ECE 329 Operating Systems
Chapter 5
1 of 6

Threads
Threads (also called lightweight process, LWP) are the basic unit of CPU operation. A heavyweight process is one which consists of only one thread. Each thread has associated with it
· Thread ID

· Program Counter

· Register Set

· Stack

All threads of a single process share the same
· Code Section

· Data Section

· Operating System Resources

[image: image1.emf]
Kernel Threads are created, scheduled, and maintained by the operating system. User Threads are maintained “above” the kernel through a thread library. Kernel threads are generally more costly to maintain.

The Benefits of Multiple Threads are that they allow for:
· Responsiveness – They permit interaction with the user while other thread(s) is/are running or even blocked.

· Sharing – Since threads share memory, related threads can share/communicate data.

· Efficiency – Since threads share resources, maintaining and switching multiple threads costs less than that of multiple processes.

· Speed – A multithreaded program has the ability to run on multiple processors.

[image: image2.emf]

Many-to-One
One-to-One
Many-to-Many

In the Many-to-One design, the user can create multiple threads, but the kernel can only schedule one at a time.

In the One-to-One model, concurrency can be achieved but, the number of user threads must be limited because the burden of kernel threads relative to user threads.
In Many-to-Many systems, user can create myriads of threads which can be supported by multiple kernel threads on multiple processors.
Pthreads (POSIX standard [IEEE 1003.1c])
This standard defines a specification for an API thread interface.

Example:
#include <pthread.h>
#include <stdio.h>

int sum; /* data shared by the thread(s) */

/* The thread will begin control in this function */

void *runner(void *param)

{ int upper = atoi(param);

 int i;

 sum = 0;

 if (upper > 0) for (i=1; i<=upper; i++) sum += i;

 pthread_exit(0);

}

main(int argc, char *argv[])

{

 pthread_t tid;
/* the thread identifier */

 pthread_attr_t attr;
/* thread attributes */
 if (argc != 2)

 { fprintf(stderr, “usage. a.out <value>\n”);

 exit();

 }

 if (atoi(argv[1]) < 0)

 { fprintf(stderr, “%d must be >= 0\n”, atoi(argv[1]));

 exit();

 }

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* create the thread */

 pthread_create(&tid, &attr, runner, argv[1]);

 /* wait for the thread to exit */

 pthread_join(tid, NULL);
 printf(“sum = %d\n”, sum);

}

Solaris 2 Threads

UNIX SMP with real-time scheduling having Pthreads and UI Threads

[image: image3.emf]
Windows Threads

The Win32 API (Windows 9X/NT/2000) allows for running each application as a separate process that may contain one or more threads. Windows 2000 uses one-to-one mapping, but provides support for many-to-many system with a fiber library.
Each thread contains the following structures:

· ETHREAD (Executive) – contains pointer to the process and its routine.
· KTHREAD (Kernel) – contains scheduling and synchronization info, and kernel stack if kernel mode thread.
· TEB – contains user mode stack and array for thread data.
Linux Threads

Linux uses the fork system call which duplicates a process (and all of its memory). Linux also uses clone to create a separate process (thread) that shares memory so only a pointer to the original process’ memory is needed. The amount of sharing is programmable.
Linux does not support multi-threading, separate data structures, or kernel routines.

Linux does support a Pthread implementation.

Both Linux processes and threads are called tasks.
Java Threads

Unlike most languages, Java supports threads at the Language Level through its JVM.
class Summation extends Thread

{ public Summation(int n)

 { upper = n;

 }

 public void run()

 { int sum = 0;

 if (upper > 0)

 { for (int i=1; i<=upper; i++) sum += i;

 }

 System.out.println(“Sum of “+upper+” is “+sum);
 }

 private int upper;

}

public class ThreadTester

{
 public static void main(String[] args)

 { if (args.length > 0)

 { if (Integer.parseInt(args[0])<0)

 System.err.println(args[0]+“ must be >=0.”);

 else

 { Summation thrd =
 new Summation(Integer.parseInt(args[0]));
 thrd.start();
 }

 }

 else System.err.println(“Usage: Summation
 <integer value>”);

 }

}

_1105251823.unknown

_1105342459.unknown

_1105190361.unknown

