapes and dimensions, as they would have been if 

the SU-8 was a perfect copy of the photolithography mask. Finally, the last part of this 

section will focus on the methodology which was followed to collect and analyze the 

data. 

4.1 Microfabrication 

All the specimens produced were fabricated through photolithography of SU-8 

(GM1075 Gersteltec, Switzerland). An exhaustive introduction on both, SU-8 and 

photolithography, has been already given in chapter two. Therefore, this section will not 

reiterate the theory behind the microfabrication process, but will present, step-by-step, the 

choice of the photolithography parameters.  

The process starts with a clean silicon substrate. The wafer has a cylindrical shape 

with diameter 10.16cm, and thickness roughly 550µm. The circular profile of the wafer 

has two perpendicular cuts close to the borders, which allow to align the substrate to the 

mask. Figure 4.1 shows a sample wafer. 
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Figure 4.1: Wafer #22641 (100µm-hard contact). 

Starting from analogous substrates, 14 different wafers have been obtained, 

varying the SU-8 thickness and the type of contact of the photolithography mask. 

Possible values for the thickness are 50µm, 100µm and 300µm, while possible types of 

contact are soft, hard and or proximity. Since this study does not include an analysis of 

the influence of the SU-8 thickness, only wafers with SU-8 thickness of 50µm have been 

analyzed.  

For these wafers, a layer 50µm-thick SU-8 was spin coated and soft baked 

following the recommended guidelines. Figure 4.2 shows the spin coating operation in a 

graph, with rotational speed in rpm in the y-axis, and time in seconds in the x-axis. 
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Figure 4.2: Spin coating cycle. 

The rotational speed goes from 0 to 1700rpm in 17 seconds, with a constant 

acceleration of 100rpm/s. The speed is kept constant for 100s, to ensure a good diffusion 

of the SU-8 throughout the whole substrate. The operation is concluded with a sudden 

speed peak, to remove the edge bead, which is the SU-8 accumulated at the substrate 

edge. The speed goes to 2700 rpm and back to 1700rpm in just 2s, and finally decreases 

till stopping with a constant deceleration of 100rpm/s (same as the acceleration).  

After spin coating, the wafer was soft baked on a hotplate, following the cycle 

shown on Figure 4.3. 
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Figure 4.3: Soft baking cycle. 

The heat treatment consists of two baking steps, the prebaking at 40°C for 30 min, 

and the soft baking at 130°C for 15 min. The preheat is useful to make the treatment 

smoother, limiting the formation of cracks in the SU-8. All the temperature gradients, 

both heating and cooling, have the same slope of 4°C/min. The baking takes 

complessively 95.5 min.  

The exposure of the photoresist was done in a Suss MA6 Mask Aligner. A 

parameter of study here was the time of exposure, which translates directly into the 

exposure dose received by the SU-8. The light source was a mercury lamp with intensity 

of 10 mW/cm2, and light emissions of wavelength 365nm. The times of exposure studied 

were 10, 20, 30 and 40s. In order to obtain 4 different exposure doses on the same wafer, 

the exposure was performed in 4 phases of 10s each. For the first 10s, all the wafer was 
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exposed through the patterned photomask. For the next phase, one quarter of the wafer 

was shielded with a second mask, while the others were exposed for other 10s, so on and 

so forth, covering an additional quarter each phase. 

The post exposure bake was a single step heat treatment at 95°C for 25 min. 

Regarding the soft baking, both heating and cooling were performed with a gradient of 

4°C/min. The post exposure bake cycle is shown in Figure 4.4. 

Figure 4.4: Post Exposure Baking cycle. 

The final steps of the photolithography process are the development, which was 

performed by 3-5min immersion in PGMEA bath, with manual agitation, and hard bake 

at 190°C for 15 min.  
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4.2 Geometry and Dimensions 

A wafer is divided into 4 quadrants, depending on the exposure time. Aligning the 

wafer with the long straight side on the bottom, the exposure time of the top left quadrant 

is 10s, and increases by 10s clockwise for each quadrant. Within one quadrant, posts are 

grouped primarily by their shape, and secondarily by their size and distance. In this 

section, all geometrical and dimensional values are nominal values, as they were 

theoretically designed on the photolithography mask. In reality, the SU-8 is not a faithful 

reproduction of the pattern carved in the mask, due to the effect of T-topping and other 

imprecisions. Although not corresponding to the real measurements on the wafers, the 

nominal values are fixed and comparable, making them suitable parameters for studying 

the photolithography process.  

The possible geometrical sets are 6: hexagons, diamonds, squares, circles and two 

groups of triangles. One of the two sets of triangles has all the shapes oriented in the 

same way, so that the point of one triangle faces the side of the next one. In the other 

group, every row is rotated by 180°, so that, alternatively, consecutive rows are facing by 

two points or two sides. 

Every set contains 42 subsets, which differ in terms of size and distance of the 

posts. The sizes studied are: 160, 80, 40, 30, 20 and 10µm, while the distances studied 

are: 45, 30, 25, 20, 15, 10 and 5µm. Each subset is a 5×5 array of SU-8 posts, where both 

distance and size are fixed. Therefore, for each of the 42 possible combinations of size 

and distance (252 combinations considering all the three: shapes, sizes and distance), 
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there are at least 20 possible structures in the x-axis and other 20 in the y-axis, which are 

enough to collect a significant amount of measurements.  

The whole pattern of shapes, sizes and distances repeats for every exposure time. 

The 20, 30 and 40s patterns can be obtained from the 10s one, by symmetrically 

projecting them through the y-axis, origin and x-axis respectively. Finally, 3 different 

wafers were analyzed, one for each type of contact. The last parameter to take into 

account would be the SU-8 thickness, which was neglected in this study. 

4.3 Methodology 

The SU-8 structures were first analyzed using optical microscopy (Nikon Eclipse 

LV100) and the native Nikon NIS Elements BR software. The optical microscope in our 

laboratory is mounted on a 3 degrees of freedom support, which allows the objectives to 

translate in x, y and z direction. The microscope has 4 Nikon TU PLAN ELWD 

objectives, with magnifying power 5x, 10x, 20x and 50x. The objective in use is the one 

aligned with the z-axis of the microscope. The output is recorded by a Zyla SCMOS 

(Andor Technology) camera, which is installed on the vertical eyepiece on top of the 

objectives. The camera records the images and sends them in real time to a desktop 

computer. Measurements can be taken directly on the screen, through the measurement 

toolbox of the NIS software. The SU-8 features were observed from top view, with the 

wafer fixed onto the microscope Tabletop, perpendicular to the z-axis of the machine, 

and with the straight sides aligned to the x and y-axis.  
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Considering all the different parameters, more than 3000 sets (arrays 5×5) were 

obtained, unique for their combination of type of contact, exposure, shape, size and 

distance. Despite the large number of different sets, not all of them are of interest in this 

specific study. Since the focus of this study is the characterization of suspended wires and 

bridges, only arrays featuring suspended wires and bridges are considered interesting, 

while arrays where the majority of the posts are merged, irregular, presenting broken 

bridges or no bridges at all, were neglected. However, the fact that the process parameters 

vary discretely, and not continuously, has to be considered. While extensive 

measurements were only taken for the arrays featuring suspended structures, the 

information of which parameters combination generates no bridges or merged structures 

is important as well. Therefore, a double step approach is adopted as methodology, first a 

qualitative analysis of the whole wafer is conducted, followed by quantitative analysis of 

the sets of interest.  

In the qualitative analysis, a color and a code are assigned to each possible SU-8 

features, as shown in Table 4.1. 
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Table 4.1: Colors and codes used for the qualitative analysis. 

NB No Bridge 

S Spikes 

BB Broken Bridges 

SB Stable Bridges 

M Merged 

IR Irregular 

Then, for every type of contact, exposure dose and type of gap, colored Tables 

7×6 were generated. Each Table contains 42 cells, one for each of the 42 subsets sharing 

the same values of three parameters. Every subset is associated to the proper color and 

code, according to the feature that repeats more frequently within the 5×5 array. Also, 

every set is numbered with numbers ranging from 1 to 42, to identify the particular 

combination of size and nominal gap. In the Tables, as in the wafer, the sets are ordered 

by size in columns and by nominal gaps in rows. The numeration starts from the top left, 

with set number 1 being the array with size 160µm and nominal gap 45µm. The count 

increases going down the first column, and then proceeds to the 45µm gap of the next 

column. When a particular shape has associated two or more types of gap, two different 

Tables were generated, for example, hexagons STS and hexagons PTP.  Table 4.2 is the 

sample Table for hexagons side to side, 50µm thickness, exposed in soft contact for 30s. 
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Table 4.2: Sample qualitative analysis for hexagons STS, obtained with 30s exposure in 

soft contact.  

 Size 

Gap    (µm) 

(µm) 
160 80 40 30 20 10 

45 SB NB NB NB NB NB 

30 SB BB SB S NB NB 

25 SB SB SB SB SB NB 

20 SB SB SB SB SB SB 

15 M M M M M M 

10 M M M M M M 

5 M M M M M M 

The most direct information illustrated by the colored Table 4.2 is the position of 

the sets with stable bridges, making the second step of the methodology, the quantitative 

analysis, much faster. Also, the point where the subsets switch from NB to SB, indicates 

that somewhere in the range between the nominal gaps of the two subsets, there is the 

maximum distance allowed to have suspended structures. Analogously, the range of the 

minimum distance can be found where the SB switch to M. Finally, comparing multiple 

Tables is a quick way to identify possible trends regarding the formation of bridges.  

Once the qualitative analysis is completed, all the SB sets have been identified, 

and the quantitative analysis can start. In this part, actual measurements were taken and 

recorded, to obtain a database containing the real dimensions of the fabricated shapes, the 
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length of the bridges (or the gap in between two posts if the set has no bridges), and the 

width of the bridges. To give statistical significance to the analysis, a minimum of 4 

measurements of each type was taken. With the x-y view, it was not possible to measure 

anything in the z-axis, but it was still possible to get an idea of the depth from the 

different gray scale of the features, depending on their position on the z-axis. 

Further analysis was conducted via Scanning Electron Microscopy (SEM 

S3400N, Hitachi, Japan). Imagines obtained through SEM have much more resolution, 

making it possible to see wires as thin as 200nm. Also, the scanning electron microscope 

allows to incline the wafer, and consequently obtain 3D views of the posts. Three 

dimensional images make more easy the identification of suspended structures, respect 

the ones that are connected to the bottom, which was particularly helpful in the start, 

while trying to interpret the meaning of the gray shades in the pictures taken with the 

optical microscope. 

After completing the analysis on the SU-8, the wafers were pyrolyzed to obtain 

the desired carbon structures. The pyrolysis was performed in a furnace (TF1700, Across 

International), in nitrogen atmosphere. The carbonization heat cycle is shown in Figure 

4.5. 
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Figure 4.5: Carbonization cycle. 

The heat treatment has two steps. The temperature is initially brought to 300ºC where it 

remains for 30 min. During this phase, also called pre-carbonization, the solvent is 

eliminated from the SU-8. Then, the SU-8 is carbonized at 900ºC for 75min. The heating 

rate is, in both cases, a constant 5ºC/min, while for the cooling, the wafer is left inside the 

turned off furnace for 12h. Carbonization induces stresses and shrinkage, which 

definitely change the geometry of the suspended structures previously measured. 

Therefore, after carbonization, the wafers have to be analyzed again, with the same two 

steps methodology used for the SU-8. The results of both, SU-8 and carbon analysis, are 

the focus of Chapter 5 “Results”. 
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CHAPTER FIVE 

RESULTS 

In this chapter the results of the qualitative and quantitative analysis are presented. 

Every process parameter is analyzed in a dedicated section for the SU-8 fabrication, 

while the same analysis is repeated for structures obtained post carbonization. The 

chapter ends with a discussion section, which summarizes the results obtained and 

develops a mathematical model for the prediction of the formation of suspended 

structures.  

5.1 General considerations 

Upon characterization of the different structures, the following cases were identified: 

No Bridges (NB), Broken Bridges (BB), Stable Bridges (BB), Walls/Merged (M) and 

Irregular/Missing (IR). The possible features obtainable from the photolithography 

process are shown in figure 5.1.A-E.  

A. No Bridges (NB): the posts are vertical and self-standing, there is no visible

interaction in-between the posts.

B. Broken Bridges (BB): there is an obvious attempt of the two posts to connect but

the structure is either visibly cracked, interrupted, or incomplete.

C. Stable Bridges (SB): regular, homogeneous and continuous suspended structures.

A structure is classified as “bridge” if it is more than 1µm wide, like the

horizontal ones in the picture. Otherwise, the structure is classified as “wire”, like

the vertical ones.
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D. Merged/Walls (M): the first case indicates that the posts are actually intersecting,

so that is not possible to identify single posts anymore; the second case indicates

that the structure is not suspended, but extends all the way to the bottom. These

two are grouped, since they are equally undesirable.

E. Irregular (IR): whenever the posts are not straight upwards, but bent, strongly

deformed, or completely missing, they are considered irregular.

Figure 5.1: SEM images of: A) No Bridges; B) Broken Bridge; C) Suspended Bridges 

(Horizontal) and Wires (Vertical); D) Merged, note that the wall extends throughout the 

height of the posts; E) Irregular. 
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The possible outcomes illustrated above are the result of the combined influence of 

all the photolithography parameters. The ones analyzed in this work, as mentioned 

previously, are: type of contact, exposure time, nominal size, nominal gap, and type of 

gap. In order to obtain information on the influence of a single parameter on the 

formation of suspended structures, each parameter was studied fixing all the other 

parameters at the same time. This allowed to generate graphs where the characteristic 

dimensions of the bridges, length and width, were a function of the single parameter of 

interest. 

The graphs obtained this way are not very informative by themselves, but become 

very meaningful when compared to each other. The graphs can be grouped and compared 

to identify possible trends. For example, examining the exposure time, the information 

sought is the behavior of the bridges formation as the exposure goes from 10s to 40s. 

There are no data that can tell a priori whether a specific time of exposure will result in 

self-standing, connected or merged structures. The reason is that, within the same 

quadrant with fixed exposure, there are bridges, merged structures, and self-standing 

posts depending on the shape, size, and distance of the posts. A possibility is plotting a 

curve for every exposure time, in a graph where the y-axis is either the fabricated length 

or the width of the suspended structure (which are the two characteristic dimensions of a 

bridge), and the x-axis is the nominal gap. Such graph allows to determine whether the 

bridges are longer or shorter, wider or thinner, as the exposure increases from 10s to 40s, 

for a specific nominal gap.  
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The results shown in the exposure/gap plot do not take into consideration the type of 

contact, type of gap, and size of the shape. For a complete analysis, a different graph for 

each of the possible combinations of these parameters has to be obtained, and then, the 

results have to be compared altogether to determine if there is a trend associated with the 

exposure time. Finally, all the parameters have to be analyzed in the same way as the 

exposure time. Moreover, not all the combinations produced enough suspended 

structures. Therefore, for the sake of brevity and clarity, in order to demonstrate the 

hypotheses formulated in Chapter 3only a set of representative graphs will be presented 

in the results section.  

5.2 Type of contact 

As seen in Chapter 3, type of contact refers to the distance in between photomask 

and SU-8 layer, during the exposure step of the photolithography process. According to 

the hypothesis formulated, the formation of suspended structures should be “facilitated” 

as the distance increases. “Facilitated” is a controversial term, and requires a further 

explanation because it does not necessarily mean that the number of suspended structures 

will be increased. The formation of bridges is facilitated in the sense that increasing the 

distance, the probability of creating structures at higher nominal gaps increases. At the 

same time, the probability of obtaining merged structures at higher nominal gaps also 

increases. Therefore, the number of subsets featuring stable bridges does not always 

increase, but these subsets are usually shifted to larger nominal gaps (the top of the 

colored tables in the qualitative analysis).  
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Figure 5.2A-F illustrates plots of fabricated gaps against the nominal ones for 6 

different types of gap. Each graph has 3 curves: soft contact, hard contact, and proximity.  

Before talking about the actual results, a few remarks to better understand the graphs will 

be made. The fabricated gaps in Figure 5.2.A-F are plotted in function of only two 

parameters, type of contact and nominal gap. The exposure time was fixed to 40s, and the 

size of the shapes to 160µm. Among all the possible combinations of parameters, this 

particular one was chosen as representative, because it has the highest number of subsets 

with stable bridges. A selection was also made on the types of gap. Figure 5.2 contains: 

A) hexagons PTP; B) hexagons STS; C) triangles BTB facing by the points adjacent to

the bases; D) diamonds; E) squares; and F) circles. Triangles PTB and triangles BTB 

facing by the bases or by the points opposite to the bases were neglected in most of the 

analysis, because they did not generate many reliable structures respect to other types of 

gap. Furthermore, in the graphs, every point indicates a specific subset, which is 

identified by the nominal gap on the x-axis. With all the other parameters fixed and the 

nominal gap free to vary, a curve can have a maximum of seven points, one for each 

nominal gap: 5, 10, 15, 20, 25, 30, and 45µm. Since the y-axis represents the length of 

the structures, there are only points for the subsets corresponding to stable bridges. Also, 

these subsets can only be consecutive, since it is not possible, for example, to have 

bridges at 20 and 30µm, but not at 25µm, unless the structures of the middle subset broke 

for reasons independent from the process parameters. Therefore, in all the figures, all the 

subsets with nominal gap values at the right of the curves, have associated either broken 

bridges or no bridges, while all the subsets at the left of the curves have associated walls 
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and merged structures. For example, the blue curve of figure 5.2A shows that, for 

hexagonal posts of dimension 160µm, facing point to point and exposed for 40 seconds in 

proximity contact: at nominal gaps 5 and 10µm, there are merged structures; at 15, 20 

and 25µm there are stable structures; and at 30 and 45µm there are no bridges or broken 

ones.  
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Figure 5.2A-F: Fabricated gap against nominal gap for different types of contact. The 

results are shown for the case of exposure fixed to 40s, and nominal size of 160µm. 
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In Figure 5.2, it can be observed that every type of gap and type of contact 

produces 1 to 4 subsets with stable bridges when 160µm shapes are exposed for 40s. The 

curves, analyzed singularly, show that the fabricated gap increases as the nominal gap 

increases. Diamonds and triangles have less stable bridges, mostly concentrated at 

smaller nominal gaps. The other gap types are characterized by more stable bridges, 

mostly concentrated in the nominal gaps middle values. An interesting trend emerging 

from Figure 5.2A-F is the shift of the curves towards right (larger nominal gaps), when 

passing from hard contact, to proximity and then to soft contact. Exposing the SU-8 in 

soft contact produces bridges at larger nominal gaps than proximity, and hard contact. At 

the same time, the fabricated gap for a fixed nominal gap decreases in the same order, 

causing the posts in soft contact to merge at longer nominal gaps. 

The other characteristic dimension of the suspended structures is the width, which 

is analyzed in Figure 5.3.A-F, analogously to the fabricated gap. The remarks mentioned 

above also apply to this case, and to every further graph shown in this chapter, 

independently from the parameters in study.  



55 

Figure 5.3.A-F: Width against nominal gap for different types of contact. The results are 

shown for the case of exposure fixed to 40s, and nominal size of 160µm. 
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The curves plotted in Figure 5.3 show that the width of the bridges decreases with 

the nominal gap, and increases passing from hard to proximity and, eventually, to soft 

contact, confirming the trend observed in Figure 5.2.  

To summarize the results for the type of gap, passing from hard contact to 

proximity and, eventually, to soft contact, the T-topping increases, allowing suspended 

structures to form between posts nominally further, and generating broader posts, which 

reduce the fabricated gap and consequently increase the bridge width. Although the 

trends observed were partially expected, the fact that soft contact is generating more T-

topping than the proximity contact is, surprisingly, in contrast with the hypothesis 

formulated. Since the distance between the mask and the SU-8 increases passing from 

hard contact to soft contact, and finally to proximity, the shift was expected to follow this 

order as well. While the hard contact clearly shows a disadvantage for the formation of 

suspended structures, proximity was supposed to work better than soft contact. 

A possible reason for such incongruence is the topography of the SU-8 layer after 

spin-coating. Theoretically, the distance between the mask and the SU-8 is supposed to 

be 20µm in proximity, and 0 in soft and hard contact. Nevertheless, analyzing the 

topography of the wafer, the average height of the SU-8 layer resulted 612.8±8.6µm, 

varying within the wafer surface in a range of about 30µm, which is larger than the 

proximity distance itself. In hard contact, the mask is pressed against the SU-8, and the 

pressure could be sufficient to flatten the SU-8 topography. Instead, in soft contact, the 

mask stops as soon as it touches the highest peak, which could explain why the hard 

contact behaved as expected and the soft contact did not.   
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In Figure 5.4, a new parameter, the gap reduction (∆𝑔) is introduced. The gap 

reduction is obtained subtracting the fabricated gap from the nominal gap. From a 

geometrical point of view, the gap reduction is equivalent to the increase of the shape size 

in direction of the gap, and can be obtained from the fabricated gap (𝑔𝑓) and the nominal 

gap (𝑔𝑛) using the equation: 

∆𝑔 = 𝑔𝑛 − ∆𝑔 

Figure 5.4: Gap reduction against nominal gap for different types of contact. The results 

are shown for the case of exposure fixed to 40s, and nominal size of 160µm. 

The graph of the gap reduction is a further confirmation of the trend observed in 

the previous two Figures. The highest gap reduction is witnessed for soft contact, 
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followed by proximity, due to the increase of the shapes respect to the nominal. Also, the 

gap reduction decreases with the nominal gap. 

5.3 Exposure dose 

As seen in chapter 3, the exposure dose is defined as the product of the power of 

the light source multiplied by the time of exposure. Keeping the light source power 

constant, the parameter of interest is the time of exposure. It was hypothesized that a 

close correlation between exposure time and the amount of T-topping exists. Thus, it is 

expected that an increase of the exposure time will generate larger shapes, reducing 

fabricating gaps, and facilitating the formation of suspended structures. Figure 5.5 

contains graphs of the same 6 types of gap considered in the analysis of the type of 

contact. Each graph displays the fabrication gap in function of the nominal gap, for the 4 

different time of exposures. All the graphs of Figure 5.5 refer to shapes of size 160µm, 

exposed in soft contact.   



59 

5.5A-F: Fabricated against nominal gap for different exposure times. The results are 

shown for the case of soft contact exposure, and nominal size of 160µm. 
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After having analyzed the results for the type of contact, a similar trend for the 

exposure can be immediately recognized. The longer exposure time, the further the 

curves shift to the right of the graphs, generating suspended structures at larger nominal 

gaps, and featuring more merged subsets as well, as shown in Table 5.1. 

Table 5.1: Maximum and minimum gaps with stable bridges for different types of gap 

and exposure times. The results are shown for the case of soft contact exposure, and 

nominal size of 160µm. All dimensions are in µm. 

Type of 

Gap 

Feature 

Exposure 

10s 20s 30s 40s 

Hexagons 

PTP 

Min gap with SB 

Max gap with SB 

10 

15 

15 

25 

20 

45 

25 

45 

Hexagons 

STS 

Min gap with SB 

Max gap with SB 

10 

10 

15 

15 

15 

25 

25 

45 

Triangles 

BTB_HP 

Min gap with SB 

Max gap with SB 

5 

5 

5 

5 

15 

25 

15 

25 

Diamonds 

Min gap with SB 

Max gap with SB 

- 

- 

5 

5 

10 

15 

10 

10 

Squares 

Min gap with SB 

Max gap with SB 

- 

- 

15 

15 

20 

30 

30 

45 

Circles 

Min gap with SB 

Max gap with SB 

10 

10 

10 

10 

25 

30 

30 

45 
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Table 5.1 refers only to the nominal gaps. From a quantitative point of view, for a 

fixed nominal gap, the fabrication gap reduces as the exposure time increases. The 

reduction of the fabrication gap is shown in Table 5.2, for the sample hexagons STS and 

PTP, at fixed nominal gap 25µm. These particular gap and shapes were chosen because 

they are from the most representative, since they feature stable bridges at 3 different 

times of exposures. 

Table 5.2: Fabrication gaps for Hexagons STS and PTP in function of the exposure time. 

The results are shown for the case of soft contact exposure, nominal size of 160µm, and 

nominal gap of 25 µm. All dimensions are in µm. 

Type of Gap Exposure 10s Exposure 20s Exposure 30s Exposure 40s 

Average St.Dev Average St.Dev Average St.Dev Average St.Dev 

Hexagons 

PTP 

- - - - 7.3 0.34 4.5 0.99 

Hexagons 

STS 

- - 16 0.63 7.25 0.56 3.6 0.4 

In Figure 5.6A-F, the curves of the bridges width in function of the nominal gap 

for different time exposures and types of gap, fixed sizes to 160µm, exposed in soft 

contact, are shown.   
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Figure 5.6A-F: Width against nominal gap for different exposure times and types of gap. 

The results are shown for the case of soft contact, and nominal size of 160µm. 
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Regarding the type of contact, the bridge width decreases with the nominal gap 

and increases with the fabricated gap. Therefore, for fixed nominal gaps, a longer 

exposure time produces wider suspended structures. The same trend is confirmed by the 

behavior of the gap reduction. Since, in this section dedicated to the exposure, the type of 

contact was not taken in consideration, but simply fixed to soft contact, Figure 5.7A-C 

displays the graphs of the gap reduction in function of the nominal gap for different 

exposure times and types of contact. 

Figure 5.7A-C: Gap reduction against nominal gap for different types of contact and 

exposure times. The results are shown for the case of hexagons STS of nominal size 

160µm. 
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The data analyzed shows an increase of the gap reduction in function of the 

exposure time. The trend is very clear in Figure 5.7C while the curves for 30s and 40s 

(Figure 5.7A-B), are too close to each other to observe any tendency. As previously 

mentioned, the gap reduction is equivalent to the increase of the post shapes respect to the 

nominal. Therefore, to close the circle and furtherly validate the trend identified, Table 

5.3 shows the area broadening in function of the exposure time, for all the different 

shapes, with fixed size 160µm and soft contact exposure. 

Table 5.3:  Cross section in function of the time of exposure, for different shapes with 

characteristic dimension 160µm. All dimensions in µm. 
Shape Nominal size Size for 10s Size for 20s Size for 30s Size for 40s 

Hexagons
1 277.18 288 291 298 303 

Triangles
2 138.5 151 155 162 165 

Diamond
3

Squares 

Circles 

226.3 

160 

160 

227 

168 

165 

232 

170 

168 

238 

182 

184 

242.5 

190 

190 
1 For hexagons the measurement taken was the distance between two parallel sides.
2  For triangles the measurement taken was the height.
3  For diamonds the measurement taken was the diagonal.

The data in Table 5.3 shows that the broadening of the cross section is directly 

proportional to the time of exposure. In particular, the increment of the cross sections in 

the case of 10 and 20s is quite limited compared to the higher exposure times. This is the 

explanation of the fact that the 30 and 40s quadrants present many more merged subsets, 

and usually more suspended structures, respect to the 10 and 20s. The fact that for 10 and 

20s exposure time the broadening is limited, generates thinner suspended structures, and 

sometimes allow their formation at the lowest nominal gaps (5-10µm), which is the key 

to obtain the very thin wires, which are the final objective of this work. 
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In the case of the exposure time, all the hypotheses formulated in chapter three 

have been confirmed.  

5.4 Nominal size 

Each set (defined in chapter 4 as the group containing all the posts with the same 

geometrical shape) has subsets of posts of 6 different sizes: 160, 80, 40, 30, 20 and 10µm. 

Such values refer to the characteristic dimension of the shape, which is the side for the 

polygonal shapes, and the diameter for the circles. Figure 5.8A-F represents the 

fabricated gaps in function of nominal gap and shape size, for exposure time of 40s in 

soft contact.  
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Figure 5.8A-F: Fabricated gap against nominal gap for different nominal sizes and types 

of gap. The results are shown for the case of exposure 40s in soft contact. 

The data analyzed shows that varying the nominal shape does not significantly 

influence the formation of suspended structure so there is not a clear influence between 
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the size of the posts and the formation of suspended structures. Even considering great 

changes in the nominal size, passing from 10 to 160µm, most of the points are still 

aligned in columns. This means that for a specific set, if the subset of size 160µm and 

nominal gap 30µm features stable bridges, there are high chances that all the other 

subsets with different nominal sizes but same nominal gap 30µm will have stable bridges 

as well. A clear example is given by the hexagon STS in Figure 5.8B, where all the 

nominal sizes but the 10µm have bridges at 25 and 30µm. 

Although the formation of bridges is not affected by variation of the nominal size, 

the width of the suspended bridges is directly proportional to the shape size. In fact, two 

adjacent posts, facing each other by sides instead of points, tend to develop bridges all 

along the sides. This explains why subsets with type of gap STS features wider bridges 

than the subsets PTP. For the same reason, the bigger the side, the wider the bridge. This 

hypothesis can be verified analyzing the graphs in Figure 5.9A-F. 
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Figure 5.9A-F: Width against nominal gap for different nominal sizes and types of gap. 

The results are shown for the case of 40s exposure in soft contact. 

The increase of the bridges width with the nominal size is particularly obvious, in 

Figure 5.9B, E and F, which correspond to type of gaps STS, while in the other three 
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graphs, which represent gaps PTP, the influence of the nominal size is strongly reduced. 

This is perfectly in accordance with the hypothesis, since, in these sets, the posts are 

facing by points, which do not increase particularly with the nominal size. The hypothesis 

is furtherly quantitatively verified by the data in Table 5.4, which proves the small 

influence of the nominal shape on the fabrication gap, and the big influence on the 

suspended structures width, for hexagons STS exposed for 40s in soft contact.   

TABLE 5.4: Bridges length and width in function of the nominal size. The results are 

shown for hexagons STS, exposed in soft contact for 40s. All dimensions are in µm. 
Nominal Size 

160 µm 80 µm 40 µm 30 µm 20 µm 10 µm 

Nominal 

gap 

30 30 30 30 30 30 

Average 

measured length 

7.64±1.37 7.47±1.33 9.19±0.6 9.3±0.71 11.47±0.56 13.81±0.63 

Average 

measured width 

163.42±3.36 67.29±0.51 22.26±0.13 13.77±1.7 6.86±0.3 No Bridge 

Figure 5.10A-D display the gap reduction in function of the nominal gap, for 

different nominal sizes and exposure times, in the case of hexagons STS in soft contact. 
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Figure 5.10A-F: Gap reduction against nominal gap for different nominal sizes and 

exposure times. The results are shown for hexagons STS exposed in soft contact. 

As expected, the data analyzed do not suggest any trend of the gap reduction in 

response to nominal size variations. 

The last consideration about the nominal size, is that it directly affects the 

resistance of the SU-8 posts to stiction. Stiction is a phenomenon due to the surface 

tension of the liquid meniscus that is formed in-between two adjacent posts during the 

photolithography development. The risk of stiction increases for high aspect ratio posts 
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closely packed. The resistance of a post to this phenomenon depends on its height and 

moment of inertia, which is determined by the geometry and dimensions of the cross 

section [38]. High aspect ratio posts with smaller cross sections are slenderer, and thus 

more inclined to bend and stick in an irreversible fashion.  

5.5 Type of Gap 

The type of gap depends on both the geometry and orientation of the shape. From 

a geometrical point of view, the subsets are regrouped in 5 different shapes: hexagons, 

squares, diamonds, triangles and circles. A further differentiation is done taking also in 

consideration the orientation of these shapes. In this sense, the types of gap are grouped 

and defined as side-to-side (STS), point-to-point (PTP), point-to-side (PTS), and circle-

to-circle (CTC), depending on which extremities of the shapes are facing two consecutive 

posts. Squares are defined as STS, diamonds as PTP, shapes such as hexagons can be 

both. For example, aligning two parallel sides of hexagons to the x-direction, the type of 

gap, in the x-direction, is hexagons PTP, while, in the y-direction, is hexagons STS. The 

only PTS case is the triangles where the vertex of a triangle faces the base of the 

following one. The triangles PTS are not included in most of the graphs shown in the 

results section, because they often connect diagonally, in an unpredictable manner, and 

hence, they are not considered interested for the goal of this study. The circles have a 

behavior in-between PTP and STS, but since they are closer to the latter, they are 

considered to belong to the STS group for simplicity. The fabrication gap in function of 
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the nominal gap, for different types of gap and time of exposures, is shown in Figure 

5.11A-D.  

Figure 5.11A-D: Fabrication gap against nominal gap for different types of gap and 

exposure times. The results are shown for nominal size 160µm exposed in soft contact. 

It can be observed that the shapes STS usually present suspended structures at 

longer nominal gaps than the PTP. In particular, hexagons STS appear to be the most 

effective type of gap when the goal is to achieve suspended long and wide bridges in a 

large range of nominal gaps. The other shapes that facilitate the formation of bridges are 
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squares, circles and triangles, followed by the PTP shapes. The PTP shapes tend to form 

less suspended bridges, at lower nominal gaps and, as shown in Figure 5.10.A-D, PTP 

shapes produce much thinner structures than the STS ones. Thus, the PTP shapes are the 

only ones capable of generating suspended wires with width lower than 1µm. Among the 

PTP shapes, the number of subsets with suspended structures and the dimensions of the 

structures decrease in descending order from hexagons to diamonds and finally to 

triangles. This trend confirms the hypothesis that shapes with more material facing each 

other are facilitated in creating connections. The theory is also supported by the graphs in 

Figure 5.12A-D, where it is shown that shapes with more material at the interface with 

the adjacent posts result in wider bridges. Once again, the hexagons STS appear at the top 

right of the plots, followed by the other STS shapes, while the PTP are confined at the 

bottom left.  
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Figure 5.12A-D: Width against nominal gap for different types of gap and exposure 

times. The results are shown for nominal size 160µm exposed in soft contact. 

Plots of the gap reduction are given in Figure 5.13A-D. The data does not suggest 

any particular trend associated to the type of gap. 
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Figure 5.13.A-D: Gap reduction against nominal gap for different types of gap and 

exposure times. The results are shown for nominal size 160µm exposed in soft contact. 

5.6 Nominal Gap 

Nominal gaps of 45, 30, 25, 20, 15, 10 and 5µm were explored. There are no 

graphs dedicated to this parameter, because it was included in the graphs of all the 

previously mentioned parameters. In fact, for every parameter under analysis, the 

variables were plotted in function of that parameter and the nominal gap. The nominal 

gap is the most influent parameter on the formation of bridges, along with the exposure 
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time. When all the other parameters are fixed, all the types of feature can be obtained 

varying the nominal gap appropriately. In particular, going from high gaps to smaller 

ones, the features follow always a specific order: no bridges, spikes, stable bridges, walls 

and merged structures. The fact that not all of them appear in every set is not in contrast 

with the previous statement. As a matter of fact, all the mentioned features would appear 

if the nominal gap was a continuous variable and not limited to 7 discrete values, which 

may cause some of the features to be skipped. .  

5.7 SU-8 thickness 

The influence of the SU-8 thickness has not sufficiently been analyzed yet to be 

included in the results of this work. Preliminary results were obtained from the 

comparison of two wafers with SU-8 posts, 50µm and 300µm high, exposed in soft 

contact. The qualitative analysis for these two wafers does not show a significant 

influence of the SU-8 thickness in the formation of suspended bridges, although the 

300µm tall posts have a much higher aspect ratio than the 50µm ones, making them more 

sensitive to stiction. This trend can be verified observing Table 5.5, where all the 

parameters were fixed, except the SU-8 thickness. It is noticeable that the 300µm thick 

wafer features a much higher number of irregular subsets, even at higher nominal gaps, 

than the 50µm thick. 
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Table 5.5: Qualitative analysis for triangles PTB, exposed in soft contact for 20s 

in the case of 50µm (top chart), and 300µm (bottom chart) SU-8 thickness.  

5.8 Carbonization 

The SU-8 structures shrink significantly during the carbonization process. The 

characteristic dimensions for the different geometries were reported to shrink up to the 

50% of their original value, as shown in Figure 5.14A-B.  
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Figure 5.14A-B: Circular shapes obtained for nominal size 160µm, nominal gap 30µm 

and exposure time 30s in soft contact. A) SU-8; B) carbonized. 

Figure 5.14A-B displays the same 4 posts before and after carbonization. During 

the treatment, the posts underwent a contraction of about 49.5% of their average 

diameter, ranging from 186µm for the SU-8 to 94µm for the carbon. The posts retreated 

due to the shrinkage, making the fabricated gap increase at equally to the diameter 

reduction, forcing the suspended structure to stretch. The average values of the bridges 

length increased from 6.1µm to 93.1µm, while the width got reduced from 39.4 to 8.5µm. 

It is important to notice that suspended structures may break due to the tensional stress 

caused by the stretching, as happened to the vertical bridge on the left in Figure 5.14B. 

As a direct consequence of the shrinkage, long and thin structures in the SU-8 

have high chances to break under the effect of the stretching-induced stress, causing a 

reduction in the maximum nominal gap that allows subsets with suspended structures. 

Under the same principle, some subsets that were characterized as walled or merged, may 
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become actual suspended structures as the SU-8 posts retreat. The two effects of the 

shrinkage can be summarized with a shift of the subsets with suspended structures 

towards lower gaps. This trend is shown qualitatively in Table 5.6, as the maximum and 

minimum nominal gaps feature stable bridges, in the case of SU-8 and carbon, for 

different nominal sizes. The type of gap is fixed to hexagons STS, and the exposure time 

to 30s in soft contact. 

TABLE 5.6:  Value of maximum and minimum gaps with stable bridges in function of 

the nominal size, for hexagons STS, exposed for 30s in soft contact. 
Feature Material Nominal Size 

10 µm 20 µm 30 µm 40 µm 80 µm 160 µm 

Max gap 

with SB 

(µm) 

SU-8 20 25 25 30 25 45 

Carbon 20 25 25 25 15 45 

Min gap 

with SB 

(µm) 

SU-8 20 20 20 20 20 20 

Carbon 20 15 15 25 15 25 

The quantitative entity of the shift can be observed in Figure 5.15A-D for the 

fabricated gap, and in Figure 5.16A-D for the width. 
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Figure 5.15A-D: Fabrication gap in function of the nominal gap in the case of SU-8 and 

carbon structures, for different times of exposures. The results shown are for hexagons 

STS with nominal size 40µm  

Although there are not enough subsets with carbon suspended structures to define 

all the curves, the shift of the carbon curves towards top-left in the fabrication gap graphs 

is shown in Figure 5.13C, and also confirmed in 5.13A, B and D 
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Figure 5.16A-D: Width in function of the nominal gap in the case of SU-8 and carbon 

structures, for different times of exposures. The results shown are for hexagons STS with 

nominal size 40µm  

Similarly, the shift of the curves towards bottom-left in the width graphs is shown 

in Figure 5.16C, and confirmed by the other graphs. 

All the trends associated to the photolithography parameters are still valid for the 

carbon. In fact, the carbonization process cannot generate connections in between posts 

that were not previously connected in the SU-8. As a consequence, the parameters that 

facilitate the formation of SU-8 suspended structures, will also facilitate the formation of 
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carbon suspended structures. To verify this assertion, a brief analysis of the data collected 

on the carbon suspended structures will follow. For this analysis, the different 

combinations of parameters respect to the SU-8 case will be showed. After carbonization, 

there are less subsets featuring stable bridges, thus, it is tougher to find combination of 

parameters that produce enough subsets of interest. The type of contact is examined in 

Figure 5.17A-D. 

Figure 5.17: A, C) Fabrication gap and B, D) width, in function of the nominal gap, for 

nominal size 80µm, and exposure time 30s, with different types of contact. Post 

carbonization.   
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The curves in Figure 5.17A-D confirm the trend observed for the type of contact, 

in the case of SU-8 structures. Passing from hard contact to proximity and to soft contact, 

suspended structures appear at bigger nominal gaps. Also, for fixed nominal gap, the 

fabricated gap decrease and the width increase. The influence of the exposure is 

investigated in the graphs of Figure 5.18A-D.  

Figure 5.18: A, C) Fabrication gap and B, D) width, in function of the nominal gap, and 

time of exposure, for nominal size 80µm, exposed in soft contact. Post carbonization.    

Even if only the 30s exposure time generates an actual curve, the points obtained 

with the other exposures follow the trend described for the exposure time in the SU-8 
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section. In fact, proceeding from small nominal gaps to bigger ones (from left to right in 

the graphs), the first point found corresponds to the 10s exposure time, and the 20, 30, 

and 40s exposure points follow. Also, looking at the subsets with nominal gap 15µm, the 

30s exposure produces shorter fabricated gap and wider suspended structures.  

Figure 5.19: A, C) Fabrication gap and B, D) width, in function of the nominal gap and 

nominal size, for exposure time 30s in soft contact. Post carbonization.  

In Figure 5.19A-D, the different nominal sizes, with exposure time 30s in soft 

contact, for hexagons STS and PTP are compared. As observed for the SU-8, Figure 

5.17A shows that every nominal size generates suspended structures only for 5, 10 and 
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15µm, confirming that varying the nominal size does not affect significantly the presence 

of subsets with suspended structures. In Figure 5.17A, it is also shown that the fabrication 

gap increases with the nominal size, which is particularly interesting, since, in the SU-8, 

it was slightly decreasing with an increment of the nominal size. This is due to the fact 

that the shrinkage during carbonization prevails the increase of cross section due to the T-

topping during the exposure time. This fact can be best explained by the scheme in Figure 

5.20 (the numbers in this example are rounded for simplicity, but they are still very close 

to the real ones).  

Figure 5.20: Different increase of fabrication gap in function of nominal size. 

Lastly, the types of gap are compared in Figure 5.21A-B. 
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Figure 5.21: A) Fabrication gap and B) width, in function of the nominal gap, for 

different types of gap. The results are shown for nominal size of 80µm, exposed for 30s 

in soft contact.  

There is not an appreciable trend for the fabrication gap curves in Figure 5.21A. 

In Figure 5.21B, it is shown that as in the case of the SU-8, the width of the suspended 

structures increases with the amount of material facing the adjacent post. The STS shapes 

have the widest structures, followed by circles, and then PTP shapes, starting with 

hexagons PTP and getting to the triangular shapes. Based on the analysis, the PTP shapes 

appear to be the only types of gap that allow to obtain suspended carbon wires. In order 

to obtain structures thinner than 1µm, the posts have to face each other with the least 

material possible, and the exposure time can only be 10 or 20s. In particular, the thinnest 

wires were obtained by triangular shapes facing by the points adjacent to their base, and 

for a time of exposure of 10s.  



87 

Another interesting fact is that the shapes STS suffer a drastic reduction of the 

number of subsets with suspended structures. That is mostly due to the fact that the 

carbonization process induces thermal stress in the SU-8, which can create cracks in the 

material. An example of two consecutive arrays of squared posts cracked during 

carbonization is given in Figure 5.22. 

Figure 5.22 – Effect of the thermal stress induced by carbonization on 2 arrays of squared 

posts. 

The cracks are not necessarily preventing the formation of suspended structure, 

but they make the subset unusable. Therefore, the cracked subsets were excluded from 

the graphs. Since the entity of the induced stress is proportional to the shapes quantity of 

material, the STS shapes suffer from the carbonization process more than from the PTP. 
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Also, as shown for the nominal size, bigger shapes retreat more while shrinking, inducing 

a higher tensional stress on the SU-8 structures, and consequently increasing the 

probability of breaking them.   

5.9 Discussion 

It has been shown that choosing wisely the photolithography parameters, a variety 

of SU-8 structures such as: self-standing posts (Figure5.23A), suspended bridges (Figure 

5.23B), and wires (Figure 5.23C) can be obtained. 

Figure 5.23: Examples of SU-8 structures obtained. A) Circular self-standing posts; B) 

Squared posts featuring suspended bridges; C) Triangular posts featuring suspended 

wires. 
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Suspended bridges and wires were fabricated using a large amount of different 

combinations of parameters. Judging from the structures repeatability, continuity and 

width, the optimum parameters to fabricated bridges and wires were found, and are given 

in Table 5.7 

Table 5.7: Optimum fabrication parameters for obtaining repeatable, reliable and 

continuous bridges and wires.  

Suspended 

Structure 

Type of 

Contact 

Exposure 

time 

(s) 

Type of 

gap 

Size 

(µm) 

Gap 

(µm) 

Average 

width of 

structure 

(µm) 

Average length of 

structure (µm) 

Wires Soft 10 Triangles 

60°H 

80 5 0.81±0.18 39.71±4.39. 

Bridges Soft 30 Hexagon 

STS 

160 45 53.55±6.73 74.42±1.77 

Figure 5.24A-B displays images from the optical microscope, for the subsets 

featuring bridges and wires fabricated with the optimum parameters. 
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Figure 5.24: A) Hexagonal subset featuring optimal bridges and B) Triangular subset 

featuring optimal wires. 

Wires as thin as 0.47µm were obtained but they were not repeatable within the 

subset. Also, analyzing triangular arrays with the SEM, even thinner wires of 

width<0.1µm were found coming out from the sidewalls of the structures. These features 

were too small to be observed at the optical microscope and were found not repeatable. 

However, their extremely low width makes them interesting for further research.   

Characterizing the fabricated structures was not the only goal of this work. The 

second objective is the determination of a mathematical model able to predict the process 

results, given a particular combination of parameters. It has been observed that structures 

with same length or width can be obtained with different combination of the parameters. 

For example, bridges of a specific length could be fabricated at a determined nominal 

gap, with a certain combination of the other parameters, but also, at a higher nominal gap, 

increasing the exposure time accordingly. However, none case where both the same 



91 

length and width were obtained from two different subsets was recorded. At the same 

time, all the posts within the same subset behave similarly. These are very good premises 

because they suggest that it is possible to associate the choice of the parameters with a 

unique and repeatable outcome.  

Predicting the characteristics of the structures is not a straightforward operation, 

since all the photolithography parameters are correlated, and their dependency on each 

other is not clear. Previously in this chapter, each parameter was examined individually, 

analyzing the data related to that parameter, while all the other parameters were fixed. 

Even in such a system, with a singular degree of freedom, the influence of a parameter on 

the formation of bridges cannot be defined accurately, because it still depends on the 

particular choice of all the other parameters. 

Strictly focusing on the formation or not of suspended structures, without 

addressing their width, it was found that the two most important parameters are the 

distance in-between the posts and the time of exposure. Decreasing the distance in-

between the posts increases the probability of forming suspended structures, and the same 

effect is caused by increasing the time of exposure. Therefore, with an extremely 

simplified model, the system could be described as follows: choosing a gap as large as 

desired, there would always be a large enough value of the exposure time to generate a 

bridge; vice-versa, choosing an exposure as small as desired, there would always be a 

small enough value of gap to generate a bridge. Obviously, upper and lower boundaries 

limit the choice of the two parameters, to guarantee the feasibility of the process.  

This model could be mathematically described with a simple linear relationship. 
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𝐾𝑏 ≝
𝑒

𝑔𝑓
 (𝟏) 

𝑖𝑓 𝐾𝑏 ≥ 𝐾𝑏̅̅̅̅  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑏𝑟𝑖𝑑𝑔𝑒  (𝟐) 

Where 𝑒 is the exposure time, 𝑔𝑓 is the fabricated gap (distance in-between the 

posts), and 𝐾𝑏̅̅̅̅  is a constant that has to be determined experimentally. In order for this

model to work, the presence of a bridge or not has to be predicted based only on the time 

of exposure and the fabricated gap measured, for every combination of the other 

parameters. For every type of contact, exposure time, and nominal size, the constant 𝐾𝑏 

of the subsets featuring no bridges with the lowest nominal gap (𝐾𝑏,𝑁𝐵), and the ones 

featuring bridges with the highest nominal gap (𝐾𝑏,𝑆𝐵), have been calculated. The average 

values of 𝐾𝑏,𝑁𝐵 and 𝐾𝑏,𝑆𝐵 are shown in Table 5.8, where the results have been grouped by 

type of gap, since usually the type of gap influences the formation of bridges.  
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Table 5.8: Average values of 𝐾𝑏,𝑁𝐵 and 𝐾𝑏,𝑆𝐵, and acceptable interval for 𝐾𝑏̅̅̅̅ . All values

are grouped by type of gap. 

Type of Gap 𝑲𝒃,𝑵𝑩 [𝑠/𝜇𝑚] 𝑲𝒃,𝑺𝑩 [𝑠/𝜇𝑚] 𝑲𝒃 ̅̅ ̅̅ [𝑠/𝜇𝑚]

Hexagons STS 1.37±0.31 4.48±1.41 1.65≤ 𝐾𝑏̅̅̅̅ ≤ 3.07

Hexagons PTP 1.92±0.57 5.71±1.39 2.49≤ 𝐾𝑏̅̅̅̅ ≤4.32

Squares 1.45±0.41 6.76±3.47 1.86≤ 𝐾𝑏̅̅̅̅ ≤3.29

Circles 1.7±0.34 6.53±1.88 2.04≤ 𝐾𝑏̅̅̅̅ ≤4.64

Diamonds 3.11±1.08 13.58±5.3 4.19≤ 𝐾𝑏̅̅̅̅ ≤8.28

Triangles PTB_PTS 1.94±0.53 5.56±2.03 2.47 ≤ 𝐾𝑏̅̅̅̅ ≤3.53

Triangles PTB_PTP 2.17±0.79 7.39±5.14 𝐾𝑏̅̅̅̅ ≥ 2.96, and 𝐾𝑏̅̅̅̅ ≤2.26* 

Triangles BTB_STS 1.54±0.38 11.01±5.82 1.92≤ 𝐾𝑏̅̅̅̅ ≤5.2

Triangles BTB_PTP 2.95±0 7±0.93 2.95≤ 𝐾𝑏̅̅̅̅ ≤6.1

*Note: the fact that there are not possible values for 𝐾𝑏̅̅̅̅ , means that the model fails to describe this shape.

For most gap types, the lowest value of the confidence interval of 𝐾𝑏,𝑆𝐵 is still 

higher than the highest value of the confidence interval of 𝐾𝑏,𝑁𝐵. These two values are 

used to define a safety interval, within which the constant 𝐾𝑏̅̅̅̅  can be chosen to ensure that

most subsets with stable bridges will have a 𝐾𝑏 ≥ 𝐾𝑏̅̅̅̅ , and most subsets with no bridges

will have 𝐾𝑏 < 𝐾𝑏̅̅̅̅ . The 𝐾𝑏̅̅̅̅  safety intervals, calculated for every shape, are shown in

Table 5.8 outermost right column. Analyzing these intervals, the constant 𝐾𝑏̅̅̅̅  was set to

2.5𝑠/𝜇𝑚, which respects the constraints for all the types of gap but diamonds and 

triangles PTP.  
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In this model, 𝑔𝑓 refers to the actual fabricated gap, which is equal with the length 

of the bridge 𝐿 (when there is one) and is depending from the process parameters. 

𝐿 = 𝑓(𝑔𝑛, ∆𝐷𝑛)                                                             (𝟑) 

Where 𝑔𝑛 is the nominal gap, and ∆𝐷𝑛 is the variation of the characteristic 

dimension, respect to its nominal value 𝐷𝑛. The characteristic dimension is the side in the 

case of polygonal shapes, and the diameter in case of the circle. The length formula can 

be expressed in function of a shape factor 𝑐𝑆, depending on the geometry of the shape. 

𝐿 = 𝑔𝑛 − 𝑐𝑆∆𝐷𝑛  (𝟒) 

In the sample case of the squares, 𝐿 = 𝑔𝑛 − ∆𝐷𝑛 and 𝑐𝑆 = 1. The illustration of 

the square shapes geometry, explaining the result for 𝑐𝑆, is given in Figure 5.25. 
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Figure 5.25: Shape factor 𝑐𝑆 for squares. 

The illustrations of the geometry of all the other types of gap can be found in 

Appendix A. The summary of the values found for each shape factors 𝑐𝑆 are given in 

Table 5.9. 
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Table 5.9: Shape factor 𝑐𝑆 grouped by type of gap. 

Type of Gap 𝒄𝑺 𝑳 = 𝒈𝒏 − 𝒄𝑺∆𝑫𝒏

Hexagons STS √3 𝐿 = 𝑔𝑛 − √3∆𝐷𝑛 

Hexagons PTP 2 𝐿 = 𝑔𝑛 − 2∆𝐷𝑛 

Squares 1 𝐿 = 𝑔𝑛 − ∆𝐷𝑛 

Circles 1 𝐿 = 𝑔𝑛 − ∆𝐷𝑛 

Diamonds √2 𝐿 = 𝑔𝑛 − √2∆𝐷𝑛 

Triangles PTB_PTS √3/2
𝐿 = 𝑔𝑛 −

√3

2
∆𝐷𝑛 

Triangles PTB_PTP 1 𝐿 = 𝑔𝑛 − ∆𝐷𝑛 

Triangles BTB_STS 1/√3 𝐿 = 𝑔𝑛 −
1

√3
∆𝐷𝑛 

Triangles BTB_PTP 2/√3 𝐿 = 𝑔𝑛 −
2

√3
∆𝐷𝑛 

The increase of the characteristic dimension is the consequence of the T-topping, 

and thus is a function of all the process parameters 

∆𝐷𝑛 = 𝑓(𝑒, 𝑆, 𝐷𝑛, 𝑑)  (𝟓) 

Where  𝑒 = exposure time, 𝑆 = shape, 𝐷𝑛 = nominal size, 𝑑 = contact distance 

Hypothesizing that the partial increment of the characteristic dimension due to a 

single parameter is a function of only that parameter, and that the total ∆𝐷𝑛 is given by 

the product of all the partial increments,  ∆𝐷𝑛 can be modeled as follows: 
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∆𝐷𝑛 = 𝐾(∆𝐷𝑛,𝑒 ∙ ∆𝐷𝑛,𝑆, ∙ ∆𝐷𝑛,𝐷𝑛 ∙ ∆𝐷𝑛,𝑑)  (𝟔) 

Where 𝐾 is an experimental constant and 

∆𝐷𝑛,𝑒 = 𝑓(𝑒),   ∆𝐷𝑛,𝑆 = 𝑓(𝑆)  (𝟕) 

∆𝐷𝑛,𝐷𝑛 = 𝑓(𝐷𝑛),   ∆𝐷𝑛,𝑑 = 𝑓(𝑑)  (𝟖) 

In order to determine the relationship between the exposure 𝑒 and the 

corresponding ∆𝐷𝑛,𝑒, a group of subsets differing only by the exposure time was 

analyzed. Since the other parameters were fixed, their contribution to the size increment 

was considered constant, and included in the 𝐾 of equation (6). Thus, ∆𝐷𝑛 can be 

expressed as: 

∆𝐷𝑛 = 𝐽∆𝐷𝑛,𝑒 = 𝐽𝑓(𝑒)  (𝟗) 

Where 𝐽 is a convenience constant that contains the previous 𝐾 and the constant 

factors due to 𝐷𝑛, 𝑑 and 𝑆. Plotting the values of ∆𝐷𝑛 taken from the actual 

measurements against the values of 𝑒, it was possible to approximate the real curves with 

linear relationships of the type: 

∆𝐷𝑛,𝑒 = 𝑚𝑒𝑒 + 𝑞𝑒  (𝟏𝟎) 
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Where 𝑚𝑒 and 𝑞𝑒 are coefficient to be determined case by case. It was found that 

the same equation can describe subsets with different nominal sizes and types of contact, 

but not different shapes. Therefore, a different equation was derived to approximate every 

shape, as shown in Figure 5.26 

Figure 5.26: Linear approximation of the influence of the time exposure on the cross-

section increment, for every shape. 

The values of the coefficients 𝑚𝑒 and 𝑞𝑒 for each shape, and the corresponding 

equations for ∆𝐷𝑛,𝑒, are listed in Table 5.10. 
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Table 5.10: Equations to calculate ∆𝐷𝑛,𝑒, shape by shape. 

Shape 𝑚𝑒 𝑞𝑒 ∆𝑫𝒏,𝒆

Hexagons 0.29 3.36 ∆𝐷𝑛, = 0.29𝑒 + 3.36 

Squares 0.78 -1.33 ∆𝐷𝑛 = 0.78𝑒 − 1.33 

Circles 0.83 -3.33 ∆𝐷𝑛 = 0.83𝑒 − 3.33 

Diamonds 0.36 -3.16 ∆𝐷𝑛 = 0.36𝑒 − 3.16 

Triangles 0.54 9.04 ∆𝐷𝑛 = 0.54𝑒 + 9.04 

Using a different equation for every shape, makes the presence of the factor ∆𝐷𝑛,𝑆 

unnecessary. Thus, the increment due to the shape ∆𝐷𝑛,𝑑𝑆 can be simplified, and equation 

(6) can be rewritten, for the sample case of hexagons, as:

∆𝐷𝑛,𝐻𝑒𝑥 = 𝐾 ∙ (0.3𝑒 + 3) ∙ ∆𝐷𝑛,𝐷𝑛 ∙ ∆𝐷𝑛,𝑑   (𝟏𝟏) 

Where ∆𝐷𝑛,𝐻𝑒𝑥 is the total size increment in the case of hexagonal shapes. The 

procedure used to calculate the partial increment due to the exposure time, was repeated 

to determine equations for the nominal size, analyzing subsets with constant exposure of 

30s in soft contact, but variable nominal size. As for the exposure case, the increment due 

to the nominal size was found directly proportional to the size. 

∆𝐷𝑛,𝐷𝑛 = 𝑚𝐷𝑛𝐷𝑛 + 𝑞𝐷𝑛  (𝟏𝟐) 
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Where 𝐷𝑛 is the nominal value of the characteristic dimension, and can be 10, 20, 

30, 40, 80 or 160µm. 𝑚𝐷𝑛 and 𝑞𝐷𝑛 are coefficients depending on the shape in exam. The 

linear approximations are shown in Figure 5.27. 

Figure 5.27: Linear approximation of the influence of the nominal size on the cross-

section increment, for every shape. 

The values of the coefficients 𝑚𝐷𝑛 and 𝑞𝐷𝑛 for each shape, and the corresponding 

equations for ∆𝐷𝑛,𝐷𝑛, are listed in Table 5.11. 
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Table 5.11: Equations to calculate ∆𝐷𝑛,𝐷𝑛, shape by shape. 

Shape 𝑚𝐷𝑛 𝑞𝐷𝑛 ∆𝑫𝒏,𝑫𝒏

Hexagons 0.014 5.691 ∆𝐷𝑛, = 0.014𝐷𝑛  + 5.691 

Squares 0.018 6.733 ∆𝐷𝑛 = 0.018𝐷𝑛 + 6.733 

Circles 0.024 5.314 ∆𝐷𝑛 = 0.024𝐷𝑛 +5.314 

e 

Diamonds 0.018 1.436 ∆𝐷𝑛 = 0.018𝐷𝑛 + 1.436 

Triangles 0.089 11.712 ∆𝐷𝑛 = 0.089𝐷𝑛 + 11.712 

A problem arose when trying to consider the type of contact, since it is not a 

numerical value. Considering that changing the type of contact changes the distance 

between the mask and SU-8, it was thought to use that distance as parameter. 

Unfortunately, its values are also unknown. In fact, the theory suggests 20µm for 

proximity, and 0µm for hard and soft contact. The “0” is clearly an unfeasible value, 

which cannot be reached in practice. Also, soft contact was proved to behave as if it had 

been actually further than the proximity, for the specific wafers examined. Therefore, 

arbitrary values of 𝑑 = 10, 20 and 30µm were assigned to hard contact, proximity and 

soft contact, respectively. Once again, linear best fit curves were adopted: 

∆𝐷𝑛,𝑑 = 𝑚𝑑𝐷𝑛 + 𝑞𝑑  (𝟏𝟑) 

Differently from the previous coefficients, 𝑚𝑑 and 𝑞𝑑 had to be calculated for 

every type of gap, and are given in Table 5.12.  
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Table 5.12: Equations to calculate ∆𝐷𝑛,𝑑, for each type of gap. 

Type of gap 𝑚𝑑 𝑞𝑑 ∆𝑫𝒏𝒅

Hexagons STS 0.0028 0.115 ∆𝐷𝑛𝑑 = 0.0028𝑑 + 0.115 

Hexagons PTP 0.0025 0.093 ∆𝐷𝑛𝑑 = 0.0025𝑑 + 0.093 

Squares 0.0004 0.033 ∆𝐷𝑛𝑑 = 0.0004𝑑 + 0.033 

Circles 0.0042 0.079 ∆𝐷𝑛𝑑 = 0.0042𝑑 + 0.079 

Diamonds 0.0049 0.173 ∆𝐷𝑛𝑑 = 0.0049𝑑 + 0.173 

Triangles BTB_STS 0.000545 0.0094 ∆𝐷𝑛𝑑 = 0.000545𝑑 + 0.0094 

Triangles BTB_PTP 0.0000233 0.0013 ∆𝐷𝑛𝑑 = 0.0000233𝑑 + 0.0013 

Triangles PTB_PTS 0.000576 0.00553 ∆𝐷𝑛𝑑 = 0.000576𝑑 + 0.00553 

Triangles PTB_PTP 0.000544 0.0036 ∆𝐷𝑛𝑑 = 0.000544𝑑 + 0.0036 

Plugging the equations (11), (12), and (13) into equation (6), and the latter into 

(4), the most general expression for the length of the bridges 𝐿 is obtained: 

𝐿 = 𝑔𝑛 − 𝑐𝑆𝐾(𝑚𝑒𝑒 + 𝑞𝑒)(𝑚𝐷𝑛𝐷𝑛 + 𝑞𝐷𝑛)(𝑚𝑑𝑑 + 𝑞𝑑)  (𝟏𝟒) 

The value of 𝐾 was extrapolated from the parameters and the measured fabricated 

gap. Also, in this case, a different value for each type of gap was found. The results are 

shown in Table 5.13. 
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Table 5.13: Values of 𝐾, for each type of gap. 

Type of gap 𝐾 

Hexagons STS 0.938±0.35 

Hexagons PTP 
0.846±0.259 

Squares 
2.059±0.684 

Circles 
1.373±0.367 

Diamonds 
1.114±0.524 

Triangles BTB_STS 
3.109±1.153 

Triangles BTB_PTP 
13.213±6.584 

Triangles PTB_PTS 
2.997±1.676 

Triangles PTB_PTP 
3.049±1.829 

The values given in Table 5.13 are already considering the shape factor 𝑐𝑆, which 

can be eliminated. The values from Tables 5.9-13 can be used to determine the specific 

equation (14) for each type of gap. For example, in the case of hexagons STS, (14) 

becomes 

 𝐿 = 𝑔𝑛 − 0.938(0.28𝑒 + 3.36)(0.014𝐷𝑛  + 5.691)(0.0028d + 0.115)  (𝟏𝟓) 

Finally, this equation can be used to determine the value of the bridge length, 

since all the other variables are known process parameters. The model was tested on the 
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total amount of fabricated bridges, grouped by type of gap. The values of the absolute 

(𝐸𝑎) and relative (𝐸𝑟) errors of the bridges length respect to the data measured for the 

fabricated gap are given in Table 5.14 

Table 5.14: Absolute and relative error of the length calculated respect to the measured 

value. The results have been grouped by type of gap. 

Type of gap 𝐸𝑎 [µ𝑚] 𝐸𝑟 [#] 

Hexagons STS 2.9±2.2 0.05±0.87 

Hexagons PTP 2.29±2.05 -0.02±0.77

Squares 3.83±2.49 -0.04±1.08

Circles 2.9±2.28 0.14±1.46 

Diamonds 6.33±4.86 2.71±3.41 

Triangles BTB_STS 5.31±3.37 -0.07±2.79

Triangles BTB_PTP 3.57±2.08 -1.19±0.67

Triangles PTB_PTS 6.21±3.81 0.41±3.78 

Triangles PTB_PTP 4.25±3.28 0.59±1.86 

It can be observed that, once again, the model gives good results for hexagons, 

squares and circles, but not for diamonds and triangles. The fact that the relative error is 

very small, but its standard deviation is high, suggests that this model is accurate but not 

precise, as confirmed by the absolute error. Nevertheless, it has to be taken into account 
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that the model was derived from experimental data, which are not absolutely precise as 

well. Analyzing the measurements themselves, was registered an average absolute error 

of 1.38±1.37, which is quite normal for manual data collection on features that are so 

close to the microscope maximum resolution. Therefore, with such an error in the 

measurements, the fact that an error of the same scale was found in the predictions is very 

satisfactory, and the model can be considered successful for hexagons, squares and 

circles. 

For diamonds and triangles, the variability of measurements and results is due to 

the fact that these types of gap produced many less subsets featuring suspended 

structures, respect to the others. In most cases, the number of subsets are not statistically 

significant to correctly determine the coefficients of equation (14). The reason of this 

difference in the outcome is that these shapes are mostly PTP types, which tend to form 

thin bridges and wires. These connections are more fragile and can snap more easily than 

the wider structures. Thus, the suspended wires are mostly present at the smallest 

nominal gaps and in very small number. To give an example as support to the previous 

statements, consider that the total number of subsets with different parameters 

combinations for triangles BTB_PTP are 504. Among these, only 11 subsets produced 

suspended bridges/wires.  

Although not very reliable, diamonds and triangles are the shapes that produced 

the best wires, and thus, more dedicated research is needed in the future, focusing on the 

combinations of parameters that successfully generated wires.  
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Once the length has been calculated, the model has to be extended to calculate the 

width 𝑊 of the bridges. In the previous sections of this chapter, it was shown that the 

width is a function of all the photolithography parameters.  

𝑊 = 𝑓(𝑔𝑛, 𝑒, 𝐷𝑛, 𝑆, 𝑑)  (𝟏𝟓) 

The width 𝑊 increases with the time of exposure 𝑒, and the type of gap 𝑑, since 

their increment is a cause of more cross-linking. Also, the profile of the shapes matters 

because more material at the interface between two posts facilitates the formation of 

bridges, and increases their width. The width is directly proportional to the nominal size 

as well, since eventually the posts tend to develop bridges as wide as the entire length of 

the side (which is the nominal size). It is intuitive that as the distance in-between the 

posts is reduced, the width increases, and vice-versa. However, it was observed that the 

nominal gap does not represent the real distance of the posts, and thus, it makes sense to 

substitute the nominal gap with the fabricated one, which is inversely proportional to the 

width. 

𝑊 = 𝐾𝑊
𝑓1(𝑒, 𝑑, 𝐷𝑛, 𝑆)

𝐿
= 𝐾𝑊

𝑓1(𝑒, 𝑑, 𝐷𝑛, 𝑆)

𝑔𝑛 − 𝑓2(𝑒, 𝑑, 𝐷𝑛, 𝑆)
 (𝟏𝟔) 

Where 𝐾𝑊 is once again, an experimental constant, and 𝑓1 and 𝑓2 are two 

unknown functions. 
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In the case of the hexagons, for which we already determined the expression of 𝐿, 

equation (15) can be rewritten as 

𝑊 = 𝐾𝑊
𝑓1(𝑒, 𝑑, 𝐷𝑛, 𝑆)

𝑔𝑛 − 0.938(0.28𝑒 + 3.36)(0.014𝐷𝑛  + 5.691)(0.0028d + 0.115)
 (𝟏𝟕) 

The problem of determining 𝐾𝑊 and the function 𝑓1 was approached in the same 

way as in the length that was determined previously.  

Unfortunately, the data analysis did not lead to any representative result in 

determining any of the two. Plotting the measured width against the length did not show 

any repeating pattern. An example of a such width-length plot is given in Figure 5.28, 

which illustrates 20 different bridges in the hexagons, circles, squares, diamonds and 

triangles sets, for different exposure times and types of contact. 
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Figure 5.28: Width against length for 20 subsets of hexagons, circles, squares, diamonds 

and triangles.  

Trying to isolate a single parameter did not work either, since, this time, 

considering the width and the length, there are, always, at least 2 parameters varying. In 

order to use the same methodology used for the length, it would have been necessary to 

have a series of bridges differing only by the variation of one of the parameters and the 

resulting width. In that case, the different results for the width, could have been linked 

directly to the variation of the parameters under analysis. Instead, when any of the 

parameters changes, the length changes as well, making the isolation of one parameter 

impossible.  
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

In this work, the possibility of using pyrolysis of photolithographically patterned 

SU-8 photolithography to obtain carbon suspended structures in the micro and nano-

scale, was investigated. The suspended structures obtained are intended to be used in the 

future as carbon electrodes contributing to the advance of the C-MEMS technology and 

of the micro and nano-biosensor industry. 

More than 60000 different pairs of SU-8 posts where analyzed, in order to find 

common trends that could define the influence of the variation of photolithography 

parameters on the process outcome. It was found that the formation of suspended 

structures strongly depends on the type of contact, exposure time, type of gap and 

nominal gap. The formation of SU-8 connections in-between two posts, whether the 

structure is suspended or merged, is facilitated by an increase of the distance in-between 

photomask and SU-8, the exposure time, and the quantity of material facing from the side 

of two adjacent posts. The gap in-between the two posts is the only parameter 

contributing against the formation of bridges, thus, more bridges and merged structures 

form at short distances. Variations of the nominal size of the post anchors do not have a 

significant influence on the formation of suspended structures, but greatly affect the 

width of the structure, when there is one.  

In order to obtain wide bridges, high exposures in soft contact or proximity are 

required. Theoretically, proximity contact is supposed to be the most effective for the 
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formation of bridges, but soft contact was proved to work better. This is the only 

hypothesis that was not confirmed by the data analysis, and is explained considering that 

the distance in soft contact could have been comparable, if not higher, to the proximity 

one, because of the topography of the SU-8 layer. Suspended bridges are obtained from a 

variety of circular and squared post anchors, but the type of gap that gives the best results 

in terms of suspended, reliable, continuous and uniform bridges, is the case of hexagons 

facing by their sides.  

Suspended wires, as thin as 0.81µm, can be reproducibly obtained with low 

exposures and point to point gaps. In particular, the thinnest bridges were obtained from 

triangular post anchors. 

A model was developed in order to predict the formation of SU-8 bridges and 

their characteristic dimensions (length and width), according to the particular choice of 

photolithography parameters. The ultimate goal for the model is to be able to determine 

the values of the photolithography parameters needed to fabricate suspended structures of 

desired length and width. 

It was proved that the model successfully predicts the presence of a bridge, given 

the fabrication gap and the time of exposure, for any combination of the other parameters. 

In the subsets featuring suspended structures, the fabricated gap coincides with the length 

of the bridges, and has to be determined. Using as input the nominal gap, exposure gap, 

contact distance and nominal size of the posts, the length is predicted accurately, but not 

precisely, for hexagons point to point, hexagons side to side, squares and circles. In those 

cases, the absolute error of the prediction was found comparable to the absolute error of 
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the measurements, and thus, the model is validated. The absolute and relative errors in 

the cases of triangles and diamonds are too high to consider the model valid. The main 

reason for this imprecision is the lack of data to analyze, since diamonds and triangles are 

the least prolific in terms of suspended structures. Therefore, the author is confident 

about the possibility of calibrating the model for these shapes as well, provided that 

further research is conducted on these shapes, targeting the combinations of parameters 

that produced suspended structures.  

An attempt was made to implement the model to predict the width of the bridges, 

but it was not possible to find a relationship between the width and the other parameters. 

In conclusion, good advancements, towards the understanding and use of 

carbonization and SU-8 photolithography as microfabrication techniques for obtaining 

micro-patterned carbon electrodes, were made for the electrochemical society. This work 

places itself in a niche of the electrochemistry literature, not very popular yet, but rapidly 

developing, and it is intended to be a pioneer work of future implementation. 

The model proposed in this thesis needs to be optimized and calibrated through 

the analysis of additional experimental data with higher quality. Also, the possibility of 

predicting the width of the structures needs to be further investigated. Moreover, the 

effect of the SU-8 thickness variation needs to be integrated, and finally, the model has to 

be extended to the structures obtained post carbonization. 
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APPENDICES 
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Appendix A 

Types of gap geometry: calculating the shape factor 𝑐𝑆 
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Figure A.1: Shape factor 𝑐𝑆 for: A) hexagons STS; B)hexagons PTP; C) circles; D) 

squares; E) triangles BTB_STS; F) triangles BTB_PTP; G) triangles PTB_PTS; H) 

triangles PTB_PTP; I) diamonds.  
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