ECE 329 Handout

3 of 3

Using sigprocmask()
The signal function is prototyped in <signal.h> as

sigprocmask (int how, const sigset_t *set, 
                                 sigset_t *oldset) ;

The sigprocmask function is used to examine or change the calling process's signal mask. The how argument determines how the signal mask is changed, and must be one of the following values: 
SIG_BLOCK 

Block the signals in set---add them to the existing mask. In other words, the new mask is the union of the existing mask and set. 
SIG_UNBLOCK 

Unblock the signals in set---remove them from the existing mask. 
SIG_SETMASK 

Use set for the mask; ignore the previous value of the mask. 

The last argument, oldset, is used to return information about the old process signal mask. If you just want to change the mask without looking at it, pass a null pointer as the oldset argument. Similarly, if you want to know what's in the mask without changing it, pass a null pointer for set (in this case the how argument is not significant). The oldset argument is often used to remember the previous signal mask in order to restore it later. (Since the signal mask is inherited over fork and exec calls, you can't predict what its contents are when your program starts running.) 

If invoking sigprocmask causes any pending signals to be unblocked, at least one of those signals is delivered to the process before sigprocmask returns. The order in which pending signals are delivered is not specified, but you can control the order explicitly by making multiple sigprocmask calls to unblock various signals one at a time. 

The sigprocmask function returns 0 if successful, and -1 to indicate an error. The following errno error conditions are defined for this function: 
EINVAL 

The how argument is invalid. 

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

int main (void)

{ sigset_t block_alarm;

  ...
  /* Initialize the signal mask. */

  sigemptyset (&block_alarm);

  sigaddset (&block_alarm, SIGALRM);

  while (1)

    { /* Check if a signal has arrived; 
               if so, reset the flag. */

      sigprocmask (SIG_BLOCK, &block_alarm, NULL);

      if (flag)

      {   actions-if-not-arrived
          flag = 0;

      }

      sigprocmask (SIG_UNBLOCK, &block_alarm, NULL);

      ...

    }

}

Note: You must always initialize the signal set with one of the two following functions before using it in any other way. Don't try to set all the signals explicitly because the sigset_t object might include some other information (like a version field) that needs to be initialized as well. 
int sigemptyset (sigset_t *set);

This function initializes the signal set set to exclude all of the defined signals. It always returns 0. 
int sigfillset (sigset_t *set);

This function initializes the signal set set to include all of the defined signals. Again, the return value is 0. 
int sigaddset (sigset_t *set, int signum);

This function adds the signal signum to the signal set set. All sigaddset does is modify set; it does not block or unblock any signals. 

The return value is 0 on success and -1 on failure. The following errno error condition is defined for this function: 
EINVAL 

The signum argument doesn't specify a valid signal. 
#include <stdio.h>

#include <setjmp.h>

#include <signal.h>

#include <sys/time.h>

typedef void (*fptr)();

sigset_t block_alarm;

void AlarmCatcher(int i) {  printf("Alarm Expired!\n");  }

void CtrlCCatcher(int i)

{  static j;

   printf("Ctrl C!\n");

   sigemptyset (&block_alarm);

   sigaddset (&block_alarm, SIGALRM);

   if (j)

   {  printf("Signal UnBlocked\n");

      sigprocmask (SIG_UNBLOCK, &block_alarm, NULL);

   }

   else

   {  printf("Signal Blocked\n");

      sigprocmask (SIG_BLOCK, &block_alarm, NULL);

   }

   j = !j;

}

void main(void)

{ int i,j,k;

  struct itimerval Timer;

  signal(SIGALRM, (fptr)AlarmCatcher);

  signal(SIGINT, (fptr)CtrlCCatcher);

  Timer.it_interval.tv_sec = Timer.it_value.tv_sec = 2;

  Timer.it_interval.tv_usec = Timer.it_value.tv_usec = 0;

  setitimer (ITIMER_REAL, &Timer, NULL);

  for (i=0; i<50; i++)

  {  printf("i=%d\n",i);

     for (j=0; j<10000; j++) {  for (k=0; k<10000; k++) {}; }

  }

}   

