ECE 329 Operating Systems
Chapter 4
9 of 20

Process Management

A program (application) is static. It is a set of instructions to complete some task.
A process is dynamic. It is a single instance of a program running (or maybe only part of a program.)
Process States
Each process running on a machine may be in one of the states shown below.

[image: image1.emf]
Queues

Only one process may be running on a given processor at any given time, but many processes may be stored in ready or waiting queues.
· A Job Queue contains jobs waiting to be created. (long-term scheduling)

· A Ready Queue contains jobs waiting to run. (short-term scheduling)

· Waiting Queues contain jobs waiting for a specific event. (medium-term scheduling)
Job Creation

To create a job or process, the computer

· Creates/obtains a free Process/Task Control Block.

· Fills the TCB/PCB with the necessary and appropriate data.

· Gathers necessary resources. (Memory (local), Files, Devices).

· Inserts job into Ready Queue.

A process/job is always created by another process/job, creating in turn a parent/child relationship.

In UNIX, the fork() instruction creates an exact copy of the parent. The only difference is that the child process is returned a zero, whereas the parent process is returned the PID (Process ID) of the child process. The child gets a copy of the parent’s memory necessary to do limited communications.
Some systems have a join() or wait() instruction which waits for a child to finish, and then gets back a return value from the child.

i = 3;

switch (fork())

{
case -1: /* Bad return value */

fprintf(stderr, "Fork() Error.");

exit(1);

break;

case 0: /* child runs its code */

printf(“I’m the child. i = %d”, ++i);

break;

default: /* parent does its thing */

printf(“I’m the parent. i = %d”, i++);

wait();

exit(0);

}
What would the code above do?

[image: image2.emf]initswapperpagedaemonrootuser1gccuser2Nuke 'emAllForegroundRendererInteractionControlTrajectoryCalculatoruser3NWOSmackdownBackgroundRenderer

Main Entry: de·mon
Variant(s): or dae·mon /'dE-m&n/
Function: noun
Etymology: Middle English demon, from Late Latin & Latin; Late Latin daemon evil spirit, from Latin, divinity, spirit, from Greek daimOn, probably from daiesthai to distribute -- more at TIDE
Date: 13th century
1 a : an evil spirit b : a source or agent of evil, harm, distress, or ruin
2 usually daemon : an attendant power or spirit : GENIUS
3 usually daemon : a supernatural being of Greek mythology intermediate between gods and men
4 : one that has exceptional enthusiasm, drive, or effectiveness <a demon for work>
Process Control Block

Each process in a computer has a process (task) control block associated with it. This area of memory contains vital (and sometimes not-so-vital) information about the process. A typical PCB is shown below:

[image: image3.emf]
Use of the Process Control Block for Switching Processes

[image: image4.emf]Save State of P

into PCB

0

0

Save State of P

into PCB

1

1

Reload State of P

into PCB

1

1

Reload State of P

into PCB

0

0

Executing

Executing

Executing

Interrupt/

System Call

Interrupt/

System Call

Interrupt/

System Call

Process P

0

Operating

System

Process P

1

Idle

Idle

Idle

Job Termination
Jobs may be terminated under different conditions and in different manners.

· A process may voluntarily terminate itself with an exit() type instruction.
· A process may involuntarily be terminated by a parent with an abort() type instruction.

What happens if a parent “dies?”
· The VMS operating system has cascading termination, which means that it also kills all the children.

· The UNIX operating system simply reassigns the children to init().
What are the advantages and disadvantages of these methods?

Threads
Threads are considered to be “light weight processes.” They have the same properties as processes, except that related threads share the same address space, (memory limit registers are the same.)
· Each thread can be scheduled independently.

· Each thread has its own flow of control.

· Each thread has shared global variables.

Each process consists of one or more threads.

For example, consider a multi-threaded process which a set of simultaneous linear equations of three variables using Cramer’s Rule, for the equations

[image: image5.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

3

3

3

2

2

2

1

1

1

d

d

d

x

x

x

c

b

a

c

b

a

c

b

a

 and
[image: image6.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

3

3

3

2

2

2

1

1

1

det

c

b

a

c

b

a

c

b

a

D

The solutions are

[image: image7.wmf]D

d

b

a

d

b

a

d

b

a

x

D

c

d

a

c

d

a

c

d

a

x

D

c

b

d

c

b

d

c

b

d

x

/

det

,

/

det

,

/

det

3

3

3

2

2

2

1

1

1

3

3

3

3

2

2

2

1

1

1

2

3

3

3

2

2

2

1

1

1

1

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

[image: image8.emf]Process ()

SolveEquations

() float X1, X2, X3, D;

float x1, x2, x3;

main()

{ CreateMatrices();

NewThread(Det(A));

WaitThread(Det(A));

x1 = X1/D;

x3 = X3/D;

x2 = X2/D;

WaitThread(Det(B));

WaitThread(Det(C));

X3=Det(A);

X2=Det(B);

X1=Det(C);

NewThread(Det(B));

NewThread(Det(C));

d = Det(D);

How would the solution be different using another method such as Gaussian Elimination?

Process Scheduling
Operating Systems that allow for more than one process to run concurrently must schedule (decide) which process to run when. Generally, processes are scheduled at three different levels.

[image: image9.emf]
Long-term Scheduling (or Batch) scheduling determines which new set of jobs will be started from a job queue and starts them. It is generally not used on smaller systems because processes aren’t (shouldn’t be) delayed.

· MVS has a powerful batch scheduler.
· VMS has some batch scheduling.
· UNIX, Linux and Windows have none, but may have jobs to start at scheduled times.

· Modern high performance computer schedulers: LSF, Grid Engine, Condor, DQS/NQS/PBS.

Medium-term Scheduling (or swapping) copies everything owned by a process to a secondary storage (disk) so as to free memory for another process.

· All modern Operating Systems use a swapper. (DOS, Windows 3.1 did not.)

· When enough free memory is available (or the process needs to be interacted with) the process is moved back to RAM.

[image: image10.emf]
When does the operating system swap OUT a process?

· Not enough available memory for malloc, new job creation, etc...
· Other resources overcommitted. (e.g. disk or network too busy.)

· Need to swap another process back in.

When does the operating system swap IN a process?

· Memory has become available.

· Other resources are now available.

· User “demands” it.

· Process has been out “too long.”

What processes do we swap out?

· Look for large jobs (hence large memory) first.

· Look for jobs which have been running a long time.

· Look for jobs with low priority.

· Look for jobs which have been suspended. Except for disk I/O. Disks are a bottleneck to processing, and we don’t won’t them to have to wait even longer.
As one could imagine, swapping out processes are a high-overhead activity (due to disk speeds). Anything more than a few swaps a second is most likely too high a rate.

If swapping is done too often, thrashing occurs. What does this term refer to/suggest?

Why does a contractor generally not take small jobs?

Short-term Scheduling (“dispatching”) is done by moving jobs from the Ready Queue to the running state. It is generally done 50 to 100 times a second.
When should we dispatch a new process?

· When the running process has used up its time slice (quantum). Interrupt timer signals this event.
· When a running process exits.

· When a new process is created.

· When a suspended process becomes ready.

· When a running process suspends itself.

How do we dispatch a new process? Quickly! of course.

The dispatcher must run on every context switch. It has to decide what to switch and then switch the context. Switching the context involves:
· Saving current TCB.

· Loading new TCB.

· Updating the Queues.

· Switching to User Mode.

· Jumping to New Process.

Inter-Process Communication

How do processes safely and effectively communicate with each other and share data between processes?
Sharing Memory – How do processes share a piece of data?
· Two processes could simply share an address space, that is have one physical memory. Unfortunately, this provides for no memory protection.
· Each process could have a shared “memory buffer,” that is have a common memory area to store shared data.

Passing Messages – How do processes communicate with each other?
Issues for message passing:
· Naming – Direct vs. Indirect, Symmetric vs. Asymmetric
· Timing – Blocking vs. Non-blocking/Synchronous vs. Asynchronous.

· Buffer Management – Flow Control.

· Ownership and Protection – Mailboxes.
Direct Message Passing – Processes can communicate directly with each other.
Symmetric Direct Message Passing requires that both processes reference each other. Example
Send(Destination, Buffer, Size)
Receive(Source, Buffer, Size)

Asymmetric (One-Sided) Direct Message Passing allows for one process to reference the other.

Put(Destination, *Buffer, Size)
Get(ID, Buffer, Size) – can receive from any process, with ID set to sending process.
Disadvantage of Directly passing messages is that it doesn’t allow for modularity (separate programming) because processes must be explicitly named. That is, when sender process name is changed, all receiving processes must be altered.
Indirect Message Passing – Processes communicate through an intermediary (a “middle man”) such as a mailbox. For example, the “clipboard” in windows is a middle-man between processes.
Timing – How do processes synchronize their communications?

· Blocking/Synchronous communication – The sending process is blocked until the message is received, either by the receiving process or mailbox.

[image: image11.emf]
· Non-Blocking/Asynchronous communication – The process sends its message and continues on. For asynchronous receiving, the receiver either gets its message or not (a NULL).

[image: image12.emf]
Buffering – How do we store the messages? How many messages? What maximum message size?
Message buffers can be of three varieties:
· Zero Capacity – There is no message buffer, so the sender must use a blocking protocol.

· Bounded Capacity – The message queue has a finite length. The sender doesn’t have to be blocked unless the buffer is full.

· Unbounded Capacity – Sender theoretically never has to block.

Mach IPC
The Mach operating system uses a port system containing different message ports or “mailboxes.”

A kernel mailbox is used for the operating system to directly communicate with a task.

A notify mailbox is used by the kernel to notify the task of events.

[image: image13.emf]
The port_allocate() call is used to create the message system. Each mailbox is owned by a process. Ownership can be transferred. Each box is FIFO for the sender, but no absolute ordering.

Three functions are used for communication:

· msg_send() – sends a message to the mailbox.

· msg_receive() – receives a message from the mailbox.

· msg_rpc() – sends a message and waits for a single response.

Each message has a fixed length header and a variable size data buffer.
If the mailbox is full, the sender has one of four options:

· Wait till mailbox has room (blocking communication).
· Wait till mailbox has room for a certain amount of time (timeout timer).

· Don’t wait at all (non-blocking communication).

· Use the Operating Systems single message cache to store the message.

What’s the problem with this (mailbox) system?

[image: image14.emf]
Sun Operating Systems
Sun’s Solaris uses RPC (Remote Procedure Calls)

[image: image15.emf]
Java uses RMI (Remote Method Invocation).

[image: image16.emf]
How does Little Endian/Big Endian come into play in message passing?
Windows Systems
Windows NT/2000 uses LPC [Local Procedure Call] (“stolen” from Sun). The communication uses a port which is dynamically created.
· Small messages (up to 256 bytes) are sent using the port’s message queue to copy the message from one process to another.

· Large messages (over 256 bytes) use a “section object” of shared memory.
The port queue is used to reference the section object.
The section object is created by a request from the sender.

A callback function is implemented to allow for asynchronous message passing.
Since the above method is slow, Windows actually implements an optimized path “Quick LPC.” It uses both an event section object and a data section object (64 K per port) with a dedicated, high-priority thread.
This method has a high overhead, but is faster.

_1182864274.unknown

_1183468669.unknown

_1183468690.unknown

_1183469715.unknown

_1183209831.unknown

_1104844071.unknown

_1106048358.unknown

_1106051877.unknown

_1106053893.unknown

_1126338992.unknown

_1106052506.unknown

_1106051488.unknown

_1106034219.unknown

_1104754221.unknown

_1104843470.unknown

_1104754166.unknown

