
Fall 2008

ECE 329 HW #2

In this assignment you will implement a simulated hard disk, which will be stored in a
single actual file on the real hard disk. Write a class with the following interface:

class SimulatedHardDisk
{
public:

 // number of bytes in a sector
 enum { SHD_SECTOR_SIZE = 256 };

 // parameter indicates whether write (true) or
 // read (false) has finished
 typedef void (*InterruptHandler)(bool write);

 // create a file on the real hard disk to
 // contain a simulated hard disk
 // 'real_filename': name of the real file
 // 'total_size': size of the file in bytes
 static void FormatHardDisk(const char* real_filename,
 int total_size);

 SimulatedHardDisk();
 ~SimulatedHardDisk();

 // tell this class which simulated hard disk to use
 bool SetDevice(const char* real_filename);

 // set the function to be called whenever a
 // read or write is complete
 void SetInterruptHandler(InterruptHandler interrupt_handler);

public:
 // to read or write bytes, follow these steps:
 // 1. set 'sector' to the sector number
 // 2. set 'read' or 'write' to true
 // 3. the sector read or write will begin
 // 4. when the read or write is complete,
 // the interrupt handler will be called (if set),
 // then 'write' and 'read' will be set to false
 int sector;
 bool write, read;
 unsigned char buffer[SHD_SECTOR_SIZE];
};

The constructor should create a thread that continually monitors the ‘read’ and ‘write’
variables. When either is set, the thread initiates the read or write, transferring a single
byte at a time with a sleep of 1 millisecond between transfers. The class should reside in
two files: SimulatedHardDisk.h and SimulatedHardDisk.cpp.

Using your class, augment your UNIX shell with the following commands:

Fall 2008

• mkfs devicefile
creates a file system called devicefile. In UNIX, the command formats an existing
device, but your command will simply create a file on the hard disk with the name
devicefile. In UNIX, the raw device would normally be named something like
/dev/dsk0, so you should use a name like devdsk0.

• mount devicefile dir
mounts the raw device devicefile to the directory dir. Since you will not be
implementing a hierarchical tree structure, the only value allowed for dir is ‘.’ (the
current directory). When a device is mounted, any other device that happens to
already be mounted is hidden. If mount is called with no arguments, then the
name of the current mounted device (i.e., the name of devicefile) is printed.
(Note: On some systems this is invoked with the –p option.)

• write sec val
writes the value val to all the bytes in the sector sec. val should be between 0 and
255, inclusive. (No, this is not a UNIX command.)

• read sec
reads the values of all the bytes in the sector sec and prints them to stderr. (No,
this is not a UNIX command.)

The write and read commands should not return until the write or read is complete. To
get comfortable with both approaches, use a spinlock for write and a sleep/wakeup (using
a semaphore) for read. Be sure to put a Sleep(1) inside your spinlock, so that the main
thread does not hog the CPU.

Hint: A clean way to implement a class that runs a thread uses two additional methods:

protected:
 static DWORD WINAPI ThreadProc(LPVOID lpParameter);
private:
 void MainLoop();

In this case, ThreadProc and this are passed to CreateThread. ThreadProc casts
lpParameter to SimulatedHardDisk* which is used to call MainLoop.

The following library routines may be helpful:

• WaitForSingleObject (MSDN) -- locks a mutex; releases a semaphore
• ReleaseMutex (MSDN) -- unlocks a mutex
• ReleaseSemaphore (MSDN) -- signals a semaphore

Separately, answer the following problems in Chapter 2 of the textbook (Tanenbaum,
Modern Operating Systems, 3rd ed.): 1, 3, 4, 5, 7, 8, 9, 10, 12, 19.

