ECE 329 Operating Systems
Chapter 2
4 of 4

Computer System Structures
Hardware Protection

The goal of computer design is to do as many things at once and as fast as possible. As operating systems developed to do just that, new problems were also introduced that had to be considered.

· For example, an error in the first program of a batch job could result in all of the following programs of that job to not execute.

· Or, consider multiprogramming, where an error in the one program can cause the destruction of another program’s data, or even the operating system itself.

· Operating systems should be designed so that they protect themselves and all programs from a “wayward” program.

Dual-Mode Operation
To do this, an operating system should at least have two modes of operation. A privileged mode which only the operating system can function in (monitor/ supervisor/system/privileged mode), and one which all programs can use (user mode).
This allows for potentially dangerous instructions to be privileged instructions, ones which only the operating system may call. (Consider the “big red button” in the White House.)
Since this is done in hardware, hardware must be added to signify this mode, that is, a mode bit. MS-DOS on the 8088 architecture did not have this bit available. Windows NT and OS/2 takes advantage of the mode bit which the Pentium does have.
I/O Protection
A program issuing improper/illegal I/O instructions, writing to the wrong I/O device or to the wrong location in an I/O device, or simply taking over control of an I/O device are problems which an operating system must consider.
Therefore, all I/O instructions should be considered privilege and must be executed through the operating system; A user program should never be able to enter monitor mode.

[image: image1.emf]Program A

Program B

Resident

Monitor

Trap to

Monitor

(1)

(2)

(3)

Allow Request

Perform

I/O

Return to

User

Program

...

...

i=1

for (j=0; ...

{ p = malloc(...

 i++;

...

...

switch (func)

{ ...

 case MALLOC:

 func_malloc()

func_malloc()

Memory Protection

Protecting a program’s memory is vital to proper operation of a computer. Since multiple programs running on the same computer typically share a single memory area, an operating system must insure that one program cannot modify another program’s memory.
This can be done by adding and implementing base and limit registers in hardware in order to quickly check a program’s “right” to use a memory address. In this manner, each job is assigned a memory area designated by a base address and a memory size (limit).

[image: image2.emf]Monitor (OS)

Program A

Program B

Program C

0x0000

0x1F6F

0x2210

0x5500

0x9099

0x520C

0x5500

0xA70C

0xBB00

0xCCE3

0xFFFF

Main Memory CPU

Limit Register

Address

0x9099

Base Register

Yes

Yes

Trap to O/S Monitor

(Address Error)

No

No

<

>

+

· What loads the base and limit registers?

· What happens if two programs want to share a variable (memory location)?

CPU Protection

An operating system must be able to ensure that the CPU retains control of the computer. Timers and interrupts provide solutions for doing just this.
Interrupts

Interrupts happen when

· An I/O device needs service
· A Timer expires

· Software event that operating system needs to know about happens

Process Terminates, Process Time-Slice Expires, Any System Call (malloc)

Hardware interrupts are generally external signals (external to CPU) which signal the CPU that an external device needs servicing. Hardware timers can also be set to go off periodically in order to guarantee Operating System a chance to operate.
Software interrupts, “traps”, are internal signals which tell the CPU that it is time to perform some task.
A software interrupt may tell the computer to:

· Switch to monitor mode

· Determine which interrupt happened

· Run appropriate interrupt handler/routine.
Timers

· Timers can be used to monitor the amount of time that programs run.
· Timers can also be used to switch between processes by signaling when a time slice has ended. Usually a context switch is executed, which saves the context of the present state, and loads that of the new process.

_1156140963.unknown

_1156141217.unknown

